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Abstract

There exists an extensive and fairly comprehensive discrete analytic function theory which
is based on circle packing. This paper introduces a faithful discrete analogue of the classical
Schwarzian derivative to this theory and develops its basic properties. The motivation
comes from the current lack of circle packing algorithms in spherical geometry, and the
discrete Schwarzian derivative may provide for new approaches. A companion localized
notion called an intrinsic schwarzian is also investigated. The main concrete results of the
paper are limited to circle packing flowers. A parameterization by intrinsic schwarzians
is established, providing an essential packing criterion for flowers. The paper closes
with the study of special classes of flowers that occur in the circle packing literature. As
usual in circle packing, there are pleasant surprises at nearly every turn, so those not
interested in circle packing theory may still enjoy the new and elementary geometry seen
in these flowers.

Keywords: circle packing; Schwarzian derivative; discrete analytic functions; Möbius
transformations

MSC: 30G25; 52C26

1. Introduction
Classical complex analysis, and conformal geometry in general, have long benefited

from a fundamental Möbius invariant known as the Schwarzian derivative. Recent decades
have seen the emergence of a comprehensive discrete analytic function theory and associ-
ated discrete conformal geometry based on circle packing. This discrete theory displays
deep and intimate connections to conformal geometry, so it is natural to ask whether it,
too, could benefit from such an invariant. This paper establishes definitions for a discrete
Schwarzian derivative and verifies fundamental properties that are largely faithful to the
classical version. It also introduces a local Möbius invariant, an intrinsic schwarzian, and
begins to lay out how these invariants might provide important tools in advancing the
theory of circle packing.

Möbius or projective invariance is exemplified by quantities which remain unchanged
after application of Möbius transformations. While the Riemann sphere P is the native
habitat for Möbius actions, it is also far and away the most challenging for circle packing.
Indeed, with a few exceptions, circle packings on P have been merely stereographic pro-
jections of the packings developed in the Euclidean or hyperbolic setting. These spherical
difficulties account for perhaps the most glaring gap in discrete analytic function theory,
namely our inability to create and manipulate discrete rational functions.

The circle packing community has exhausted most approaches to working in spherical
geometry, with precious little to show for it. Perhaps discrete Schwarzian derivatives can
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provide the fresh perspective needed to move forward. The reader should not expect
miracles, however. Although we do establish robust definitions and basic properties for
a discrete Schwarzian derivative, taking our lead from pioneering work by Gerald Orick,
and although we take the opening steps, there are no breakthrough theoretical tools here.
On the other hand, in the experimental world available via circle packing, the discrete
Schwarzian derivative and the associated intrinsic schwarzian open wholly new vistas for
investigation. Concrete results here mostly deal with the fundamental unit within every
circle packing, namely the circle packing ”flower”. As invariably happens in circle packing,
both beautiful visualizations and beautiful formulas pop up around every corner. Whether
or not the reader is involved in circle packing theory, there is much to appreciate in the
surprising and pleasing elementary geometry we encounter. And we can always be alert
for that breakout tool.

Here is a brief overview of the paper: We first provide necessary (but brief) background
on circle packing, on the associated discrete analytic functions, on geometry and Möbius
transformations, and on the central role that experiments play in this topic. In Section 2,
we review the classical Schwarzian derivative and define a discrete version for mappings
between circle packings. Moving beyond that direct analog, we extract a local version, an
intrinsic schwarzian, attached to individual packings. A principal goal—a distant goal—is
methods for recognizing, creating, and ultimately manipulating (intrinsic) schwarzians for
packings. These schwarzians form edge labels analogous to the vertex (i.e., radius) labels
which dominate the theory, but which largely fail on the sphere. Section 3 illustrates the
as-of-yet-unfulfilled potential for schwarzians as a mechanism for laying out circle packings.
The struggle to work with discrete meromorphic functions is our main motivation, but
results could also apply to circle packings on projective surfaces.

We switch in Section 5 to the paper’s modest results from our opening skirmishes
with schwarzians; namely, describing the schwarzians for flowers, the elemental circle
packings. An n-flower consists of a central circle surrounded by a chain of n tangent “petal”
circles. A flower is un-branched if the petals wrap once around the center and branched if
they wrap two or more times. It is univalent if un-branched and the petals have mutually
disjoint interiors. Using a mechanical layout process and the computations detailed in
Appendix A.1 we work our way through the early cases n = 3, 4, 5, and 6 to general flowers.
We reach characterizations of un-branched (Theorem 2) and univalent (Theorem 3) flowers
and criteria for branching.

We conclude the paper in Section 6 by applying what we have learned to several special
classes of flowers. These cases will contribute only marginally to the larger campaign,
but they raise our spirits with beautiful geometric, visual, and arithmetic features. And
although much remains to be done, in the author’s view, the results for flowers alone are
worth the effort.

2. Background
2.1. On Circle Packing

A circle packing is a configuration of circles satisfying a prescribed pattern of tangen-
cies. Circle packings and their connections to conformal geometry were introduced by
William Thurston in 1985 [1]. Circle packings exist in great profusion in Euclidean, hyper-
bolic, and spherical geometry, and more recently on surfaces with affine and projective
structures [2,3]. The principal reference for this paper is [4].

The fundamental machinery is quite straightforward: The pattern of tangencies for
a circle packing P is encoded in an abstract (simplicial) complex K, a triangulation of a
topological surface. There is a circle Cv ∈ P associated with each vertex v of K and each
edge ⟨v, w⟩ of K indicates a required tangency between circles Cv and Cw. Note that every
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“circle” is associated with an interior, forming a topological disc. Two circles are (externally)
tangent if they intersect in a single point and their interiors are mutually disjoint. Often,
the key data associated with a packing is a radius label R, which contains a radius R(v) for
the circle associate with vertex v ∈ K.

Some basic terminology will be useful in the sequel: The circles of a packing P occur
in mutually tangent triples {Cv, Cw, Cu}. The geodesics connecting the three centers pass
through the three tangency points and form a geometric face. This is a geometric triangle
associated with the abstract face {v, w, u} of K. The surface formed by the geometric
faces is called the carrier of P. The packing P is univalent if its circles have mutually
disjoint interiors.

The packing P can also be viewed as a collection of interconnected flowers: a
flower consists of a central circle Cv and the chain of successively tangent petal circles,
{Cv0 , · · · , Cvn−1}, all tangent to Cv. A flower is closed if Cvn−1 is tangent to Cv0 , in which
case v is an interior vertex of K, whereas a flower is open if and only if v is a boundary
vertex. (To avoid pathologies, we require of K that every boundary vertex has at least
one interior neighbor.) There are three classes of closed flowers: A univalent flower is
one whose petals have mutually disjoint interiors. An un-branched flower is one whose
petals wrap once around the center, possibly with overlaps between non-contiguous petals.
Finally, a branched flower is one whose petals wrap more than once about the center and
its degree d is the number of times it wraps.

A circle packing P is univalent if its circles have mutually disjoint interiors. It is
necessary (but not sufficient) that the flowers for interior vertices are univalent. If an
interior circle Cv has a branched flower, then we say that P has a branch point at v.

The surprising richness of the topic is seen in the foundational existence and unique-
ness result; namely the Koebe–Andreev–Thurston (KAT) Theorem, which states that, for
any triangulation K of a topological sphere, there exists an associated univalent circle pack-
ing PK of the Riemann sphere P, and that PK is unique up to Möbius transformations (and
inversions) of P. Thurston also proposed in [1] a clever algorithm for actually computing
such packings, allowing us today to treat circle packing as a verb: to “circle pack” a complex
K is to create and manipulate the associated circle packings.

2.2. On Discrete Analytic Functions

Intriguing as circle packings were in their own right, it was a conjecture in Thurston’s
talk that really fired up the topic. An example in Figure 1 will set the stage. Let P be a
univalent circle packing filling a simply connected region Ω of the plane, as on the right in
the figure, and let K be the underlying complex. Thurston proved using KAT that there
exists a univalent circle packing for K in the unit disc D whose boundary circles are all
horocycles, as on the left in the figure. With two circle packings for the same complex, one
may define F : PK −→ P by identifying the corresponding circles. Essentially a mapping
from the unit disc to Ω, F is roughly analogous to the classical Riemann Mapping.

It is the conjecture Thurston made about such discrete conformal mappings that
kicked off the nearly 40 years of development efforts in circle packing. He suggested that,
if one were to refine this construction—used circle packings P with ever more and smaller
circles—that the resulting circle packing maps f would converge uniformly on a compact
subset of D to the classical Riemann mapping from D onto Ω. Shortly thereafter, this was
proven by B. Rodin and D. Sullivan [5] in the case of hexagonal circle packings. This result
has subsequently been expanded to nearly full generality by many authors; see [4] for
the story.
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PK P
F

ΩD

Figure 1. Example of a discrete Riemann mapping.

The packing PK has come to be called the maximal packing for K. The range of
settings has vastly expanded, so the existence and uniqueness of appropriate maximal
packings has been proven for essentially any complex K, whether finite, infinite, multiply
connected, with or without boundary. A complex K may, of course, support other circle
packings. When two packings, say Q and P, share K, then the mapping F : Q −→ P is
known as a discrete analytic function. As mentioned earlier, the mapping in Figure 1 is
a discrete Riemann mapping. However, there are discrete analogues available for nearly
all types of analytic functions, from entire functions to universal covering maps, and even
branched functions. Moreover, the convergence of the discrete maps under refinement to
their classical counterparts is established in nearly every circumstance. One can rightly
think of this as “quantum” complex analysis—a discrete theory which not only mimics the
classical, but also converges to it under refinement.

Missing, however, in the pantheon of discrete analytic functions is the potentially rich
family of discrete meromorphic functions. There is no mystery in the appropriate definition
on the sphere: If K triangulates a sphere and P is a circle packing for K on P, then the map
F : PK −→ P would be a discrete meromorphic function. Figure 2a is a non-trivial example
that we will return to in the sequel. Discrete meromorphic functions can appear more
generally as well: Figure 2b represents a discrete meromorphic function mapping a torus
to the sphere.

Both these examples owe their existence to combinatorial symmetries. The first,
a discrete analog of the classical meromorphic function z3(3z5 − 1)/(z5 + 3), exploits
dodecahedral symmetry and the special geometry of Schwarz triangles in P. There are
12 branched circles, and each has 5 petal circles wrapping twice around it; an isolated
flower will be shown later when we revisit this example.

The sphere packing of Figure 2b, developed jointly with Edward Crane, is a discrete
version of a Weierstrass ℘ function, mapping a torus to a 2-sheeted covering of P with
four simple branch points (the colored circles). There is a special symmetry built into its
complex K and the choice of branch vertices, though we have yet to understand fully why
this symmetry ensures coherent circle packing in P.

Absent special symmetries, creating such non-univalent packings is out of reach, with
inherent difficulties in spherical geometry compounded by the need for branch points.
Methods for constructing packings of P, and more generally, packings on Riemann surfaces
with projective structures, are the principal motivation for this work.
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(a)

(b)

PK P
F
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Figure 2. Examples of discrete meromorphic functions: (a) a discrete rational function; (b) a discrete
Weierstrass ℘ function.

