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Abstract

Developing a new drug costs approximately one to three billion dollars and takes around
ten years; however, this process has only a ten percent success rate. To address this issue,
new technologies that combine artificial intelligence (AI) and quantum computing can be
leveraged in the pharmaceutical industry. The RSA cryptographic algorithm, developed by
Rivest, Shamir, and Adleman in 1977, is one of the most widely used public-key encryption
schemes in modern digital security. Its security foundation lies in the computational
difficulty of factoring the product of two large prime numbers, a problem considered
intractable for classical computers when the key size is sufficiently large (e.g., 2048 bits
or more). A future application of using a detailed structural model of a protein is that
digital drug design can be used to predict potential drug candidates, thereby reducing
or eliminating the need for time-consuming laboratory and animal testing. Knowing the
molecular structure of a possible candidate drug can provide insights into how drugs
interact with targets at an atomic level, at significantly lower expenditures, and with
maximum effectiveness. AI and quantum computers can rapidly screen out potential
new drug candidates, determine the toxicity level of a known drug, and eliminate drugs
with high toxicity at the beginning of the drug development phase, thereby avoiding
expensive laboratory and animal testing. The Food and Drug Administration (FDA) and
other regulatory bodies are increasingly supporting the use of in silico to in vitro/in vivo
validation methods and assessments of drug safety and efficacy.

Keywords: drug discovery; regulatory frameworks; quantum computing; AI; in silico;
in vivo

1. Introduction
Digital computers have revolutionized how people connect, communicate, and build

relationships. Beyond social interactions, they also play a pivotal role in drug development,
helping scientists identify new compounds that can benefit humanity. However, simulating
complex chemical and biological processes using classical computers, relying on binary
bits of 0 s and 1 s, faces significant challenges [1]. This study explores how quantum- and
AI-powered digital data can accelerate the discovery and approval of new drugs. Tradi-
tionally, developing pharmaceuticals demands substantial resources, including specialized
facilities, funding, and dedicated personnel. Emerging virtual laboratories now promise
to test new drugs within digital environments, potentially transforming the process [2].
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Computational advances allow researchers to predict how a drug interacts with its bio-
logical targets, offering crucial insights before synthesis and laboratory experiments [2].
Despite these technological strides, digital computing remains limited in describing the
nuanced behavior of electrons in molecules. Current approaches can only simulate one
bit of information at a time, constraining the precision required for complex molecular
interactions. While computer-aided drug design can screen millions of compounds in silico,
bypassing initial synthesis and testing, digital computers still face boundaries in identifying
breakthrough therapies.

1.1. Background

AI and quantum computing are poised to play transformative roles in drug discovery
and safety assessment. AI models are reshaping every stage of drug development, from target
identification to clinical trial optimization [3]. As quantum computing evolves, it offers the
potential to simulate intricate molecular interactions that are beyond the reach of classical
computing, paving the way for the discovery of entirely new drug classes and therapies.

Traditional drug discovery begins by identifying a biological target and confirming that
its modulation can produce therapeutic benefits. Researchers will continue with promising
molecules that are then optimized for potency, selectivity, and desirable pharmacological
properties. Once a candidate molecule shows potential, it undergoes preclinical testing,
including in vitro experiments with cell cultures and in vivo studies in animals, to evaluate
its pharmacokinetics, toxicity, and safety before advancing to human trials.

Conventional drug discovery is both costly and time-consuming, often requiring an
investment of USD 2 to 3 billion, approximately a decade of development, and a success rate
of around 10% [4]. The reliance on extensive facilities, financial resources, and specialized
researchers underscores the need for innovative virtual laboratories that can streamline
testing in a digital environment.

1.2. The Role of AI and Quantum Computing in New Drug Discovery

AI tools help prioritize and select candidate molecules, while quantum simulations
enable a more precise evaluation of their potential. Together, they promise to lower
development expenditure, shorten development times, and lower failure rates, ultimately
accelerating the delivery of new treatments to patients (see Figure 1).

Figure 1. Time and cost relative comparison of using AI and quantum versus traditional methods [5,6].

