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Abstract

In this study of the Reidemeister moves within the classical knot theory, we focus on hard
diagrams of knots and links, categorizing them as either rigid or shaky based on their
adaptability to certain moves. We establish that every link possesses a diagram that is a
rigid hard diagram, and we provide an upper limit for the number of crossings in such
diagrams. Furthermore, we investigate rigid hard diagrams for specific knots or links to
determine their rigid hard index. In the topic of shaky hard diagrams, we demonstrate the
existence of such diagrams for the unknot and unlink of any number of components and
present examples of shaky hard diagrams.
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1. Introduction
The Reidemeister moves, introduced nearly a century ago (in 1926), are studied for

their varying aspects and implications. B. Trace [1] noted that two diagrams representing
the same knot are connected only by the second and third Reidemeister moves (but not
the first) if, and only if, they share the same writhe and winding number as a curve.
O. Oestlund [2] and Hagge’s [3] work indicates that for every knot, there exists a pair of
diagrams requiring all three move types for transition. A. Coward [4] established that even
when all three moves are essential, they can be executed in a specific sequence: initially,
only the first moves that increase crossing numbers, followed by the second moves that
also increase crossings, then exclusively the third moves, and finally the second moves
again, but this time decreasing the number of crossings. M. Lackenby [5] has shown that
any trivial knot diagram with c crossings can be transformed into a simple diagram using
no more than (236c)11 Reidemeister moves.

Hard unknots and unlinks, representing trivial knots and links, require increased
complexity before they can be simplified to their minimal diagrams in terms of the number
of crossings. In classical knot theory, which examines circles in 3-dimensional space and
their generic diagrams on a 2-sphere or the plane, these concepts have a long history
dating back to Goeritz’s example [6]. More recent research connects hard unknots to DNA
recombination studies (see, e.g., [7,8]) and tests the accuracy of new upper bounds on the
number of Reidemeister moves required to simplify an unknot (see, e.g., [9]). Hard unknots
continue to be a central topic in recent research papers (for example [10]).
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2. Reidemeister Moves and Hard Diagrams
From [11,12], we know that any two marked graph diagrams representing the same

type of link are related by a finite sequence of Reidemeister local moves presented in
Figure 1 and their mirror moves (and an isotopy of the diagram in S2 or the plane).

Ω↑
1

Ω↓
1

Ω2↑

Ω↓
2

Ω3

Figure 1. The Reidemeister moves.

Denote the move Ω1 as any of Ω↑
1 or Ω↓

1 moves, and denote the move Ω2 as any of Ω↑
2

or Ω↓
2 moves; also, denote the Ω3-type move as any of Ω3 or mirror of Ω3 move. Let us

recall the following dependencies between Reidemeister-type moves. The mirror move to
the move Ω1 can be obtained by the moves Ω1, Ω2, and planar isotopy. The mirror move to
the move Ω2 can be obtained by the move Ω2 and planar isotopy. The mirror move to the
move Ω3 can be obtained by the moves Ω2, Ω3, and planar isotopy (see [13]). The version
of Ω3 that is derived from the given one by switching only the middle crossing is the same
(by a rotation in the plane and planar isotopy) as the mirror moves to the move Ω3. The
version of Ω3 that is derived from the given one by switching two crossings, other than the
middle crossing, is the same (by a rotation in the plane and planar isotopy) as the move Ω3.

A hard diagram of a link L is a reduced link diagram (i.e., without the opportunity to
make Ω↓

1 or Ω↓
2 moves) of L having more than c(L) crossings such that in order to obtain

a minimal diagram of L by the Reidemeister moves you have to use at least one move
that increases the number of crossings Ω↑

1 or Ω↑
2 . In this paper, the primeness of a diagram

is considered with respect to the connected sum on the sphere, and the minimality of a
diagram is considered with respect to the total number of its crossings.

Proposition 1. Any hard diagram is a non-alternating diagram.

Proof. Let D be a hard diagram of a link L. If L is a non-alternating link, then by definition
D must be non-alternating. If L is an alternating link, then any reduced alternating diagram
of L is well-known to be minimal (first two Tait conjectures). Therefore, the diagram D
cannot be alternating because it is not a minimal diagram for L.

The family of hard diagrams can be further divided into rigid hard and shaky hard
families. The rigid hard diagram is a hard diagram such that there is no opportunity to
make Ω3-type move, and it is called shaky otherwise.

3. Rigid Hard Diagrams
We recall the known rigid hard diagrams.

Theorem 1 ([14]). Up to the mirror image, the only minimal rigid hard prime classical unlink
diagram with two components is h8, and the only minimal rigid hard prime classical unlink diagram
with three components is h12 (see Figure 2). Furthermore, the only minimal rigid hard prime
classical unknot diagrams are the four diagrams h9a, . . . , h9d, shown also in Figure 2.
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h8 h12 h9a

h9b h9c h9d

Figure 2. Minimal hard prime unlink diagrams.