2.3. On Möbius Transformations

Spherical geometry refers here to the geometry of the Riemann sphere P, also known as
the complex projective line. We model P on the unit sphere centered at the origin in R3 and
endowed with a Riemannian metric of constant curvature 1. The Möbius transformations
are the members of Aut(P), the group of conformal automorphisms of P under composition.
These are intimately connected with both spherical geometry and the geometry of circles.
Here are essential facts to note: • An orientation preserving homeomorphism M of the
sphere maps circles to circles if and only if M is a Möbius transformation. • In particular,
if P is a circle packing in P, then M(P) is a circle packing in P. • If {C1, C2, C3} and
{c1, c2, c3} are any two triples of mutually tangent circles, then there exists a unique Möbius
transformation M so that M(Cj) = cj, j = 1, 2, 3. • The conformal automorphisms of the
unit disc D and of the complex plane C, Aut(D) and Aut(C), are subgroups of Aut(P). •
Aside from the identity I, Möbius transformations all have 1 or 2 fixed points and fall into
one of three categories, parabolic, elliptic, or hyperbolic; the parabolic transformations are
those with a single fixed point.

It is routine to represent a Möbius transformation M in complex arithmetric as a
linear fractional transformation M(z) = (az + b)/(cz + d), where a, b, c, d are complex
coefficients with ad − bc ̸= 0. Computationally, we will work with these in the form of
2 × 2 complex matrices:

M(z) = (az + b)/(cz + d) is represented by

M =

[
a b
c d

]
, with det(M) = ad − bc ̸= 0.
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The composition of Möbius transformations is represented by normal matrix multiplication
of their matrices, and the inverse of a transformation is represented by the inverse of its
matrix. The matrix representation M may be multiplied by any non-zero complex scalar, so
we will often normalize to ensure that ad − bc = 1. Furthermore, if M is parabolic, we can
ensure that trace(M) = 2.

Computations, visualizations, and experiments have been drivers of circle packing
since the topic’s inception, principally due to the algorithm that Thurston introduced in
their 1985 talk. The many refinements of their algorithm now allow the computation of
impressively large and complicated complexes, some with millions of circles. These capabil-
ities and connections to conformal geometry have in turn allowed significant applications
of circle packing in mathematics [6], in brain imaging [7], physics [8], and engineering [9],
not to mention art and architecture.

It is especially important to note the key role that open-ended experiments, visualiza-
tions, and serendipity play, even in the purely theoretical aspects of circle packing. The
topics in this paper are just the latest examples. Experiments require a laboratory, and
for the work here, that laboratory is the open source Java software package CirclePack,
available on Github [10]. All images in this paper and the computations behind them are
due to CirclePack. Moreover, scripts are available from the author to repeat and extend
the experiments.

3. Classical, Discrete, and Intrinsic
The Schwarzian derivative was discovered by Lagrange and named after H. Schwarz

by Cayley. It is a fundamental Möbius invariant in classical complex analysis, with im-
portant applications in topics from function theory, differential equations, and Teichmüler
theory, among others. Suppose that ϕ : Ω 7→ Ω′ is an analytic function between domains
Ω, Ω′ of the complex plane whose derivative ϕ′ does not vanish. The Schwarzian derivative
Sϕ is defined by

Sϕ(z) =
ϕ′′′(z)
ϕ′(z)

− 3
2
(

ϕ′′(z)
ϕ′(z)

)2. (1)

There is also a useful pre-Schwarzian derivative sϕ:

sϕ(z) = (ln(ϕ′(z)))′ =
ϕ′′(z)
ϕ′(z)

=⇒ Sϕ(z) = s′ϕ(z)−
1
2
(sϕ(z))2. (2)

The Schwarzian derivative is valuable because of its intimate association with Möbius
transformations. By direct computation, if m(z) is a Möbius transformation, then Sm ≡ 0.
The converse also holds: if Sϕ ≡ 0 in Ω, then ϕ is a Möbius transformation. In general
terms; then, the Schwarzian derivative of a function indicates how far that function differs
from being Möbius. Reinforcing this intuition is the fact that the Schwarzian derivative is
invariant under post-composition with Möbius transformations: Sm◦ϕ ≡ Sϕ. Moreover, for
pre-composition, the chain rule gives

Sϕ◦m(z) = Sϕ(m(z)) · (m′(z))2. (3)

These features motivate the development of our discrete Schwarzian derivative. This
began with the work of Gerald Orick in his Ph.D. thesis [11]. He was searching for a
discrete analogue of a classical univalence criterion due to Nehari. Suppose that ϕ is
an analytic function on the unit disc D. If it were Möbius, then, of course, it would be
univalent (i.e., injective). Nehari proved that if ϕ is close enough to being Möbius, in
the sense |Sϕ(z)| ≤ 2/(1 − |z|2)2, ∀z ∈ D, then ϕ is univalent. Although the search for a
discrete version of Nehari’s result continues, Orick laid the groundwork for our notion of
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Schwarzian derivative, thereby opening a rich vein of questions. (Discretized Schwarzian
derivatives have appeared via cross-ratios for circle packings with regular square grid or
hexagonal combinatorics (see [12] and [13], respectively) and in circle pattern literature
(see [14], for example.)

3.1. Patches

In concert with the notion of a patch in defining classical conformal structures, a
“patch” in a circle packing P will refer to the four circles forming a pair of contiguous
faces. Our terminology will be used in both combinatorial and geometric senses. Thus, we
will write p = {v, w | a, b} for the combinatorial patch formed by faces f = {v, w, a} and
g = {w, v, b} in the complex K. We might also use the notation p = { f | g}. The common
edge of the faces is e = {v, w}, and by convention is positively oriented with respect to the
interior of f .

The circles of P impose a geometry on K, and the corresponding geometric patch
in P is p = {Cv, Cw |Ca, Cb} forming faces f and g based on the triples {Cv, Cw, Ca} and
{Cw, Cv, Cb}, respectively, and with common edge e = {Cv, Cw}.

Parallel to the classical setting we will also be working with a discrete analytic function
F : P 7→ P′ mapping P to a second circle packing P′ sharing the complex K. For the patch
p = {Cv, Cw |Ca, Cb} of P, we have the corresponding patch p′ = F(p) = {C′

v, C′
w |C′

a, C′
b}

of P′, and corresponding geodesic triangles f ′, g′ with the shared edge e′ of P′.
The discrete Schwarzian derivative of F, denoted ΣF, will be a complex function

defined on the collection of interior edges e = {v, w} of the domain packing P. More
concretely, the value ΣF(e) will be associated with the tangency point te of Cv and Cw.

Fix attention on a combinatorial patch p = {v, w | a, b} in K with faces f , g in P and
f ′, g′ in P′, and directed edge e. An example is depicted in Figure 3. There exist Möbius
transformations m f and mg identifying the corresponding faces. We write

m f ( f ) = f ′ and mg(g) = g′. (4)

(A brief note about these equalities: There is a unique Möbius transformation taking the
tangent triple {Cv, Cw, Ca} to the corresponding triple {C′

v, C′
w, C′

a}; in practice, it is found
by mapping the three tangency points of one to the corresponding tangency points of the
other. In hyperbolic and Euclidean settings, these Möbius maps are homeomorphisms of
the geodesic triangles formed by the centers of the triples. In spherical geometry, however,
Möbius transformations do not necessarily preserve geodesics and circle centers, so the
equalities of (4) are symbolic rather that literal.)

f

f ′
g g′

mg

m f

P P′

Cv

Cw

C′
v

C′
w

Figure 3. The discrete Schwarzian derivative for an edge.
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With m f and mg, we may now define MF(e) as the Möbius transformation

MF(e) = m−1
g ◦ m f . (5)

Though we have adjusted the notation slightly, MF(e) is the (directed Möbius) edge deriva-
tive of Orick. The maps MF(e) have very particular forms observed by Orick. In particular,
the definition of MF(e) shows that it fixes te, the tangency point of Cv and Cw, and that
it fixes Cv and Cw themselves as points sets. As a result, if MF(e) is not the identity,
then it is necessarily a parabolic Möbius transformation. We are free to normalize so that
trace(MF(e)) = 2 and det(MF(e)) = 1. In this case,

MF(e) = I+ σ ·
[

te −t2
e

1 −te

]
. (6)

Moreover, if η = eiθ is the common tangent to Cv and Cw at te and is pointing outward
from face f , then σ is a real multiple of its complex conjugate, η.

Definition 1. Let F : P −→ P′ be a discrete analytic function. For each interior edge e of P,
the value σ arising in the computation of MF(e) as described above is defined as the (discrete)
Schwarzian derivative of F on the edge e and we write σ = ΣF(e).

There are several properties to observe here:

• Suppose that −e denotes the edge e but with the opposite orientation. Then,
MF(−e) = (MF(e))−1, implying ΣF(−e) = −ΣF(e).

• ΣF(e) = 0 if and only if MF(e) is the identity.
• If F itself were Möbius, then m f ≡ mg ≡ F and MF(e) = I for every interior edge

e. Conversely, if MF(e) = I for every interior edge e, then a simple face-to-face
continuation argument would show that F itself is Möbius, with m f ≡ F for every
face f .

• Suppose we follow F by a Möbius transformation m, say G ≡ m ◦ F : P → P′′ = m(P′).
The new face Möbius maps for p are m̂ f : f → m( f ′) = f ′′ and m̂g : g → m(g′) = g′′.
Since m̂ f = m ◦ m f and m̂g = m ◦ mg, note that

MG(e) = m̂−1
g ◦ m̂ f = m−1

g ◦ m−1 ◦ m ◦ m f = MF(e).

The operator M is therefore Möbius invariant. In particular, this implies that the
discrete Schwarzian derivative ΣF of a discrete analytic function F displays Möbius
invariance like that of the Schwarzian derivative sϕ of a classical analytic function ϕ.

• Pre-composition with a Möbius transformation is a different matter. Computations
in Appendix A.3 show that the discrete chain rule under pre-composition diverges
slightly from the classical rule of (3); see (A10).

• It is very likely that, if a sequence {Fn} of discrete analytic functions converges on
compacta to a classical analytic function ϕ, then the sequence {ΣFn} also converges on
compacta to Sϕ. Results of Z–X. He and Oded Schramm in [13] can be used to confirm
this for packings with hexagonal combinatorics, but it remains open for more general
circle packings.

3.2. Intrinsic Schwarzians

The Schwarzian derivative is associated with mappings between circle packings.
However, we can exploit the same notion in a local sense to provide an “intrinsic schwarzian”
for each interior edge of an individual packing. For this we need only consider a target
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patch p (as occurs within a packing P, for instance) and a standard base patch p∆ which we
describe next.

The base patch p∆ consists of two contiguous equilateral triangles, f∆ and g∆. Here,
f∆ is formed by the tangent triple of circles of radius

√
3, symmetric about the origin, and

having distinguished edge e∆ running vertically through z = 1. Note that the unit circle
is the incircle of f∆, that it intersects the edges of f∆ at their points of tangency, and that
these are the third roots of unity. The tangency point for e∆ is te = 1 and the outward unit
vector is η = 1. The face g∆ is an equilateral triangle contiguous along e∆, so it shares the
two circles of e∆ and its third circle is centered at x = 4.

A target patch p is formed by two triples of circles sharing a pair of circles and has
triangular faces we will denote by f and g. We do our computation for edge e∆ as usual, as
though for the mapping F : p∆ → p. That is, we compute the face Möbius transformations
m f , mg, so m f ( f∆) = f and mg(g∆) = g, and then Möbius M(e∆) = m−1

g ◦ m f . Referring
to (6), note that η = 1, so σ has some real value s, and te = 1, implying

M(e∆) = I+ s ·
[

1 −1
1 −1

]
=

[
1 + s −s

s 1 − s

]
= Ms. (7)

This matrix is important in the following, so we use the notation Ms.

Definition 2. Given a geometric patch p, the (2, 1)-entry (second row, first column) of the Möbius
transformation Ms described in (7) is a real value s and is defined as the (intrinsic) schwarzian
for the shared edge e of p = { f | g}.

The intrinsic schwarzian s completely characterizes the target patch p up to Möbius
transformations. In particular, it is unchanged if we interchange the labels f and g; it is
unchanged if p is replaced by m(p) for a Möbius transformation m; and if p1 and p2 are
two geometric patches with identical intrinsic schwarzians, then there exists a Möbius
transformation m so that p1 = m(p2).