1.2.1. AI in Drug Discovery (Machine Learning, Deep Learning, and Generative Models)

AI offers transformative capabilities for drug discovery by identifying potential drug
candidates faster and at lower costs. It can predict drug–target interactions, optimize
molecular design, forecast clinical outcomes, and accelerate both drug screening and



J. Pharm. BioTech Ind. 2025, 2, 11 3 of 29

repurposing efforts. By leveraging virtual databases filled with new compound data, AI-
driven virtual screening utilizes known active compound properties to identify similar
molecules with promising biological activity, thereby contributing to the addressing of
critical medical challenges.

1.2.2. Quantum Computing’s Potential in Molecular Simulations and Optimization

Quantum computing promises significant advances in drug discovery, development,
and approval by enabling faster and more precise molecular simulations. Unlike classical
digital simulations, quantum methods can model complex molecular interactions with
higher accuracy, which is crucial for evaluating a compound’s efficacy and safety. Coupled
with digital twin technologies, these simulations reduce the need for extensive physical
experiments, streamlining the discovery of safe and effective treatments. Understanding
interactions between drug molecules and target proteins is essential to assessing a potential
drug’s therapeutic potential.

1.3. Purpose of the Study
1.3.1. Understanding the Integration of AI and Quantum Computing in Drug Discovery

This study examines how combining AI’s predictive capabilities with quantum com-
puting’s computational strengths can accelerate and enhance the drug discovery process.
The synergy between these technologies could reduce discovery timelines from years to
mere weeks or months, substantially lowering expenditures while improving the accuracy
and efficiency of therapeutic development.

1.3.2. Identifying Regulatory Challenges in the In Silico to In Vivo Transition

The study examines current laws, regulations, and guidelines governing AI- and
quantum-generated computational data, comparing national and international frameworks
to identify potential barriers and opportunities for regulatory adaptation.

1.3.3. Proposing a Regulatory Framework to Facilitate AI-Driven Drug Validation

This study aims to propose a regulatory framework that keeps pace with the inte-
gration of AI and quantum computing into drug discovery, outlining how regulations
can adapt domestically and internationally to ensure the safe and effective deployment of
these technologies.

The remainder of the paper is organized as follows: Section 2 reviews the current
state of the art; Section 3 discusses regulatory challenges in AI- and quantum-driven
drug discovery; Section 4 proposes a regulatory framework; and Section 5 concludes with
future directions.

2. State of the Art: AI and Quantum Computing in Drug Discovery
2.1. AI-Driven Approaches to Drug Discovery

Investments in AI are revolutionizing the development of new drugs, providing pow-
erful tools to accelerate research, enhance diagnostics, and drive therapeutic innovation [7].
AI systems excel at detecting patterns within vast biomedical datasets, facilitating the
identification of promising drug candidates and predicting their biological activity. As new
data continuously accumulates in drug repositories, maintaining accuracy in these datasets
is essential to ensure reliable results for both researchers and regulators [8]. Modern ap-
proaches, including quantum computing, machine learning (ML), and virtual compound
libraries, enable the identification of molecules with potential biological activity against
specific targets.
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2.1.1. Data-Driven Techniques: Molecular Docking, Virtual Screening, and De Novo
Drug Design

De novo drug design offers a computational and experimental framework for gener-
ating novel drug molecules from first principles rather than relying on the modification
of existing compounds. This process integrates rational drug design concepts, combining
AI, molecular modeling, and quantum mechanics to construct new molecular structures
with tailored biological properties [9]. Digital computers are routinely used to generate
three-dimensional models of target proteins, even in cases where the protein structure is
not fully resolved [10]. The synergy between quantum computing and digital technologies
further enhances our understanding of drug–protein interactions, which is essential for
determining pharmacological characteristics. Traditionally, assessing these interactions has
relied heavily on trial-and-error experimentation in laboratory settings.

2.1.2. Predictive Modeling of Toxicity, Efficacy, and Pharmacokinetics

Predictive modeling in drug discovery uses computational simulations to forecast
real-world conditions, minimizing the need for extensive laboratory testing (Figure 2).
Machine learning and statistical methods enable the prediction of drug interactions and
the optimization of molecular designs. Integrating ligand-based and structure-based
virtual screening techniques provides a comprehensive approach that allows researchers
to efficiently scan large chemical libraries for viable drug candidates [11]. Characterizing
critical drug properties, including binding affinity, pharmacokinetics (ADME), toxicity,
solubility, and metabolic stability, is essential for both computational and laboratory studies.
Establishing benchmark values and acceptable ranges based on existing data ensures that
models can be accurately validated against experimental outcomes.