From the computational checking of all spherical diagrams up to several crossings, we
conclude the following:

Lemma 1. The diagram 7s shown in Figure 3 is a minimal unknot diagram such that all re-
gions with the opportunity to make Ω↓

2 move or Ω3-type move share exactly one edge (shown in
dashed line).

In Figure 4, we have all types of local neighborhoods of a triangular region in a link
diagram. We have exactly two cases (in the first row) where a triangular region has the
opportunity to make the Ω3-type move, call it Ω3-triangle.

Figure 3. The diagram 7s.

For any link, define tri(L) as the minimal number of Ω3-triangles in D, among all
minimal diagrams (i.e., diagrams with c(L) crossings) D for L. In case there is some
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minimal diagram for L without any Ω3-triangle, we put tri(L) = 1. We shall now state the
following theorem:

Theorem 2. Any link L has a diagram D that is a rigid hard diagram. Moreover, we can choose D,
such that we have the following:

#crossings(D) ≤ 7 · tri(L) + c(L),

for any non-split non-trivial link L.

Proof. For a case where the link L is trivial, we can take diagrams from Theorem 1 and
their proper amount of connected sums to obtain a rigid hard diagram with the desired
number of components. Assume, from now on, that L is non-trivial. If it is a split link,
then we can obtain the following procedure for every sub-diagram component: obtaining
a rigid hard diagram as a disjoint union of rigid hard diagrams of non-split components.
Therefore, we assume that we have a minimal diagram D′ for L, which is a connected
diagram and has at least two crossings.

Consider D as a connected sum of a minimal diagram D′ for L with the diagram 7s
along the dashed line inside every triangular region of D′ where there is an opportunity
to make an Ω3-type move, with the edge used in the sum edge being one of the edges
bounding the triangular region. If there is no such region, we make only one connected
sum with the arbitrary edge of D′, and the inequality is obtained. From now on, let us
assume that there is at least one triangular region with the opportunity to make the Ω3-type
move, call it Ω3-triangle. Then, we obtain no new region having fewer than 4 edges in the
boundary, so the diagram of the sum is a rigid hard diagram.

The diagram 7s has 7 crossings; therefore, in D we have

7 · #(Ω3-triangles) + #crossings(D′)

crossings in D.

Figure 4. Types of triangular regions.

We can derive the following general upper bound without knowledge of the number
of Ω3-triangles.

Theorem 3. We can choose D, such that we have

#crossings(D) ≤ 8 · c(L),

for any non-split non-trivial link L.
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Proof. Let D′ be a minimal diagram for L, considered here also as a 4-valent graph, having
n = c(L) crossings.

By the Euler characteristic formula for spherical 4-valent graphs (here connected
projections of the links), the number of all regions in D′ is n + 2, and the number of edges
in 2n. Let us consider only triangular regions in the graph G being a connected shadow for
D′. We glue together any two such triangles to form a quadrilateral, and then we proceed
to any other possible pairs, etc., and we end with only triangles isolated from each other.
Call the set of such isolated triangles by S, and the set of constructed quadrilaterals by Q.
We can now apply Theorem 2 for only Ω3-triangles in S and for one Ω3-triangle for each
quadrilateral in Q making the connected sum in an edge used to glue our quadrilateral
from two triangles, preventing both of them to be Ω3-triangles. At least one (the diagonal)
edge in each element of Q is not the edge of any element of S, and we have a total of 2n in

a graph in G; therefore, #S ≤ 2n − #Q
3

. We also know that each element in Q covers two

faces of the starting graph G with n + 2 faces, so #Q ≤ n
2
+ 1. We can now count and bind

the number of required connected sum operations CS as follows:

CS = #S + #Q ≤ 2n − #Q
3

+ #Q =
2
3
(n + #Q) ≤ 2

3
(n +

n
2
+ 1) = n +

2
3

.

The number CS is an integer, so we obtain CS ≤ n = c(L). Each connected sum adds
exactly seven crossings, so

#crossings(D) = n + 7CS ≤ n + 7n =≤ 8 · c(L).

We see that, in the proof of the previous proposition, the construction leads us to
generally not prime diagram. It is natural then to search for possibly prime rigid hard
diagrams for a given knot or link with fewer crossings.

In Figure 5, an example is shown of a minimal rigid hard diagram of the trefoil knot.
Notice that it is a prime diagram, and it has nine crossings, while the minimal diagram of
the trefoil has three crossings.

Figure 5. An example of a minimal rigid hard diagram of the trefoil knot.
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The rigid hard index of a link L, denoted by indrh(L), is the difference between the
number of crossings in a minimal (with respect to the number of crossings) rigid hard
diagram for L and the crossing number of L.

From the previous examples of prime minimal rigid hard diagrams of trivial links (that
are denoted Tn, where n is the number of its components), we can conclude directly that

indrh(T1) = 9, indrh(T2) = 8, indrh(T3) = 12.

From Theorem 2, particularly for any alternating link or generally for links not having
any Ω3 triangle in a minimal diagram non-trivial non-split links L, we have

indrh(L) ⩽ 7.

We also directly know that, for any non-split non-trivial link L, we have

indrh(L) ⩽ 7 · c(L).