Computations in Appendix A.3 establish the connection between Schwarzian deriva-
tives and intrinsic schwarzians. Given F : P −→ P′, consider a patch p ⊂ P, its image patch
p′ ⊂ P′, their edges e, e′, respectively, and the Schwarzian derivative σ = ΣF(e). Let s and
s′ denote the intrinsic schwarzians for e and e′, respectively. Let m be the Möbius transfor-
mation of the base face f∆ onto the face f of p. Computations in the Appendix A.3 show

s′ = s + ΣF(e) · m′(1) = s +
ΣF(e)
(c + d)2 , where m(z) =

az + b
cz + d

, ad − bc = 1. (8)

As a side note, observe that ΣF(e) · m′(1) is real.
We finish this subsection by illustrating schwarzians in relation to the base patch p∆.

This not only lets the reader gain some intuition, but also leads us to the computational
machinery central to the remainder of this paper.

Our base patch p∆ appears in Figure 4 as the four light blue discs, with Cb being the
one on the right. Replacing Cb with some new circle Ĉ which is tangent to Cv and Cw forms
a new patch. Each new patch leads to some schwarzian s for the edge e, so we will denote
that new circle by Ĉs. Indeed, by our work above, we have Ĉs = M−1

s (Cb).
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1

Cv

Cw

Ca Cb

s = −0.6 s = 0.0 s = 0.1s = 1.0s = 0.95

s = 1 − 1√
3 s = (1 − 1√

3
)/2s = (1 + 1√

3
)/2

f∆

Figure 4. Sampling some intrinsic schwarzians.

To explore the various situations, consider these five specific values of s:

s0 = 0 < s1 =
1 − 1/

√
3

2
< s2 = 1 − 1/

√
3 < s4 =

1 + 1/
√

3
2

< s5 = 1

When s = s0 = 0, Ĉs is identical to Cb. As s decreases through negative values, the
corresponding circles Ĉs become smaller as they drop into the right crevasse between Cv

and Cw, as shown with some blue examples in Figure 4. As s increases from s0 to s2, the
spherical radius of Ĉs increases, as shown by the red circles. Along the way, when s = s1

then Ĉs is the line through ∞, the vertical line tangent to Cv on Cw on their right. Reaching
s = s2, the circle Ĉs is suddenly tangent to all three of the circles forming f∆, but with ∞
in its interior. For s larger than s2, the spherical radius of Ĉs is decreasing, as shown with
green examples. The Ĉs now overlap Ca, and on reaching s4, Ĉs is the vertical line tangent
to Cv and Cw on their left. As s grows beyond s4, the circles are moving more deeply into
the left crevasse between Cv and Cw. Upon reaching s = s5, Ĉs is identical to Ca. This is a
critical juncture: the interstices for faces f and g are now reflections of one another through
the unit circle. If we let s exceed s5 = 1, then these interstices overlap, a condition we will
exclude in later work on branched flowers.

Now, move to the consideration of a generic patch p = {v, w | a, b}. Suppose the
centers and radii for circles {cv, cw, ca} forming f and the intrinsic schwarzian for the edge
e = {cv, cw} are known. Then, one can compute the unknown circle cb, and consequently
fix the face g = {cw, cv, cb}. Here are the details:

There exists a Möbius transformation m f mapping f∆ to f . Therefore, m−1
f ( f ) = f∆,

and so the patch p̂ = m−1
f (p) will be analogous to those depicted in Figure 4. Because

schwarzians are invariant under Möbius transformations, the schwarzian for p̂ will again
be s, meaning that its circle m−1

f (cb) must be Ĉs. Noting that Ĉs = Ms(Cb), the unknown
circle cb of p is given by

cb = (m f ◦ M−1
s )(Cb) where M−1

s =

[
1 − s s
−s 1 + s

]
, (9)

a fact we will use extensively in the sequel.
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4. Packing Layouts
Construction of a circle packing for a given complex K typically starts (as Thurston

did) with the computation of a packing label R = {R(v) : v ∈ K} containing the circle radii.
Then comes the layout process, the computation of the circle centers. This process utilizes
a spanning tree T chosen from the dual graph of K. Any face f0 of T may be designated
as the root. Using the radii of its three vertices, one can lay out a tangent triple of circles
forming the geometric face f0. For each dual edge { f , g} ∈ T, if face f is in place, then
two of its circles are shared with g, and the radius of the remaining circle of g is enough
to compute its unique position. Thus, starting with the geometric root face f0, one can
proceed through T to lay out all remaining circles, resulting in the final packing P.

This process could instead be carried out using schwarzians, if they were available.
Write S = {s(e) : e interior edge} for the (intrinsic) schwarzians of interior edges for some
packing P. Starting with any (!) tangent triple of circles and identifying it as the base face
f0, one can again progress through the edges { f , g} of the dual spanning tree T. If the face
f is in place, then using a patch p = { f | g} and the schwarzian S(e) for its shared edge e,
one can apply (9) to determine the radius and center of the third circle of g. Progressing
thus through T yields a final packing P for K. Since the whole of P is determined by the
initial geometric face f0, we can obtain any Möbius image m(P) by starting the layout with
the appropriate base face.

There are some issues to address: Using the traditional layout approach via radii,
the geometry of P must be that of the given label R. The layout approach via intrinsic
schwarzians, on the other hand, is by its very nature carried out on the sphere. Indeed,
whether the final packing P lives in the plane or the hyperbolic plane might well be dictated
by the choice of the initial face f0. Perhaps this is the advantage of using schwarzians: one
can lay out packings on the sphere or, more generally, on surfaces with projective structures.

I would also point out that when K is not simply connected, the layout process,
whether with radii or schwarzians, is more subtle; laying out a closed chain of faces which
is not null homotopic can lead to non-trivial holonomies, meaning the data is not associated
with a circle packing. Let us therefore stick to simply connected complexes K for now.

The Difficulty

The difficulty in the schwarzian approach lies not with layout, but rather with the
computation of the data itself. In introducing circle packing to the world, Thurston also
graced us with an iterative algorithm for computing radius data. With radii in hand, one can
easily lay out the circles to form P. However, their algorithm is restricted to the Euclidean
and hyperbolic settings, and despite considerable effort, there is no known algorithm in
spherical geometry. There are two key ingredients in Thurston’s clever algorithm:

• Criteria: Given a label R of putative radii, one can directly compute the set
{θR(v) : v ∈ K} of associated angle sums at the vertices of K. R is a packing label if
and only if θR(v) is an integer multiple of 2π for every interior v.

• Monotonicities: There are simple monotonicities in the effects that adjustments in
radius labels have on associated angle sums. In particular, a packing label is the
zero set of a convex functional, guaranteeing the existence and uniqueness (and
computability) of solutions.

It is the monotonicity that fails us in the spherical setting. Building new computational
capabilities is the main motivation for looking at schwarzians. That is, we want to replace
the data provided by a vertex label R = {R(v) : v ∈ K} with that of an intrinsic schwarzian
edge label S = {S(e) : e ∈ K}.
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Definition 3. Let K be a simply connected complex and let S be an edge label, that is, a set of real
numbers, one for each interior edge of K. We call S a packing (edge) label if there exists a circle
packing P on the Riemann sphere whose intrinsic schwarzians are given by S.

The main question: What are the packing labels? Based on experience with radius
labels, and in particular, on results in [15], we anticipate that the packing labels will form a
(p − 3)-dimensional differentiable subvariety S ⊂ Rk, where p and k are the numbers of
interior vertices and interior edges of K, respectively. Describing S and more importantly,
computing specific packing labels, appears to be very challenging. Our modest approach
has been to set up mechanisms for experimentation and discovery. Observations from the
experiments in CirclePack have led to the clunky but serviceable Theorems 2 and 3 below
on packing labels for flowers. As for constructing packing labels for whole complexes, I
am less sanguine. Even working with radii data, monotonicity may fail in our spherical
setting, and without monotonicity, methods for generating and manipulating packing edge
labels will require major new insights and numerical machinery. Edward Crane built an
explicit example of a complex K triangulating the sphere with a designated set of its vertices
as branch points which has two Möbius inequivalent realizations as circle packings of P.
Non-uniqueness is a sobering feature when looking for an algorithm. Nonetheless, let us
do what we can and begin by looking at individual flowers.

5. Flowers
The search for general packing criteria naturally begins with the study of packing

labels for individual flowers. One can easily generate randomized n-flowers for any n, and
thereby obtain a wealth of associated schwarzian labels. Our work, however, lies in the
reverse direction: given a label {s0, s2, · · · , sn−1}, how can one tell if it is a packing label?

Here, we develop and exploit a general process for laying out flowers in a normalized
setting. This has been implemented in CirclePack, and our investigations have relied on
the flexible nature of its computations and visualizations. Our interest lies with closed
flowers, and after preliminaries, we work in successive subsections on un-branched flowers,
univalent flowers, and finally on branched flowers.

5.1. Notation and Preliminaries

In a tangency circle packing, the flower of the circle C = Cv for an interior vertex is
denoted {C; c0, c1, · · · , cn−1}, where c0, · · · , cn−1 is the chain of petals which wrap around
C with the last tangent to the first. The ordered chain of interior edges emanating from v
may be written as {e0, e1, · · · , en−1}, where ej is the edge {C, cj} and hence is the shared
edge in the patch p = {cj, C | cj−1, cj+1}. We write {s0, s1, · · · , sn−1} for the corresponding
intrinsic schwarzians, a packing label for this flower. (Note that the indexing for n-flowers
is always modulo n.)

Putting the first triple of circles, {C, cn−1, c0}, in place, one can then use schwarzians
s0, s1, · · · , sn−3 in succession to place c1, c2, · · · , cn−2 and possibly complete the geometric
flower. But is this a flower? Some conditions must be needed since this procedure did not
even utilize the given schwarzians sn−2 or sn−1. To be a packing label, the layout must
avoid three potential incompatibilities:

(a) The flower may fail to close; that is, cn−1 may fail to be tangent to c0.
(b) The patch pn−1 = {cn−1, C | cn−2, c0} may fail to have schwarzian sn−1.
(c) The patch p0 = {c0, C | cn−1, c1} may fail to have schwarzian s0.

Since flowers and their schwarzians are unchanged under Möbius transformations, one
can choose any convenient normalization. We have chosen that illustrated in Figure 5 (in
this instance, a 7-flower). This approach sidesteps the numerical difficulties working with
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infinity. The notations of the figure are those we will use throughout the paper: the upper
half plane represents the central circle C, the half plane {z = x + iy : y ≤ −2} represents c0

(so the tangency between C and c0 lies at infinity), and the petal c1 of radius 1 is tangent to
C at t1 = 0. The successive petals {c2, · · · , cn−1} have tangency points {t2, · · · , tn−1}. The
successive Euclidean radii will be denoted by {r2 · · · , rn−1}, and successive displacements
by δj = tj+1 − tj.

δ3
C

c0
−2 i

c1

c2

c6

r2

r6 := 1

t1 = 0 t2 t3 t4 t5 t6

•

• • • • • •

Figure 5. Notations for normalized flower layouts.

Figure 6 provides a sampler of normalized flowers. In Figure 6a, the non-contiguous
petals c3 and c0 overlap. Figure 6b illustrates an “extraneous tangency”, as petals cj−1 and
cj+1 are tangent, even though they are not neighbors in the flower structure. Figure 6c
illustrates a flower whose seven petals reach twice about C; necessarily, some of them
overlapping one another. Note that Figures 5 and 6d are univalent flowers, Figure 6a is
non-univalent, but is un-branched, while Figure 6c is branched. Figure 6d illustrates an
extremal situation among univalent flowers: petals c2, · · · , c5 all have extraneous tangencies
with c0, yet the petals’ interiors are mutually disjoint. This illustrates the configuration
among normalized univalent n-flowers with the greatest distance between the end petals
c1 and cn−1.