 

Figure 2. Digital schematic illustrating the integration of quantum computing and AI in new drug
discovery [11]. QPU: quantum processing unit; ADMET: absorption, distribution, metabolism,
excretion, and toxicity.
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To ensure the accuracy of virtual data, experimental conditions such as pH, temper-
ature, and ionic strength must closely replicate those used in physical experiments. It is
also essential to maintain consistent molecular representations, including precise protein
structures and conformations, across both virtual and laboratory-based experiments to
prevent discrepancies.

Before drawing comparisons between in silico and in vivo results, computational
models should be rigorously validated to assess their predictive reliability. This process
may involve parameter optimization or the application of machine learning techniques to
enhance model accuracy. Employing datasets of well-characterized compounds with estab-
lished experimental results facilitates practical training and validation of the computational
models. Such benchmarking is crucial for identifying model limitations and ensuring that
virtual predictions align with empirical observations.

2.2. Quantum Computing Applications

Although widespread practical quantum computing applications remain a few years
away due to technological challenges, ongoing research and investment indicate that
transformative impacts will be felt across multiple industries in the coming decades. The
future of quantum computing applications is promising and expansive, characterized by
advancements in the following key areas:

(1) Cryptography: Quantum computing breaks Rivest-Shamir-Adleman (RSA) encryp-
tion using Shor’s algorithm, posing a significant threat to current public-key systems.
In post-quantum cryptography development to resist quantum attacks [12].

(2) Drug Discovery and Chemistry: Simulating quantum systems at the molecular level
to model complex molecules and reactions, discover new drugs and materials, and
understand protein folding [13].

(3) Optimization Problems: These include logistics (e.g., route optimization, supply chain
management), financial portfolio optimization, scheduling problems, and the appli-
cation of quantum algorithms, such as the Quantum Approximation Optimization
Algorithm (QAOA) [14].

(4) Machine Learning and AI: Speeding up specific tasks like pattern recognition, cluster-
ing and classification, and feature selection. Quantum-enhanced machine learning
models could outperform classical ones in particular domains [15].

(5) Financial Modeling: Risk analysis and fraud detection [16]. Option pricing using
quantum Monte Carlo simulations for faster convergence.

(6) Search and Database: Grover’s algorithms can search unsorted databases [17].
(7) Cybersecurity: Development of new encryption methods based on quantum princi-

ples, e.g., quantum key distribution (QKD) [18].
(8) Material Science: Modeling new materials at the atomic level, like superconductors

and advanced alloys [19].
(9) Climate and Weather Modeling: Simulating complex systems with many interacting

variables more efficiently [20].
(10) Energy: Modeling and optimization for chemical reactions and battery or fuel cell

systems in renewable energy systems [21].

Cross-cutting challenges in the above applications are as follows:

(1) Hardware Limitations: Qubit decoherence gate errors (NISQ constraints).
(2) Algorithm Maturity: Most lack real-world benchmarks, e.g., [14,17].
(3) Regulatory Gaps: Standards for quantum-AI hybrids are missing, e.g., [13] UK Good

Microbiological Laboratory Practice (GMLP).
(4) Recommendation: Focus on hybrid quantum-classical approaches, e.g., [22] to miti-

gate current limitations.



J. Pharm. BioTech Ind. 2025, 2, 11 6 of 29

The future development of quantum-based applications is expected to proceed through
a multi-phase trajectory, marked by progressive technological advancements, broader adop-
tion across practical use cases, and eventual integration into conventional systems. As
key technical challenges are addressed, quantum computing holds the promise of revolu-
tionizing various industries, enhancing cybersecurity, driving innovation, and unlocking
unprecedented computational capabilities.

2.2.1. Quantum Simulations for Protein–Ligand Interactions

Quantum computing offers a transformative approach to simulating molecular inter-
actions, which is crucial for understanding the interactions between drugs and their targets.
Leveraging quantum algorithms, researchers can explore the protein folding problem by
evaluating all potential configurations, an approach that could enhance our understanding
of protein structure and function [23]. Drug efficacy is intimately linked to the binding
affinity between a drug and its biological target, such as a protein or enzyme [24]. Quantum
algorithms offer a promising approach for accurately estimating binding affinities, thereby
accelerating the discovery of therapeutic compounds. Moreover, AI-driven quantum com-
puting platforms can facilitate the de novo design of drug candidates by predicting their
chemical properties and interaction profiles.