We computationally generate (by checking all diagrams) the rigid hard index of prime
knots and links, which is shown in Table 1. The table consists of prime knots and links with
the crossing number being less than nine.

The letters K and L in the name stand for Knot and Link, respectively, the number
after that letter is the crossing number, the letters a and n stand for an alternating and
nonalternating, and the number after that stands for the index of a given knot or link in
the tables of knots or links with the same crossing number. We consider links and their
names up to the mirror image because the rigid hard index of a given link and the rigid
hard index of its mirror image are the same.

Table 1. Knots and links and the rigid hard index.

indrh(L) Names of Prime Knots or Links L with c(L) ≤ 8

1 L5a1, K6a1, K6a2, L6a5, K7a1, K7a2, K7a6, L7a2, L7a3, L7a4, L7a5, L7a6, L7a7, L7n2,
K8a1, K8a2, K8a3, K8a4, K8a5, K8a6, K8a7, K8a8, K8a9, K8a10, K8a13, K8a16, K8a17,
K8n1, K8n2, K8n3, L8a1, L8a2, L8a3, L8a4, L8a5, L8a6, L8a8, L8a9, L8a10, L8a15,
L8a17, L8a18, L8a20, L8a21, L8n1, L8n2, L8n4, L8n7

2 L6a1, L6a3, L6a4, K7a3, K7a4, K7a7, L7a1, K8a11, K8a12, K8a14, L8a7, L8a11, L8a13,
L8a16, L8a19, L8n3, L8n5, L8n6, L8n8

3 K6a3, L6n1, K7a5, K8a15, K8a18

4 K5a2, L6a2

5 L4a1, K5a1

6 K3a1, K4a1

7 L2a1

4. Shaky Hard Diagram
From Section 1, we know that any hard diagram of any link must be a non-alternating

diagram. In the case of shaky hard diagrams, it can be deduced directly because the
opportunity to make the Reidemeister III move requires that at least one strand involved in
the move has two crossings that do not alternate.

Theorem 4. There exists a shaky hard diagram of the unknot and unlink of many arbitrary components.

Proof. In Figure 6 is shown an example of a prime shaky hard diagram of the unknot (it
has 10 crossings so one can test the triviality by calculating its Jones polynomial). The case
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of two-component unlink examples are shown in Figure 7 (notice that those diagrams of
unlinks differ by crossing changes at two crossings).

They are all shaky diagrams because each has a triangular region, marked by the
letter T that has the opportunity to make the Ω3-type move. They are also hard because
each diagram has exactly one such triangular region, and after performing the Ω3-type
move, it can be easily checked that the resulting diagrams have also exactly one triangular
region, which has the opportunity to make the Ω3-type move and no opportunity to make
the Ω↓

1 or Ω↓
2 move. Therefore, to try to reduce it further without increasing the number of

crossings one has the potential move to make on that one triangular region, resulting in
returning to the original started diagram.

For the shaky hard diagram of the unlink of arbitrary many components, it is sufficient
to take a diagram from Figure 6 and make connected sums with sufficient copies of the
diagram h8 from Figure 2, with the connection arc being far from (i.e., not touching) the
region T and its neighbor regions.

T

Figure 6. An example of a prime shaky hard diagram of the trivial knot.

T

T

Figure 7. Examples of a prime shaky hard diagram of a trivial link.

By a similar construction as in Theorem 2, but instead of one diagram 7s, we take the
connected sum with the diagram 9s shown in Figure 8 (along the dashed line), we obtain
the following:
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T

Figure 8. The diagram 9s.

Proposition 2. Any link L has a diagram D that is a shaky hard diagram. Moreover, we can choose
D, such that we have

#crossings(D) ≤ 7 · tri(L) + 2 + c(L),

for any non-split non-trivial link L.

Proof. Let D′ be a minimal diagram of L with c(L) crossings and with tri(L) triangular Ω3-
regions. The construction follows Theorem 2, except that we use one copy of the diagram 9s
(see Figure 8), and, for the remaining Ω3-triangles (if any), we use the diagram 7s (Figure 3).

Each inserted 7s removes the local Ω3-opportunity while adding 7 crossings (as in
Theorem 2). A single inserted 9s contributes 9 crossings and creates exactly one persistent
Ω3-triangle, ensuring the final diagram is shaky (there remains a place to perform an Ω3-move).

Choose one Ω3-triangle of D′ and insert 9s there; at the remaining tri(L) − 1 Ω3-
triangles (if any), insert 7s. The total increase in crossings is therefore

9 + 7 (tri(L)− 1) = 7 tri(L) + 2.

Hence,
#crossings(D) ≤ c(L) + 7 tri(L) + 2.

If D′ has no Ω3-triangle (so tri(L) = 1), we insert one 9s along an arbitrary edge,
which again yields #crossings(D) ≤ c(L) + 9 = c(L) + 7 · 1+ 2. In either case, the resulting
diagram is hard (no Ω↓

1 or Ω↓
2 applies) and shaky (there is a remaining Ω3-move), proving

the proposition.
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