(a) Overlap between c3 and c0

c1 c6

c0

c3 •

(b) Extraneous tangency

cj

cj−1 cj+1

(c) Twice around C

c0

c1

c2

c3

c4

c5

c6

(d) An extremal 7-flower
c0

c1 c6
• • • •

C
C

C

C

Figure 6. Examples of normalized flower variety.
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5.2. Flower Layouts

Given putative schwarzians {s0, s1, · · · , sn−1} for an n-flower, the associated flower
can be laid out in normalized form using the following mechanical process, which relies on
computations carried out in Appendix A.1.

(1) We start with the half planes C and c0 and the circle c1 in their normalized positions.
(2) With c1 in place and given the schwarzian s1 for its edge, the formulas of (A2) in

Appendix A.1 yield the tangency point t2 and radius r2 of c2.
(3) With c1 and c2 in place and given s2, we are in the “generic” Situation 3 of

Appendix A.1, but in the special case where r = 1. In particular, we can place c3

by using (A3) to compute radius r3 and displacement δ2, leading to tangency point t3.
(4) Hereafter, we remain in the generic Situation 3, so we can place the remaining petals

by inductively applying (A3) to compute radii rj and the displacements to determine
the tangency points tj, j = 4, · · · , n − 1.

At this point, we would have the petals of the presumptive flower all in place. However,
we can see concretely how the compatibility conditions mentioned earlier might fail:

(a) If rn−1 ̸= 1, cn−1 fails to be tangent to c0—and the flower does not close up.
(b) If tn−1 − tn−2 ̸= 2/(

√
3(1 − sn−1)) after the final application of (A3) would mean that

sn−1 is not the schwarzian for patch {cn−1, C | cn−2, c0}.
(c) If tn−1 ̸= 2

√
3(1 − s0) then (A1) tells us that s0 is not the schwarzian for patch

{c0, C | cn−1, c1}.

Therefore, our work, both theoretical and numerical, depends on a modification of
this process:

Example 1. Treating the n − 3 schwarzians s1, · · · , sn−3 as parameters, we build the normalized
flower as described above up to and including the layout of cn−2. We then force closure by setting
rn−1 = 1 and placing the last petal cn−1 tangent to cn−2.

This Layout Process underlies all the work in this section. Once the construction has
put all petals in place, one can directly compute the three remaining schwarzians sn−2, sn−1,
and s0 to fill out the full packing label {s0, · · · , sn−1}.

Theorem 1. Given schwarzians {s1, · · · , sn−3}, the Layout Process results in a legitimate n-
flower except in the two following situations: (a) when cn−2 is tangent to C at infinity or (b) when
the computed s0 exceeds 1.

Proof. The first statement requires no proof, as the mechanics are straightforward. As for
situation (a), in this case cn−2 is a half plane, meaning that placement of cn−1 simultaneously
tangent to C, cn−2, and c0 is either impossible or ambiguous. Situation (b) violates a
condition we placed on schwarzians; in this case, petal cn−1 ends up to the left of c1. For
details on the exceptions, go to the closing paragraph of Appendix A.1.

5.3. Important Observations

In the pencil-and-paper computations leading to the formulas of the Appendix A (and
the associated code in CirclePack), it became clear that a new parameter u = 1 − s is pre-
ferrable to the schwarzian s itself. Instead of label {s0, · · · , sn−1}, we will interchangeably
use {u0, · · · , un−1}, though we continue to treat the s-variables as the proper labels. The
author can offer no geometric significance for this new u-variable, but converting the s’s
in our discussion of Figure 4 to u’s may help the reader develop some intuition. For the
reasons discussed there, we limit our work to s ∈ (−∞, 1), and thus u ∈ (0, ∞).
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Also note that, although our normalization picks c0 to be a half plane, any petal of a
flower may be designated as c0 as a simple matter of indexing. Furthermore, if the order of
the petals in a flower is reversed, the result is still a flower and the order of schwarzians will
have been reversed. These observations explain, respectively, the cyclic and the symmetric
features in this lemma.

Lemma 1. Suppose that {s0, · · · , sn−1} is a packing (edge) label for an n-flower. If one shifts the
order of the schwarzians cyclically or reverses the order, the result is again a packing label. This
holds equally for the u-variables {u0, · · · , un−1}.

5.4. Un-Branched Flowers

Our results are most complete in the case of un-branched n-flowers, where we work
step by step starting with n = 3. Examples for degrees n = 3, 4, 5, and 6 are shown in
Figure 7. These provide some visual clues to the patterns we will discuss below. Figure 7d
is also cautionary, as it illustrates three Möbius equivalent normalized representations of
the same 6-flower, differing only by which petal had been designated as c0.

(a) 3-flower. (b) 4-flower.

(c) 5-flower. (d) One 6-flower.

Figure 7. Normalized flowers.

5.4.1. 3-Flowers

There is only one 3-flower up to Möbius transformations. In particular, the three edge
schwarzians share identical values. Note in Figure 4 that the value s = 1 − 1/

√
3 leads to a

3-flower, namely that formed by Cv, Ca, and the associated Ĉs (enclosing ∞).

Lemma 2. The intrinsic schwarzian for any edge of a 3-flower is s = 1 − 1/
√

3, and hence,
u = 1/

√
3.

This value of s may also occur in higher degree flowers in the case of extraneous
tangency, as seen, for example, in Figure 6b, where the schwarzian sj takes this value. (It is
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worth noting that in circle packings, interior vertices of degree 3 are somewhat extraneous
themselves: the associated circle is determined uniquely by its three neighboring circles
and could be omitted without affecting the packing’s overall geometric structure. On the
other hand, omitting such a circle does affect schwarzians, namely those of the outer three
edges of its flower.)

5.4.2. 4-Flowers

Figure 8 shows a sequence of un-branched 4-flowers. Petals c1 and c3 have a radius
of 1, so it is clear that the size of the shaded petal, c2, determines the entire normalized
4-flower. There is thus one degree of freedom. In (A2) of Appendix A.1, we see the radius
of c2 as a monotone function of s1, so we can use s1 to parameterize all 4-flowers. (The
curious case of a branched 4-flower will be displayed in Section 5.6.)

(a) s1 = −0.5 (b) s1 = −0.154701 (c) s1 = 0

(d) s1 = 0.422650
(e) s1 = 0.555555

Figure 8. Variety in 4-flowers.

• Apply (A2) to compute the tangency point and radius of c2:

δ1 = t2 = 2/(
√

3 u1) and r2 = 1/(
√

3 u1)
2.

• Apply (A4) with R = r2 and r = 1 to compute u2 = 2/(3u1).

Here, we initiate a pattern that we will carry forward for larger n: namely we de-
fine functions

U4(x) = 2/(3x), C2(x) = x,

and note that u2 = U4(u1) under the constraint that C2(u1) > 0. Furthermore, as we will
do for larger degrees, we can engage Lemma 1. With successive left shifts of the parameters
we conclude that u3 = U4(u2) and u0 = U4(u3), thereby completing the full packing label.
In particular, note that u1 = u3, u0 = u2, and u1u2 = 2/3. We arrive at a very clean
characterization of packing labels for 4-flowers:

Lemma 3. Every un-branched 4-flower has edge schwarzians of the form {s, s′, s, s′} where s and
s′ satisfy (1 − s)(1 − s′) = 2/3 (i.e., uu′ = 2/3). Moreover, the 4-flower is univalent if and only
if s and s′ lie in the closed interval I = [1 − 2√

3
, 1 − 1√

3
] (i.e., u, u′ ∈ [ 1√

3
, 2√

3
]).

Figure 8b–d are univalent 4-flowers, with (b) and (d) representing the extremes of
the parameter values allowed for univalence. One should not be misled by this complete
understanding of 4-flowers—things become increasingly more complicated as the degree
goes up.
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5.4.3. Five-Flowers

Our Layout Process tells us that we have 2 degrees of freedom, namely s1 and s2.
Figure 9 indicates the quantities we can compute as functions of these for a generic 5-
flower.

C

c1 c4

0 t4

t2 δ2
δ3

r2 r3

Figure 9. Quantities to compute in a normalized 5-flower.

Quantities resolve cumulatively as we add petals: with C, c0, and c1 in place, we can
apply the computation in the earlier 4-degree case to compute r2 = 1/(

√
3 u1)

2. From there,
successive computations from Appendix A.1 yield various radii and displacements:

• Applying (A3) with u = u2, r = 1, and R = r2:

δ2 =
2√

3 u1(3u1u2 − 1)
and r3 =

1
(3u1u2 − 1)2 .

Here, we encounter a constraint: if (3u1u2 − 1) <= 0, then δ2 will be negative or undefined.
As we will see later, this can happen for branched flowers. For the un-branched case, we
must impose the condition (3u1u2 − 1) > 0.

• Using radii r3 from above and the mandated r4 = 1:

δ3 = 2
√

r3 =
2

3u1u2 − 1
,

• Setting r = r2 and R = r3 in (A4) implies

u3 =
u1 + 1/

√
3

3u1u2 − 1
.

Define the rational function U5 and the polynomial C3 as follows:

U5(x1, x2) =
x1 + 1/

√
3

3x1x2 − 1
, C3(x1, x2) = 3x1x2 − 1.

The computation of u3 becomes simply u3 = U5(u1, u2) under the constraint C3(u1, u2) > 0.
Applying the cyclic property of Lemma 1, we get in succession u4 = U5(u2, u3) and
u0 = U5(u3, u4).

5.4.4. 6-Flowers

We work through this one additional case because the full strength of Situation 3 and
(A3) is first felt with the addition of the sixth petal. (Also because 6-flowers have always
occupied a prominent place in circle packing: in the “curvature” language common in this
topic, 6-flowers are “flat”.)

Six-flowers involve three degrees of freedom with parameters {s1, s2, s3}. We may
extend the notations in the previous section and Figure 9 by adding one additional petal.
The computations of t2 and δ2 and the constraint (3u1u2 − 1) > 0 are exactly as earlier. The
computation for δ3, however, needs to be revisited.
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• Applying (A3) with r2 and r3 as computed earlier gives

δ3 = δ(u3, r2, r3) =
2√

3 (3u1u2 − 1)(3u1u2u3 − u1 − u3)
,

r4 =
δ2

3
4r3

=
1

3(3u1u2u3 − u1 − u3)2 .

Note that 1/
√

r4 =
√

3(3u1u2u3 − u1 − u3) if this is positive. Then, by completing the
flower with petal c5 of mandated radius 1, we can compute the next label:

• Applying (A4) with r = r3 and R = r4 gives

u4 =
u1u2

(3u1u2u3 − u1 − u3)
.

Define the rational function U6 and polynomial C4:

U6(x1, x2, x3) =x1x2/(3x1x2x3 − x1 − x3),

C4(x1, x2, x3) =
√

3(3x1x2x3 − x1 − x3).

Thus, u4 = U6(u1, u2, u3) under the assumptions C3(u1, u2) > 0 and C4(u1, u2, u3) > 0.
Cyclic shifts provide the remaining two labels:

u5 = U6(u2, u3, u4) and u0 = U6(u3, u4, u5).

5.4.5. The General Case

In the n-flower case, we are starting with n − 3 parameters {u1, · · · , un−3}. A look
at the various formulas from Appendix A.1 suggests focusing the on reciprocal roots of
the radii. Here are the first few expressions. (We introduce a convenient notational devise
that abbreviates a product of u’s via multiple subscripts, allowing us, for example, to write
u1,4,5 in place of the product u1u4u5.)