In addition to binding affinity predictions, quantum computing enables the simulation
of electronic structures of ligands—molecules that bind to specific sites on target proteins.
This capability allows for detailed characterization of molecular complexity and interac-
tions, ultimately supporting more precise and rational drug design efforts. By refining
predictions of molecular properties and interactions, quantum computing holds promise
for developing more targeted therapeutics with improved efficacy and safety profiles [8,25].
Furthermore, quantum computers can simulate chemical reactions at the atomic level, pro-
viding insights into drug metabolism and potential adverse effects [26]. Overall, quantum
computing is poised to address challenges considered intractable for classical comput-
ing paradigms, potentially unlocking novel therapeutic modalities, including unexplored
protein–ligand interactions and complex biomolecular assemblies.

2.2.2. Quantum Computing in Drug Discovery

Quantum computing holds transformative potential for drug discovery by enabling
highly accurate simulations of molecular interactions, a crucial factor in understanding
the binding of drugs to their targets. Quantum algorithms can tackle complex challenges,
such as protein folding, by exploring all possible configurations, thus providing insights
critical for evaluating drug efficacy [23,24]. Predicting binding affinities, a key determinant
of drug effectiveness, can be enhanced through quantum methods, which surpass classical
computational approaches in precision and speed [25]. AI-driven quantum computing also
supports de novo drug design, generating novel compounds with desired chemical and
biological properties. Additionally, quantum simulations of electronic structures enable re-
searchers to model ligand–protein interactions and complex chemical reactions at an atomic
scale, facilitating the understanding of drug metabolism and potential side effects [26].
These capabilities position quantum computing to discover innovative drug modalities,
including novel protein–ligand interactions and intricate biomolecular architectures, which
remain beyond the reach of classical computational techniques.

2.2.3. Enhancing Computational Efficiency in Chemical Space Exploration

Efficiently exploring chemical space is vital for identifying new molecular entities
and accelerating drug development. Machine learning and AI facilitate this exploration
by employing active learning strategies that iteratively select promising candidates based
on predictive uncertainty or anticipated activity. Bayesian optimization further enhances
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exploration by striking a balance between diversity and targeted search [27]. Deep gener-
ative models, including variational autoencoders, generative adversarial networks, and
reinforcement learning frameworks, can propose structurally diverse and chemically viable
molecules [28]. Transfer learning leverages knowledge from related chemical datasets,
reducing the need for extensive retraining and accelerating prediction [29].

Integrated workflows combining these approaches streamline the screening of vast
molecular libraries while maintaining accuracy and minimizing computational overhead.
Hierarchical screening frameworks utilize rapid, low-cost methods to filter compound
libraries before applying more precise, computationally intensive techniques to top can-
didates [30]. Surrogate modeling and multi-fidelity approaches combine approximate
methods with high-accuracy calculations to strike a balance between efficiency and preci-
sion [31]. Gaussian process regression and other machine learning-based surrogate models
predict computationally expensive outcomes, such as density functional theory (DFT) cal-
culations [32]. Parallel and distributed computing resources—including GPUs, CPUs, and
cloud infrastructures—scale computational tasks, enabling the evaluation of larger chemical
spaces [33]. Algorithmic optimizations, such as improved quantum chemistry algorithms,
linear-scaling methods, and force-field parametrization, further enhance efficiency [34].
Workflow automation, utilizing standardized pipelines, integrated cheminformatics tools,
and data-sharing practices, improves reproducibility and efficiency by reducing manual
intervention. These combined strategies substantially accelerate the discovery process,
enhance accuracy, and lower computational costs, ultimately driving faster innovation in
drug discovery and materials science.

2.2.4. Hybrid AI–Quantum Approaches

As quantum computing and virtual compound libraries mature, their integration is
expected to accelerate the discovery and validation of new therapeutics. Detailed structural
models of target proteins derived from quantum simulations provide atomistic configura-
tions that inform rational drug design. Simulating dynamic and complex molecular systems
represents a key advantage of quantum computing, enabling a deeper understanding of
drug behavior [4]. Insights into fundamental atomic and molecular structures support
more accurate simulations through digital twin modeling, facilitating the exploration of
advanced materials [35]. Predictive models of protein structures derived from bioinformat-
ics frameworks are increasingly accessible [36]. By shifting from traditional trial-and-error
laboratory methods to computationally driven, data-centric models, AI–quantum frame-
works can enhance predictions of drug interactions, toxicity, and efficacy. This paradigm
shift holds the promise of transforming drug discovery, enabling more precise and efficient
therapeutic development (Table 1).