1/
√

r2 = C2(u1) =
√

3u1,

1/
√

r3 = C3(u1, u2) = 3u1,2 − 1,

1/
√

r4 = C4(u1, u2, u3) =
√

3(3u1,2,3 − u1 − u3), (10)

1/
√

r5 = C5(u1, · · · , u4) = 9u1,2,3,4 − 3u1,4 − 3u3,4 − 3u1,2 + 1,

1/
√

r6 = C6(u1, · · · , u5) =
√

3(9u1,2,3,4,5 − 3u1,4,5 − 3u3,4,5 − 3u1,2,5 − 3u1,2,3 + u1 + u3 + u5).

· · · · · ·

For a given j, the expression for 1/√rj is ensured only if Ck(u1, · · · , uk−1) > 0 for
k = 2, · · · , j, and only within n-flowers for which n ≥ (j + 2). Should Cj be negative
for some j, then the flower will be branched.

With these cautions in mind, the functional notations can become quite convenient. A
label for an n-flower may be expressed as an n-vector p = (u0, · · · , un−1). We may now
write Cj(u1, · · · , uj−1) as C(p), noting that Cj uses only the j− 1 coordinates 1, 2, · · · , (j− 1)
of p. Rewriting (A3) in functional notation, we have

Cj+1(p) =
√

3ujCj(p)− Cj−1(p), 3 ≤ j ≤ n − 3. (11)



Geometry 2025, 2, 16 19 of 38

When our construction places the last petal, cn−1, we compute un−2 by applying (A4).
In functional notation, this becomes

un−2 = Un(p) =
1 + Cn−3(p)√

3Cn−2(p)
, n ≥ 5,

where Un depends only on coordinates 1, · · · , (n − 3) of p. Here are several of these
functions in explicit form:

u2 = U4(u1) =
2

3u1
,

u3 = U5(u1, u2) =
u1 + 1/

√
3

3u1,2 − 1
,

u4 = U6(u1, u2, u3) =
u1,2

3u1,2,3 − u1 − u3
, (12)

u5 = U7(u1, u2, u3, u4) =
3(3u1,2,3 − u1 − u3) + 1/

√
3

3(3u1,2,3,4 − u1,2 − u1,4 − u3,4) + 1
,

u6 = U8(u1, u2, u3, u4, u5)

=
3(3u1,2,3,4 − u1,2 − u1,4 − u3,4) + 2

3(9u1,2,3,4,5 − 3u1,2,3 − 3u1,2,5 − 3u1,4,5 − 3u3,4,5 + u1 + u3 + u5)
.

· · · · · ·

We gather the results for un-branched flowers in this theorem. Also see the comments
that follow.

Theorem 2. Given n > 3, the parameters {u1, · · · , un−3} are part of a packing label for an
un-branched n-flower if and only if

Cj(u1, · · · , uj−1) > 0, j = 2, · · · , (n − 2). (13)

In this case, these expressions

un−2 =Un(u1, · · · , un−3),

un−1 =Un(u2, · · · , un−2), (14)

u0 =Un(u3, · · · , un−1),

allow the computation of the three remaining labels.

This Theorem simultaneously provides a characterization, a parameterization, and a
computational tool for un-branched flowers. Here are some observations:

(i) The functions Un and Cj are particularly valuable in light of Lemma 1. (Remember,
these labels are cyclic mod(n).) In a packing label {u0, · · · , un−1}, any one of its
entries uj may be written as uj = Un(σ), where σ is the sequence of n − 3 entries
preceding uj (or the reverse of the n − 3 entries following uj).

(ii) Additional relationships pertaining to the normalized flower may be extracted from
the formulas of Appendix A.1. Here are some examples:

1
√rj

=

√
3 uj−1
√rj−1

− 1
√rj−2

, j = 3, 4, · · · , n − 1. (15)
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uj =

√ rj
rj−1

+
√ rj

rj+1√
3

, j = 2, · · · , n − 3.

δj = 2
√

rjrj+1, j = 1, · · · , n − 2.

(iii) A careful look at the formulas for a normalized flower will show that the radii rj,
reciprocal roots 1/√rj, and tangency points tj of the petals are all rational functions of
the u-parameters (likewise for the s-parameters). Moreover, these rational functions
have their coefficients in the number field Q[

√
3].

(iv) The rational functions Un and polynomials Cj also have coefficients in Q[
√

3]. Note
that, for each n, Cn−2(u1, · · · , uj−3) is a pole of Un(u1, · · · , un−3). On a practical
note, unlike expressions such as (10), the functions U· and C· are independent of the
flower normalization.

(v) The functions U· have intriguing self-referential behavior under cyclic shifts and rever-
sals, and this would seem to make them quite special. For example, these expressions
show how the Un can be nested; here, u⃗j,k denotes the sequence {uj, · · · , uk}.

un−2 = Un(u⃗1,n−3)

un−1 = Un(u⃗2,n−3,Un(u⃗1,n−3)) (16)

u0 = Un(u⃗3,n−3,Un(u⃗1,n−3),Un(u⃗2,n−3,Un(u⃗1,n−3))).

The explicit expressions would be quite messy, but would express the labels
un−2, un−1, u0 of (14) directly as functions of the parameters u1, · · · , un−3.

We are now in a position to describe the parameter space for un-branched n-flowers
using vectors p = (u0, u2, · · · , un−1) in Rn

+. Define Vn as the common solutions of the
three rational expressions of (16). In particular, Vn is an algebraic variety of the dimension
n − 3 over the number field Q[

√
3]. There are restrictions, however, as p must reside in the

set C where components uj are positive and the Cj satisfy (13). The parameter space for
un-branched n-flowers is thus Fn = Vn ∩ C ⊂ Rn.

The parameter space Fn has some rather unique features. Each point p ∈ Fn deter-
mines a unique flower (that is, unique up to Möbius transformations). On the other hand,
each un-branched n-flower is associated with up to n distinct points p, since by Lemma 1,
one can cyclically permute (the coordinates of) p. We have treated {u1, · · · , un−3} as the
independent variables, but in fact, any n − 3 cyclically successive coordinates can take on
this role. One might wonder about the description of C, defined in terms of inequalities
depending on u1, · · · , un−3: most of the individual inequalities in (13) would fail under
the cyclic permutation of their arguments. However, if all of the inequalities hold, then
p ∈ Fn, and as a result, each of them individually holds under cyclic permutation. Likewise,
reversing the coordinates of p ∈ Fn gives a (generically distinct) point of Fn.

5.5. Univalent Flowers

Among the un-branched flowers are the univalent flowers, those whose petals have
mutually disjoint interiors. In the study of discrete analytic functions, univalent flowers are
(along with branched flowers) the most important. Define the subset Un ⊂ Fn to consist of
parameters associated with univalent n-flowers.

We develop two collections of inequalities which together characterize the points of
Un. The inequalities of this first collection are very easy to check.

1√
3
≤ uj ≤

(n − 2)√
3

, j = 0, · · · , n − 1. (17)
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The second collection (18) of inequalities depends on putting the flowers in their
normalized setting, and checking these takes more work because a point p ∈ Fn has n
normalized layouts based (as always) on which petal is designated as “c0”. As a result, the
indexing used in laying out a flower—the indexing occurring in various formulas—will
generally disagree with the official indexing of the entries in the given p. We introduce a
notational device to more efficiently state the inequalities. Notation: Use p⃗ k to indicate
a cyclic permutation of p which shifts the original coordinate uk to become u0. Note that
p ∈ Un if and only if p⃗ k ∈ Un for all k = 0, · · · , n − 1. In these inequalities, rj(p) denotes
the radius of the jth petal circle in the normalized layout for p.

rj( p⃗ k) ≤ 1, ∀j = 2, · · · , n − 2 and ∀k = 0, · · · , n − 1. (18)

Theorem 3. Given n > 3, suppose that p represents an un-branched n-flower, so p ∈ Fn. Then, p
represents a univalent n-flower, p ∈ Un, if and only if p satisfies the inequalities of (17) and (18).

Proof. Necessity: Suppose that p ∈ Un. We observed in discussing Figure 4 that, if
s > (1 − 1√

3
, then Ĉs would overlap Ca, contradicting univalence. This gives the lower

bound of (17). The upper bound depends on n. Consider the tangency point tn−1 in the
normalized flower. It is clear that the largest tn−1 could be for a univalent flower that
occurs for “extremal” flowers like that illustrated (for n = 7) in Figure 6d. In this case,
tn−1 = 2(n − 2). Since our flower is univalent, tn−1 ≤ 2(n − 2). On the other hand, by (A1),
2
√

3u0 = tn−1. We conclude that u0 ≤ (n−2)√
3

. Lemma 1 tells us that any uj can be treated as

u0, so uj ≤ n−2√
3

.
We prove (18) by contradiction: suppose (18) fails for some k and 3 ≤ j ≤ n − 1.

Then in the shifted indexing of p⃗ k, the petal circle cj, having radius greater than 1 would
necessarily overlap the half plane c0, contradicting univalence. We have established the
necessity of (17) and (18).

Sufficiency: Suppose the point p ∈ Fn satisfies (17) and (18) but its flower is not
univalent. That is, suppose there exists some pair cj, ck of petal circles that overlap, 0 ≤ j <
k ≤ n − 1. Suppose first that there is a single petal between cj and ck, so k = j + 2. In the
normalized layout for the shifted point p⃗ j, the two end circles of the layout would overlap,
implying by (A1) that 2

√
3 uj < 2 and hence uj < 1/

√
3, violating (17). On the other hand,

if cj and ck are separated by at least two petals, then with the new indexing of p⃗ j, the petal
cj becomes c0, and ck becomes a petal strictly between c1 and cn−1. Since that petal overlaps
c0, its radius must exceed 1, contradicting (18). This completes the proof of sufficiency.

In practice, (17) is trivial to check, while (18) takes most of the work. Although the
normalized flowers for shifts p⃗ k are all Möbius images of one another, one must still check
(18) for each of the normalizations in turn. In a given normalization, one can use the
quasi-recursive expression (15) along with the fact that r0 = ∞ and r1 = 1 to quickly see
whether an instance of (18) is violated.

5.6. Branched Flowers

Now we address the more difficult setting of branched flowers, which are essential in
the study of discrete analytic functions. Figures 10 and 11 provide examples.
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Figure 10. Images of a simply branched 8-flower.

Figure 10 has three images of the same branched 8-flower under different Möbius
transformations: one Euclidean, one normalized, and one on P. Flowers laid out using
schwarzians can easily end up with petals enclosing ∞, as on the right; visualization on the
sphere is a slippery business.

(a) (b)

c1&c3 c2&c0

C

Figure 11. Two branched flowers; (a) is a typical flower with branching of order 2; (b) s branched
4-flower with extraneous tangencies.

Figure 11a illustrates a typical flower with branching of order two, with its eight
petals (and eight faces) wrapping three times around C. Figure 11b, on the other hand, is a
cautionary example: it displays a branched 4-flower. What constitutes a flower depends
on context: Are extraneous tangencies allowed? Must the flower be able to live in a larger
circle packing? Etc. The standard requirement is that a flower wrapping k times about
its center will require n ≥ (2k + 1) petals. This would hold if we required schwarzians s
strictly less than 1 (i.e., u > 0). In light of Lemma 3, the 4-flower of Figure 11b is a limit: let
u ↓ 0 so u′ = 2/(3u) ↑ ∞. The petals c1 and c3 are identical, as are c2 and c0. This is not a
situation that would occur in the practice of discrete function theory.