Table 1. A conceptual model of a digital twin framework that integrates quantum computing and AI
for in silico drug discovery compared to traditional laboratory-based workflows [35].

Component Digital Twin (In Silico) Traditional Laboratory

Input Data Genomic data, protein structures,
chemical libraries, clinical datasets

Biological specimens, assays,
physical compounds

Core Technology
Quantum chemistry, simulators,

machine learning,
molecular dynamics, digital twins

Wet lab technologies
(e.g., NMR, HPLC, cell assays)
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Table 1. Cont.

Component Digital Twin (In Silico) Traditional Laboratory

Computation Engine
Hybrid AI–quantum system

(e.g., VGG, GAN, DNN, BERT,
TensorFlow)

Manual or automated lab protocols,
practical experiments

Validation Process Simulated vs. historical or parallel
experimental datasets N/A

Knowledge Process

Reinforcement learning,
Bayesian inference,

model selection on results
and hypotheses

Traditional hypothesis testing

Time and Cost Efficiency High throughput, low-cost iterations Low (sophisticated)

Ethical and Regulation Scope Ethical AI, FAIR data model,
FDA/EMA submission readiness Standard GLP/GCP (animal) trials

NMR, nuclear magnetic resonance; HPLC, high-performance liquid chromatography; VGG, visual geometry
group; GAN, generative adversarial networks; DNN, deep neural network; BERT, bidirectional encoder representa-
tions from transformers; FAIR, facts, analyze, identify, review actions; GLP/GCP, good laboratory practices/good
clinical practices.

The integration of artificial intelligence (AI) and quantum computing with virtual
libraries offers unprecedented opportunities for accelerating drug discovery. Detailed
structural models of target proteins, made possible by these technologies, provide atomistic
configurations that inform rational drug design and candidate selection at the molecular
level. This shift represents a departure from traditional laboratory-based, trial-and-error, or
hypothesis-driven methods toward computational, data-driven models. Such an approach
significantly enhances the capacity to predict and understand novel drug candidates,
including their interactions, toxicity profiles, and efficacy. Simulating dynamic and complex
biological systems is crucial for elucidating how drug molecules interact with their targets
and behave within the human body, ultimately contributing to the design of safer and more
effective therapeutics.

2.3. Case Studies

AI and quantum computing are revolutionizing pharmaceutical research and devel-
opment (R and D) by accelerating drug discovery, optimizing molecular simulations, and
enhancing predictive modeling. AI-driven algorithms analyze vast biological datasets,
identify potential drug candidates, and streamline clinical trials, significantly reducing time
and costs. Meanwhile, quantum computing, with its ability to process complex molecular
interactions at an unprecedented scale, enhances drug design by stimulating protein–ligand
interactions with higher accuracy. Together, these technologies are transforming the way
pharmaceutical companies develop innovative treatments, paving the way for a faster and
more efficient drug development pipeline.

In silico medicine utilizes generative AI for each step of the preclinical drug discovery
process, including identifying a molecule that a drug compound could target, generating
novel drug candidates, assessing how well these candidates bind to the target, and even
predicting the outcome of clinical trials. In silico medicine utilizes AI and generative models
to discover a drug candidate for idiopathic pulmonary fibrosis (IPF) in just 18 months
rather than the typical 3–6 years [37]. The scientific community has made significant
advancements in understanding living organisms at various levels, such as genes, cells,
molecules, tissues, and pathways; in the field of life sciences, companies such as in silico
medicine are now shifting their efforts towards integrating these components into the
bigger picture to understand their collective behavior.
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Atomwise utilizes AI and convolutional neural networks to screen billions of com-
pounds virtually, discovering novel drug candidates against challenging targets. The
AtomNet technology developed by Atomwise can identify bioactive scaffolds across a wide
range of proteins. The empirical results suggest that machine learning approaches have
reached a computational accuracy that can replace high-throughput screening (HTS) as the
first step in small-molecule drug discovery [38]. DeepMind’s AlphaFold accurately and sig-
nificantly predicts 3D protein structures from sequences [39]. AI, particularly convolutional
neural networks (CNNs), has opened up the potential for new drug discovery by enabling
the rapid virtual screening of billions of chemical compounds. CNNs, initially designed
for image recognition, are adapted to analyze molecular structures, often represented as
graphs, images, or 3D voxel grids, to predict properties such as binding affinity, toxicity,
and drug-likeness, thereby speeding up target identification and validation processes [38].
In virtual screening, CNNs are trained on large datasets of known drug–target interac-
tions. Once trained, these models can evaluate vast chemical libraries at high speed and
lower cost, prioritizing promising candidates for further testing and development. This
approach significantly reduces the time and resources required compared to traditional
high-throughput screening.