The adjustments in our machinery to accommodate branching are described in Situa-
tion 4 and Figure A4. Given n − 3 parameters, we are still able to compute the remaining
three to form a packing label. Indeed, we can still write un−2 = Un(u1, · · · , un−3), but we
must accept the function Un(· · · ) as representing an algorithm rather than an explicit formula.

6. Special Classes of Flowers
To illustrate what we have developed, we consider five distinguished families of

flowers whose schwarzians can be computed explicitly. Examples are shown in their native
environments in Figure 12. Once again, the author would point to the intriguing relations
that emerge in these beautiful but elementary cases.
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Uniform Extremal Soccerball
(branched, P)

Doyle Ring

Figure 12. Examples of special flower classes.

6.1. Uniform Flowers

There is a unique “uniform” univalent n-flower for each n. The model n-flower might
be a Euclidean one whose n petals all share the same radius, as in Figure 12. These are
a natural, unbiased starting point when first encountering flowers, and deviations from
uniformity can be useful (even in computations; see the “uniform neighbor model” of [16]).
Figure 13 illustrates several uniform flowers in our normalized form. Symmetry insures
that all n schwarzians are identical and one can observe reflective symmetry in the layouts.

5-flower 6-flower

10-flower 16-flower

Figure 13. Samples of “uniform” flowers.

There is some regularity that your eye may pick up in Figure 13. Figure 14 explains
that feeling: in every case all, n petals are tangent to a common circle, shaded in the figure.
In the model Euclidean setting, this circle is the one circumscribing the flower. (Note,
conversely, if such a circle tangent to all the petals exists, then the flower is uniform.)

Figure 14. The hidden circle.

The key question, is of course “What is the schwarzian for a uniform n-flower?”.
We will label this value as sn. Three cases are already known: s3 = 1 − 1/

√
3,
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s4 = 1 −
√

2/3 (from Lemma 3), and s6 = 0. In Appendix A.2 we establish the closed form
sn = 1 − 2√

3
cos(π/n). Here, is a sampling of values:

s3 = 1 − 1/
√

3 ∼ 0.422650 s4 = 1 −
√

2/3 ∼ 0.183503

s5 ∼ 0.065828 s6 = 0

s9 ∼ − 0.085064 s12 ∼ − 0.115355

s20 ∼ − 0.140485 s50 ∼ − 0.152422

The same computations work for branched uniform flowers, giving the more general
formula in (A7), which will be used in Section 6.3.

6.2. Extremal Flowers

There is a unique “extremal” univalent n-flower for each n. Indeed, suppose one of the
schwarzians s of a univalent n-flower equals the lower bound 1 − (n − 2)/

√
3. Designating

that as the petal c0, (A1) implies that the normalization process can only lead to a flower
like that of Figure 15a (for n = 7).

C

C

c1 c6

c0

c0

c1 c6
• • • •

••
••

(a) Extremal normalization (b) Alternate normalization

Figure 15. Normalizations of an “extremal” univalent flower.

As can be seen in this normalization, extraneous tangencies allow c1 and cn−1 to
serve as the centers of 3-flowers, implying that their schwarzians s1, sn−1 both equal
s3 = 1 − 1/

√
3. Next, consider any of the remaining petals cj, j = 2, · · · , n − 2. First, cj

acts as the center of a 3-flower if we include just one of its horizontal neighbors cj+1 or cj−1

along with the two half planes. As part of this 3-flower, the horizontal edge to the neighbor
has schwarzian 1 − 1/

√
3. Note at the same time that cj acts as the center of a 4-flower if

you throw in both its horizontal neighbors. Knowing the horizontal schwarzians, we can
apply Lemma 3 to compute the schwarzian 1 − 2/

√
3 for the vertical edges. In particular,

we have the following

Lemma 4. For every n ≥ 3, there is a unique univalent extremal n-flower, and its set of schwarzians
is given by

{
√

3 − 1√
3

,

√
3 − 2√

3
,

√
3 − 2√

3
, · · · ,

√
3 − 2√

3
,

√
3 − 1√

3
,

(n − 2)√
3

}.

Figure 15b shows an alternate normalization of the same extremal 7-flower, hence
with a shifted list of the same schwarzians.

6.3. Soccerball Flowers

We next go into detail about the soccerball circle packings discussed in Section 2.2 and
displayed there in Figure 2a. The highly symmetric nature of these packings allows us to
calculate their intrinsic schwarzians explicitly—a rare opportunity.
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The construction of the soccerball packings is described more fully in [4]. Briefly, the
complex K has 42 vertices, 12 of degree 5 and the rest of degree 6. The packing PK on the left
in Figure 2a is the maximal packing for K and is called the soccerball packing because its
dual faces form the traditional soccer ball pattern, breaking the sphere into 5- and 6-sided
polygonal regions. That on the right, P, is a branched packing for K, with simple branching
at each of the degree 5 vertices. The mapping F : PK → P is a key instance of a discrete
rational function.

The ubiquitous symmetries within K, PK, and P allow one to establish these facts: (a)
K has only two types of edges, those with ends of degrees 5 and 6 and those whose ends
are both degree 6. (b) In each of PK and P, all circles of degree 5 share one radius, while all
of degree 6 share another. (c) These facts imply that in each of PK and P, there are only two
intrinsic schwarzians: s for edges of degree 5 flowers and s′ between degree 6 circles. (d)
And finally, it follows that the degree 5 flowers are uniform while the degree-6 schwarzians
take the alternating pattern {s, s′, s, s′, s, s′}

Working in PK first, (d) above and (A6) imply that u = 1− s = 2√
3

cos(π/5). It remains

to compute u′ = 1 − s′. However, it turns out we can work more generally. Consider any
univalent degree 6 flower whose label has the alternating form {u, u′, u, u′, u, u′}. Examples
are shown in Figure 16.

(a) u = 1.20650... (b) u = 0.77700...

(c) u = 0.66666...

(d) u = 0.20000...

Figure 16. Six-flowers with alternating schwarzians.

Applying U6 and some simplification, we have

u = U6(u′, u, u′) =⇒ u =
u′u

3u′uu′ − u′ − u′ =⇒ uu′ = 1. (19)

Surprise: uu′ = 1. In our particular case, we conclude for PK that

s = 1 − 2√
3

cos(π/5) ∼ 0.065828 (20)

s′ = 1 −
√

3
2

sec(π/5) ∼ −0.070466.

Another feature of these special degree 6 flowers might catch your eye in Figure 16a–c:
one can show that, for any s ≤ s3, a normalized flower with label {s, s′, s, s′, s, s′} will lead
to circle c4 having a radius of r4 = 1/4. The flower in Figure 16d shows that this fails for
non-univalent cases: when s > s3, c3 and c5 overlap. (Incidentally, when s is precisely
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equal to s3, c3 and c5 are tangent and the value 1/4 for c4 comes directly from the Descartes
Circle Theorem.)

We turn now to the branched packing P on the right in Figure 2a. Each of the 12 degree
flowers is branched, so the Riemann–Hurwitz relations imply that P is a seven-sheeted
covering of the sphere. The packing is very difficult to interpret: the degree 5 circles are
smaller now, but the degree 6 are quite huge—nearly hemispheres. This and the seven
sheetedness make individual degree 6 circles very hard to distinguish in Figure 2a, so
an isolated 5-flower is shown in Figure 12. Many facts about PK persist in P: as before,
there are just two schwarzians, s, s′; the degree 5 vertices have uniform flowers; and s, s′

alternate in the degree 6 flowers. The normalized layout for one of these 6-flowers is shown
in Figure 16d.

We can now compute u = 1 − s using the general expression (A7) from the
Appendix A.2. A simple branched 5-flower wraps twice around its central circle; this
means for a uniform flower that each face subtends an angle θ = 4π/5, implying that
α = θ/2 = 2π/5. Using (A7) and then (19), we conclude for P in Figure 2a,

s = 1 − 2√
3

cos(2π/5) ∼ 0.643178 (21)

s′ = 1 −
√

3
2

sec(2π/5) ∼ −1.802517.

As a final comment, we observe that, for this very special complex K, our anal-
ysis extends to other pairs of schwarzians s, s′ satisfying (19), meaning such that
(1 − s)(1 − s′) = 1. One obtains a family of projective circle packings Ps which live on
coned spheres. I am not prepared to address the range of possible values—an interesting
question in itself—but one can choose s to interpolate between (20) and (21) and certainly
to extend beyond that range. For each appropriate s, the process described in Section 4,
starting with an arbitrary mutually tangent triple of circles for some base face and then
using the schwarzians to lay out the remaining circles, generates a circle packing Ps. Only
when s takes its value from (20) or (21) (i.e., Ps = PK or Ps = P, respectively) is Ps a
traditional circle packing on the Riemann sphere P. In all other cases, the face-by-face con-
struction produces a topological sphere Ps with spherical geometry, save for the 12 points
associated with degree 5 vertices. These are clearly 12 cone points. The symmetry group
of K is the dodecahedral group, so there exists a Möbius transformation Ps making the
singularities indistinguishable, that is, they all share a common cone angle γ. To illustrate,
if s = −0.321284, then CirclePack tells us that γ = 3π. It is left to the curious reader to
work out the precise relationship between s and γ.

Incidentally, imposing symmetry was necessary here since cone angles are subject
to change under Möbius transformations. Irrespective of the construction of Ps (i.e., of
the initial face f0), the traditional angle sums θv at all vertices of degree 6 will be 2π.
However, the angle sums at the degree 5 vertices may no longer share a common value.
The only exceptions are our two special cases: when s takes the value in (20) or (21), then
the degree 5 vertices have angle sums γ = 2π or 4π, respectively, regardless of the choices
of f0 in the construction. I personally find this curious—this persistence of angle sums
when they are multiples of 2π is nearly a packing criterion.

6.4. Doyle Flowers

An early and fascinating chapter in the story of circle packing involves a pattern for
hex (degree 6) flowers observed by Peter Doyle. We investigate this two-parameter family
of flowers here, but the interested reader can discover the beauty of the “Doyle spirals” that
they lead to in [17]. In addition to providing an obvious instance of a discrete exponential
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function, these spirals raised the oldest question from the foundational period that remains
open, as posed by Peter Doyle: Do there exist any circle packings of the plane in which
every circle has degree 6 other than the familiar “penny packing”, in which all circles share
a common radius, and the (coherent) Doyle spirals?

The Doyle flowers involve two radius parameters, a and b. If the center C has a radius
of 1, then the petal radii take the form

{a, b, b/a, 1/a, 1/b, a/b}, a, b > 0. (22)

Remarkably, regardless of a and b, this pattern of radii will always form a 6-flower around
C. More significant in the search for schwarzians is the fact that the six triangular faces of
that flower fall into three similarity classes. For each j = 1, · · · , 6, let ej be an edge, f j and
gj be the neighboring faces, and pj the patch formed by their union. For each j = 1, 2, 3, one
can check that there is a similarity Λ : pj −→ pj+3 with Λ(ej) = ej+3. As a consequence, the
sequence of schwarzians takes the form

{s1, s2, s3, s1, s2, s3}. (23)

View this pattern in light of what we know about general 6-flowers: namely that
u1 = U6(u1, u2, u3); solving for u3 gives

u3 =
u1 + u2

3u1u2 − 1
. (24)

In other words, using u1, u2, we have a new 2-parameter representation of the Doyle flowers
in the space F6.

It would be interesting to find the relationship between parameters a, b and u1, u2 (or
s1, s2). However, there are more challenging questions that the reader might like to take
on. First, sticking with the Doyle setting for a moment, note that the pattern of a single
Doyle flower propagates to an infinite spiral, all of whose flowers share the identical set of
schwarzians. The combinatorics underlying all Doyle spirals is that of the hexagonal lattice
H, easily recognized as the planar lattice behind the penny packing. Within H are three
families of parallel axes. What the results above show is that, for a given Doyle spiral, all
edges within one of these families share the same schwarzian.

The challenge now is to conceive of other conditions on schwarzians analogous to
those of (24). What patterns, what families of flowers, might emerge? In addition, are there
patterns for flowers that automatically propagate to larger, perhaps infinite, configurations
of circles? Examples might contribute to discrete function theory as Doyle spirals have
contributed discrete exponential functions.

6.5. Ring Lemma Flowers

In circle packing, the well-known and important “Ring Lemma” provides a lower
bound c(n) for the ratio r/R of petal radii r to the center’s radius R in any univalent
Euclidean n-flower. First introduced in [5], the extremal situations and sharp constants
were obtained in [18] and were shown to be reciprocal integers in [19]. Of course, we are
focused on schwarzians not radii, so we work in our normalized setting. Figure 17 suggests
how the extremal normalized flowers develop in a nested fashion, with the extremal n + 1-
flower being obtained from the extremal n-flower by adding the largest possible circle to
its smallest interstice. Continuing this ad infinitum, we arrive at what we might term an
∞-flower.
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C

c0

c1

c2

0 2

t∞

•

Figure 17. Nested “ring” flowers.

At any stage in this development, the current flower is rife with extraneous tangencies.
Indeed, at a given stage, we have an n-flower whose smallest interstice is formed by C
and its two smallest petals. When we plug the new petal into that interstice to form an
n + 1-flower, the tangency between those two petals becomes extraneous.

The packing’s features allow us to compute precise schwarzians. Figure 18 focuses in
on the interstice where a new petal, the blue one, is being added. The red and green are the
smallest previous petals. Reindexing to accommodate the new petal, we assume that the
green circle is cj−1, the red is cj+1, and the new blue is cj. There are extraneous tangencies,
but nonetheless, functionally, cj+1 is degree 4, cj−1 is degree 5, and of course cj is degree 3.
(In alternating stages, the green would be on the right and the red on the left.)

C
ej−1 ej ej+1

er

eg

eb

cj−1

cj+1

Figure 18. Inserting a new petal.

Our local goal is the schwarzians sj−1, sj, and sj+1 for the vertical edges ej−1, ej, and
ej+1, though we need the schwarzians for the edges er, eg, ex along the way. We will work
in the u-variables.
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The blue petal, cj, is degree 3, so Lemma 2 gives uj = ur = ug = 1/
√

3. The red
petal, cj+1, is degree 4 and has edges er and ex. Lemma 3 implies that urux = 2/3, so
knowing that ur = 1/

√
3, we conclude that ux = 2/

√
3. Finally, note that the green

petal, cj−1, has degree 5 and successive edges ux, ug, uj−1. Knowing ux and ug implies
uj−1 = U5(ux, ug) =

√
3. Summarizing for the target schwarzians, we conclude

sj−1 = 1 −
√

3 ∼ −0.732051,

sj = 1 − 1/
√

3 ∼ 0.422650, (25)

sj+1 = 1 − 2/
√

3 ∼ −0.154701.

So, what do we conclude about the schwarzians of a full flower? Observe that, when a
new petal is added in our construction, it converts its smaller neighbor, degree 3, in the
previous step, to degree 4, while it converts its larger neighbor to degree 5. That larger
neighbor, cj−1 in Figure 18, remains unchanged thereafter, so its schwarzian remains at
1−

√
3. On the other hand, the schwarzian for the smaller neighbor, cj+1, is only temporary,

as it will change with the next added petal. So, here is the typical sequence for a Ring
Lemma n-flower, stated in the alternate u·-variables:

{
√

3, · · · · · · ,
√

3,
1√
3

,
2√
3

,
√

3, · · · · · · ,
√

3,
1√
3
}.

With every increase in n, the 2/
√

3 will convert to
√

3, the 1/
√

3 will convert to 2/
√

3, and
a new 1/

√
3 will be inserted between them.

Past experience with the Ring Lemma suggests that one should not leave these flowers
without looking around for interesting numerical features. In [19] and [20], the Fibonacci
sequence, the Descartes Circle Theorem, and the golden ratio all play significant roles. In
our normalized setting, we can add Farey numbers to that list.

So, let us look around! As visually suggested in Figure 18, the local picture around
a new petal has a static asymptotic limit. We have seen that uj = 1 − sj = 1/

√
3, so

applying (15) and adjusting the indexing, we see this recurrence relation among the radii:

1
√rj+1

=
1

√rj
+

1
√rj−1

.

This is a generalized Fibonacci pattern and is precisely the recurrence observed in ([20], §4).
There, one can conclude that

r
r′

−→ (
1 +

√
5

2
)2 = τ2,

where r′ is the radius of a new petal, r is the radius of the previous new petal, and τ is the
famous Golden Ratio.

How do Farey numbers enter the picture? Caution: for this discussion, we must scale
our normalized Ring Lemma flowers by 1/2. Thus, the tangency points tj and radii rj are
now scaled by 1/2, putting all the tangency points in [0, 1].

One can deduce from the Descartes Circle Theorem that, if a circle is placed in the
interstice of three mutually tangent circles whose bends (reciprocal radii in the terminology
of F. Soddy [21]) are integers, then that circle’s bend will also be an integer. In our construc-
tion, we continually put new circles in interstices. One can prove inductively that all radii
(after our scaling by 1/2) are reciprocal integers. From this, one can conclude that all the
tangency points tj are rational numbers. Indeed, these all fall into what is known as the
“Farey sequence” in [0, 1] and are subject to the counterintuitive Farey arithmetic. Consider
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a tangency tj for a new circle in our construction, between the tangency points t and t′ for
the previous two new circles. We may write t = a/b and t′ = a′/b′ as rational numbers in
the lowest terms. From the Descartes Circle Theorem, one can show that

tj =
a + a′

b + b′
. (26)

To see the overall pattern of (rescaled) tangency points, we will redefine the indexing
as a sequence {tj}. Here, t0 = 0, t1 = 1, and thereafter, let tj denote the tangency point of
the next new petal added, so tj always falls between tj−1 and tj+1. (This indexing is not
that used for individual n-flowers.) Now write t0 = 0/1 and t1 = 1/1 and then repeatedly
apply (26). (There is one choice involved; after t2 = 1/2 in Figure 17, we chose t3 = 2

3
rather than t3 = 1

3 .) Here, then, are the first few values

{0
1

,
1
1

,
1
2

,
2
3

,
3
5

,
5
8

,
8

13
,

13
21

,
21
34

· · · · · · }.

As one can see, tj = Fj/Fj+1, where Fj is the jth Fibonacci number. It is well known
that this ratio converges to 1/τ. In other words, the new petals in the infinite flower
suggested by Figure 17 converge to the point t∞ = 2/τ. Are not circles grand!

7. Conclusions
This paper has introduced a discrete analogue of the classical schwarzian derivative,

primarily with the goal of manipulating circle packings in spherical geometry. That goal is
not yet within reach, but the first steps have been taken. Using intrinsic schwarzians, this
paper has characterized packing edge labels for flowers, which are the basic building blocks
of every circle packing. How this fits into the broader enterprise, the task of computing
the packing edge labels S for general complexes K, remains to be seen. In Section The
Difficulty, “criteria” and “monotonicities” were identified as valuable ingredients. Our
work with flowers provides cumbersome but easily computable criteria: we can check
whether a set S of intrinsic schwarzians for K is a packing edge label. The outlook for
monotonicities within schwarzian labels, however, remains quite cloudy. An adjustment
of the label for one edge typically affects two flowers. Generating an adjustment that
is favorable in moving toward a packing label is the challenge. The author is currently
experimenting with maximal packings PK for topological spheres K, since the correct labels
S are already known. Starting with a random label and then repeatedly fixing the labels for
randomly chosen flowers, one hopes to see how the adjustment of schwarzians reverberate
through the network and how they can be driven toward S. What we learn might then be
applied to cases with branching as well. It would help if there were some Möbius invariant
quantity that one could maximize or minimize. Even then, since the criteria for branching
do not involve explicit expressions, classical tools such as differentials may not be available.
These difficulties are unfortunate, as branched packings are our primary targets.

In conclusion, although branched packings are handled quite routinely in the disc
or the plane, where the controlling parameters are radii and angle sums, the sphere is
a tougher environment. Whether there is some way to deploy the properties we have
developed for flowers to the computational hurdles with larger packings remains the key
open question.
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Appendix A
Here, we detail various computations with intrinsic schwarzians. We start with four

situations underlying our construction of normalized flowers from given schwarzians. Next,
we compute the schwarzians for uniform flowers. Finally we work out the relationship
between a discrete Schwarzian derivative and the intrinsic schwarzians of domain and
range.

Appendix A.1. Layout Computations

We work with flowers in their normalized positions; see Figure 5 for the notation.
Note that C and c0 are tangent at infinity, so the imaginary axis represents the edge e0

between them, associated with schwarzian s0.
In computing the remaining petals, we encounter three situations, and possibly a

fourth if there is branching. In each there is an edge e of interest connecting the upper half
plane to a petal circle (the shaded one) whose position has already been established. There
is also an “initial” neighboring petal (green) which is also in place. Our task is to find data
for the companion “target” petal (red), that which is opposite to the initial petal across
edge e. The shaded face f is that formed by the central circle, the shaded circle, and the
initial circle. We are given the initial data for the two petals in place and the schwarzian s
for e and show the computations of data for the target circle; in particular, we compute its
tangency point t and its radius r. The formulas we arrive at are easier to work with if we
introduce u = 1 − s as an alternative to the variable s itself. Situations 1-3 are illustrated as
they would appear in un-branched flowers. The computations, however, are fully general,
as we discuss in Situation 4.

Situation 1. We begin with the edge e = e0, connecting the two half planes as
illustrated in Figure A1. The petal c0 (a half plane) and the initial petal c1 are in place as
part of our normalization. The target is the clockwise neighbor of c0, namely the petal cn−1.
Being tangent to both half planes, its radius is rn−1 = 1 and we need only compute its
tangency point tn−1 from the schwarzian s0.

Let s = s0. The computations involve the Möbius transformation Ms (see (7)) and
the Möbius m f mapping the points {1, ω, ω2} to {∞,−2i, 0}, and hence mapping Cv to the
upper half plane.

m f ◦ M−1
s =

 2i −
√

3 + i

−1/2 +
√

3/2 i 1/2 −
√

3/2 i


1 − s s

−s 1 + s



=


√

3s + (2 − 3s) i −
√

3(1 + s) + (3s + 1) i

−1/2 +
√

3/2 i 1/2 −
√

3/2 i


Applying this transformation to Cb gives the normalized petal cn−1. In particular, applying
it to the tangency point (5 −

√
3 i)/2 in the base patch p∆ yields the normalized tangency

point tn−1, expressed using u0 = 1 − s0:

tn−1 = 2
√

3 u0 and rn−1 = 1. (A1)
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f C

c0

0

−2 i

•

•
c1 cn−1

tn−1•

•

Figure A1. Situation 1: layout the red circle.

Situation 2. We move now to the edge e = e1 with the target being c2. The relevant
schwarzian is s = s1 and the initial petal is the half plane c0, green in Figure A2.

f

C

c0

0
•

•

c1

c2

t2
•

Figure A2. Situation 2: layout the red circle.