Tempus utilizes AI to analyze genomic data, enabling the development of next-
generation personalized cancer therapies by identifying effective drug combinations tai-
lored to individual genetic profiles. Tempus integrates the analytics of each patient’s
structured clinical data and molecular data from tumor/normal matched DNA sequencing,
whole-transcriptome RNA sequencing, and immunological biomarker measurements [37].
AI is transforming cancer treatment by enabling the analysis of complex genomic data
to identify personalized therapy options. By processing vast datasets of DNA and RNA
sequences, AI algorithms, particularly machine learning and deep learning models, can
detect mutations, gene expression patterns, and other biomarkers associated with specific
cancer types in individual patients [40]. This genomic profiling helps classify tumors more
accurately, predict how a patient will respond to particular treatments, and identify targeted
therapies that are most likely to be effective. AI also aids in discovering novel therapeutic
targets and monitoring treatment resistance or disease progression over time.

Roche and Cambridge Quantum (Quantinuum) collaborated to utilize quantum al-
gorithms, specifically the Variational Quantum Eigensolver (VQE), to accurately model
the electronic structures of molecular systems, potentially accelerating drug discovery by
precisely predicting molecular properties [41]. The collaboration focused on Alzheimer’s
disease, aiming to utilize quantum algorithms to identify and develop potential drug
candidates [42]. The purpose of the collaboration was to move closer to achieving a “quan-
tum advantage” in the pharmaceutical industry, meaning using quantum computing to
solve problems that are intractable for classical computers [42]. VQE estimates the ground
state energy of a molecule by preparing a trial quantum state, evaluating its energy using
quantum measurements, and optimizing the parameters with classical algorithms. This
integer process continues until the minimal energy configuration is found. VQE holds
promise for quantum chemistry, enabling more profound insights into reaction mechanisms,
material properties, and drug design by accurately modeling molecular behavior at the
quantum level.

Boehringer Ingelheim and Google Quantum AI collaborate to harness quantum com-
puting for simulating molecular interactions and reactions. The objective is to enhance the
identification of new drug molecules. This partnership aims to apply quantum computing
in pharmaceutical research and development, particularly molecular dynamics simula-
tions [43]. Boehringer Ingelheim utilizes quantum computers to explore the potential
for simulating and analyzing molecules related to disease mechanisms [43]. Quantum
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computing offers a powerful approach to simulating molecular interactions and chemical
reactions by leveraging quantum bits, or qubits, to model quantum systems naturally.
Unlike classical computers, which struggle with the exponential complexity of quantum
chemistry, quantum computers can efficiently represent and calculate the properties of
electrons, atoms, and molecules. By simulating molecular wave functions and energy states,
quantum algorithms such as the Variational Quantum Eigensolver (VQE) and Quantum
Phase Estimation (QPE) can predict reaction pathways, binding affinities, and transition
states more accurately than many classical methods.

Merck and HQS Quantum Simulations partnered to develop quantum-enhanced drug
screening and optimization methods, potentially dramatically reducing computational
costs and increasing accuracy in identifying promising drug candidates. The collaboration
focuses on applying and commercializing software for quantum chemical applications
needed for new drug discovery [44]. Unlike classical methods, which often rely on approxi-
mations due to computational limits, quantum algorithms simulate molecular structures,
interactions, and energetics with higher fidelity. By accurately modeling quantum mechani-
cal behavior, such as electron correlation and molecular binding, quantum computers can
more effectively predict how potential drug molecules interact with biological targets.