We proceed by modifying the previous argument. The shaded face f is the same,
but the Möbius m f must now map {1, ω, ω2} to {0, ∞,−2i}. We accomplish this by pre-
composing the earlier m f with a rotation by ω2. The result is

m f ◦ M−1
s =

√3 − i −
√

3 + i

1
1
2
−

√
3

2
i


1 − s s

−s 1 + s



=


√

3 − i −
√

3 + i

1 − 3s/2 + (
√

3s/2)i (1 + 3s)/2 − (
√

3(1 + s)/2)i


Applying this transformation to Cb gives the normalized petal c1. Note that m f now
maps Cw to the upper half plane, so applying the above Möbius to the tangency point
(5 +

√
3 i)/2 in the base patch yields the displacement to the normalized tangency point t2;

simple geometric computations give the radius. We use the variable u1 = 1 − s1.

t2 = 2/(
√

3 u1) and r2 = (t2)
2/4 = 1/(

√
3 u1)

2. (A2)

Situation 3. We are left to treat the generic situation suggested by Figure A3. The
edge e goes from the central circle C to the shaded circle, with its schwarzian s and variable
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u = 1− s. (Note that the half plane for c0 is no longer necessarily involved.) We assume that
the shaded circle has a radius R, while the initial green circle has radius r. It is convenient
to position the shaded circle tangent to C at the origin, and then our goal is to compute the
tangency point δ (the displacement from 0) and the radius ρ of the red target circle.

r

R

ρ

0
f

x δ

p

• • •

•

Figure A3. Situation 3: layout the red circle.

Elementary geometric computations yield

x = −2
√

rR, p = −(
2R

R + r
)(
√

rR + (r + R) i).

The following Möbius transformation m will convert this generic situation to Situation 2.
Namely, m maps {x, p, 0} to {∞,−2i, 0}, so the configuration of Figure A3 morphs into that
of Figure A2.

m =

 1 +
√

r/R i 0

(
√

R/r + i)/2 R +
√

rR i


The tangency point t2 in Figure A2 corresponds to the tangency point δ in Figure A3, so δ is
obtained by applying m−1 to t2. An annoying calculation gives, in the alternate variable u,

δ(u, r, R) =
2R

(
√

3 u −
√

R/r )
and ρ =

1
(
√

3 u/
√

R − 1/
√

r)2
. (A3)

We will also need to reverse these computations in a particular situation in order
to compute s. The situation is this: the values r and R are known, δ is positive, and the
computed radius ρ comes out to be 1. What is s? We compute u, then s = 1 − u.

When R, r are known, δ > 0, and ρ = 1: u =

√
R +

√
R/r√

3
. (A4)

Situation 2 is the limiting case of Situation 3 when r grows to ∞, so (A2) follows
from (A3). Also, note that, when applying (A3), the quantity δ, which represents the
displacement of the target circle from its shaded neighbor, can be zero or negative. An
example is the branched flower of Figure 6c: with initial circle c2, the displacement of the
target c4 from c3 is negative. This puts us in the following branching situation.

Situation 4. Branching is initiated during a layout step if and only if (A3) results in a
displacement δ ≤ 0. Figure A4a illustrates the most typical case, with δj = (tj+1 − tj) < 0.
However, it is laying out the next circle that we need to concentrate on, as shown in
Figure A4b. (The color codings are as before; known green and shaded petals in place, a
red target petal to be positioned based on the schwarzian of the edge to the shaded circle.)
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f

f

cj cj

r ρ

ρ R
R r

δ = δj δ = δj+1

cj+1 cj+1

(a) (b)

Figure A4. Situation 4: (a) shows the layout before adding the red circle of (b).

By the formula in (A3), when δ < 0, then (
√

3u/
√

R − 1/
√

r) < 0. This means, in
turn, that our previous expression 1/

√
ρ = (

√
3u/

√
R − 1) is no longer true, as it requires

absolute values on the right-hand side. Subsequent formulas like those in (10) and (15)
fail, and ultimately, Un is no longer represented in a closed formula. This is what makes
branched flowers more difficult to manipulate.

Figure A4b is typical of what we refer to as Situation 4. Notice that the new displace-
ment, δj+1, is again in the positive direction. The computations require a modification
of (A3).

When the previous displacement was negative, then (A3) becomes

δ(u, r, R) =
2R

(
√

3 u +
√

R/r )
and ρ =

1
(
√

3 u/
√

R + 1/
√

r)2
. (A5)

The “previous” step refers to that where R was computed. A propros of our earlier
comments, the modification here is simply replacing

√
R by −

√
R in (A3). (There is one

other detail: the standing assumption u ≥ 0 is also required to ensure that this new
displacement δ is positive).

Another possibility leading to branching is pictured in Figure A5. Namely, when
(
√

3 u − 1/
√

R/r) = 0 in (A3), so δ is undefined. In essence, δ = ∞, R = ∞, and the petal
cj+1 is a half plane (i.e., tangent to C at ∞). Figure A5 illustrates the situation when placing
the next petal cj+2, which necessarily has the same radius rj as cj. For its tangency point,
note that Figure A5 is a version of Figure A1. Applying (A1), scaling by rj, and taking the
order tj, ∞, tj+2 of the tangencies about C into account, we have tj+2 − tj = −2

√
3uj+1rj.

fC

cj+2 cj

•
tj+2

cj+1

x = tj•

•
p

c0

Figure A5. Laying out the red circle when cj is a half plane.

We conclude this subsection by explaining the two exceptions to successful lay-
out as listed in Theorem 1. The exceptional situations occur when j + 1 = n − 2 in
Figures A4 and A5. Regarding exception (a), if Figure A5 occurs (so cj+1 is the penultimate
petal cn−2), then the Layout Process fails because placing cj+2 (i.e., cn−1) with mandated
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radius 1 is either impossible (if rj ̸= 1) or ambiguous (since un−2 is unknown). Regarding
exception (b), look to Figure A4b. Though c1 is not pictured here, if the tangency point of
the red circle, tn−1, is negative (to the left of t1 = 0), then (A1) implies u0 is negative, that is
s0 > 1, which is not allowed.

Appendix A.2. Uniform Petals

The schwarzians for a uniform n-flower take a constant value that we have labeled sn.
Here, we show that

sn = 1 − 2 cos(π/n)√
3

, n ≥ 3. (A6)

We will base our computations on Figure A6, with C being the unit circle and succes-
sive petals cn−1, c0, c1 sharing a common radius. Our interest is in the schwarzian s for the
edge from C to c0.

-i

C

cn−1

c0

c1

ζ ξ

•

•
••

f
α

p

Figure A6. Uniform petals: compute the schwarzian.

Let the angle α be one half of the angle at the origin in face f formed by the triple
{C, c0, c1}. If these petals were taken from a uniform n-flower, then α = π/n. However,
the following computation works for any α, 0 < α < π/2. Note that the tangency points of
the circles are

ξ = sin(2α)− i cos(2α) and ζ = − sin(2α)− i cos(2α).

Let T denote the Möbius transformation which maps {−i, p, ξ} to {∞,−2i, 0}, where p
is the tangency point between c0 and c1. This transformation puts the four circles in the
standard normalized positions as they appear in Figure A1. In particular, T(ζ) is the
tangency point labeled tn−1 there. Applying (A1), we conclude that 1 − s = T(ζ)/(2

√
3). I

will leave the computation of T to the curious reader, but here is the general result:

s = 1 − 2 cos(α)√
3

, 0 < α < π/2. (A7)

Appendix A.3. Special Computations

We outline two computations referred to in Section 3. These are similar in nature and,
though elementary with a symbolic math package, provide great fun via pencil-and-paper.
Both involve the restriction of a discrete mapping F between circle packings to a domain
patch p and its image patch p′ = F(p). The related objects involved are the edges e, e′,
their intrinsic schwarzians s, s′, their tangency points t, t′, the face mappings m f : f −→ f ′,
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mg : g −→ g′, and the discrete Schwarzian derivative σ = ΣF(e). Both situations also
involve a Möbius transformation m(z) = (az + b)/(cz + d); we write m in matrix form

m =

[
a b
c d

]
, with ad − bc = 1.

The first computation relates the Schwarzian derivative and the two intrinsic
schwarzians s, s′. The Schwarzian derivative σ arises in

m−1
g ◦ m f = I+ σ

[
t −t2

1 −t

]
.

For the intrinsic schwarzians, we need to identify these additional Möbius transforma-
tions identifying faces:

For p = { f | g} : µ f : f∆ −→ f ; µg : g∆ −→ g.

For p′ = { f ′ | g′} : ν f : f∆ −→ f ′; νg : g∆ −→ g′.

Manipulating the expression for schwarzians and taking m = µ f , we get

ν−1
g ◦ ν f = µ−1

g ◦ (m−1
g ◦ m f ) ◦ m and

µ−1
g =

[
1 + s −s

s 1 − s

][
d −b
−c a

]
.

Putting these into matrix form gives[
1 + s′ −s′

s′ 1 − s′

]
=

[
1 + s −s

s 1 − s

][
d −b
−c a

][
1 + σt −σt2

σ 1 − σt

][
a b
c d

]
.

The many pleasant surprises in a pencil-and-paper simplification yield[
1 + s′ −s′

s′ 1 − s′

]
= I+

[
s + σ/(c + d)2 −(s + σ/(c + d)2)

s + σ/(c + d)2 −(s + σ/(c + d)2)

]
,

implying s′ = s + σ/(c + d)2. Moreover, the expression on the right is associated with
the map of p∆ −→ p′ and with the tangency point τ = 1 in its domain. The Schwarzian
derivative s′ = s + σ/(c + d)2 may therefore be rewritten

s′ = s + ΣF(e) · m′(1). (A8)

(As a side note, ΣF(e) · m′(1) is real.)
Schwarzian derivatives—both classical and discrete—are unchanged under post-

composition by Möbius transformations. Our second computation derives the chain rule
for discrete Schwarzian derivatives under pre-composition. We will rely on the notations
above, except that m now respresents an arbitrary Möbius transformation and the base patch
p∆ is replaced by the patch p′′ = m−1(p) = { f ′′ | g′′} with its tangency point denoted τ.

We start with the function F : p −→ p′. Its Schwarzian derivative σ = ΣF(e) is derived
from the expression

m−1
g ◦ m f = I+ σ

[
t −t2

1 −t

]
=

[
1 + σt 1 − σt2

σ 1 − σt

]
.
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The issue is, given m, what is the Schwarzian derivative for F ◦ m : p′′ −→ p′, denoted
by ΣF◦m(e′′)? This is derived from ν−1

g ◦ ν f , involving the face maps ν f : f ′′ −→ f ′ and
νg : g′′ −→ g′. Note that ν f = m f ◦ m, νg = mg ◦ m. Therefore,

ν−1
g ◦ ν f = (mg ◦ m)−1 ◦ m f ◦ m = m−1 ◦ (m−1

g ◦ m f ) ◦ m.

Manipulating this, we arrive at

ν−1
g ◦ ν f = m−1 ·

[
I+ σ

[
t −t2

1 −t

]]
· m

= I+ σ

[
d −b
−c a

][
t −t2

1 −t

][
a b
c d

]
.

Since m identifies e′′ with e, we have m(τ) = t. Using this to replace t and enjoying further
pencil-and-paper work, one arrives at

ν−1
g ◦ ν f = I+ σ

(cτ + d)2

[
τ −τ2

1 −τ

]
. (A9)

This gives our discrete chain rule, which is placed here beside the classical version:

ΣF◦m(e′′) = σ/(cτ + d)2 = ΣF(m(e′′)) · m′(τ) (A10)

Sϕ◦m(z) = Sϕ(m(z))/(cz + d)4 = Sϕ(m(z)) · (m′(z))2.

These diverge in that the discrete version involves m′ rather than (m′)2. The author has
no concrete explanation for this difference. It is perhaps worth noting, however, that for
mappings between circle packings, the ratios of image radii to domain radii serve as a proxy
for the absolute value of the classical derivative; see, for example, [22]. In some sense, these
mappings already incorporate a derivative, and this may subtly influence this chain rule.
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