Zapata Computing and pharmaceutical partnerships utilizes quantum-enhanced ma-
chine learning algorithms for drug discovery tasks, such as enhanced molecular prop-
erty prediction, potentially outperforming classical AI methods in terms of accuracy and
speed [45]. This collaboration is developing sophisticated algorithms to capture the physic-
ochemical principles that underlie the activity of drugs. The main physicochemical determi-
nants include partition, molecular weight, the size of the drug molecule, its ionization state,
and hydrogen bonding capacity. Quantum computing enables more accurate prediction
of molecular properties by simulating quantum behavior at the atomic level. Traditional
methods often rely on approximations that can limit precision, especially for complex
molecules. In contrast, quantum algorithms like the VQE and QPE can model electron
interactions and energy levels with greater fidelity. The use of QPE leads to improved
predictions of properties such as dipole moments, ionization energies, reaction energies,
and binding affinities, which are critical for applications in drug design, material science,
and catalysis.

Pharmaceutical companies, such as Johnson & Johnson (Janssen), New Brunswick,
NJ, USA, are exploring hybrid methods that combine quantum molecular simulations
guided by AI models to identify potential therapeutic candidates for complex diseases
rapidly. Johnson & Johnson utilizes AI to design and optimize molecules for drug can-
didates, aiming to combat diseases and reduce side effects. Their strategy focuses on
advancing promising candidates into clinical development, thereby increasing the chances
of market success and delivering new treatments to patients quickly [46]. Hybrid methods
that combine quantum simulations and AI are becoming increasingly powerful in drug
discovery, particularly for treating complex diseases. Quantum simulations precisely model
molecular structures and interactions, though they require significant computational power.
AI models, similar to machine learning algorithms, guide and accelerate these simulations
by predicting promising molecules, prioritizing efforts, and enhancing property prediction
and candidate selection.

AI startups, such as ProteinQure, utilize quantum-inspired techniques in conjunction
with AI to efficiently explore protein and peptide drug design spaces, thereby accelerat-
ing lead optimization and structure prediction. ProteinQure has developed proprietary
computational peptide discovery technology to design and deliver peptides and drug
conjugates [47]. ProteinQure is developing new peptide–drug conjugates to target cancer
cells [48]. Quantum-inspired techniques, when integrated with AI, emerge as powerful
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tools for accelerating drug discovery in the complex spaces of proteins and peptides. These
biomolecules, central to many therapeutic strategies, present significant challenges due to
their high dimensionality, conformational flexibility, and intricate interactions. The synergy
of quantum computing and AI technologies is particularly valuable for de novo peptide
design, enhancing the accuracy of virtual screening and revealing previously inaccessible
areas of chemical and structural space. This convergence represents a promising fron-
tier in computational drug discovery, offering the potential for faster and more precise
development of protein–peptide-based therapeutics.

Bayer and Google collaborate on quantum chemistry simulations to accelerate drug
discovery and crop science applications. The objectives of the collaboration are to accelerate
and scale quantum chemistry calculations using Google Cloud’s TPUs and to demonstrate
complete quantum mechanical modeling of protein–ligand interactions [49]. Bayer com-
bines its expertise in new drug development research and development capabilities with
Google’s industry-leading infrastructure, unlocking the potential for new drug discoveries.
Interact discovery quantum chemistry is used to model protein–ligand interactions, predict
binding affinities, optimize lead compounds, and understand reaction mechanisms at a fun-
damental level. Techniques such as density functional theory (DFT) and post-Hartree–Fock
methods facilitate the simulation of electronic properties, allowing for accurate predictions
of molecular reactivity, stability, and interaction energetics. These capabilities reduce the
time and development expenditures associated with traditional screening and trial-and-
error approaches, enabling a more targeted and rational drug design process. In crop
science, quantum chemistry supports the development of more effective agrochemicals,
such as herbicides, pesticides, and fertilizers, by stimulating how these compounds interact
with plant proteins, enzymes, and other biological targets. It also aids engineering plant
resilience by revealing insights into metabolic pathways and stress responses at the molec-
ular level. Additionally, quantum chemical models can be applied to study soil chemistry
and nutrient interactions, helping optimize formulations for sustainable agriculture.

Pfizer and QC Ware are exploring quantum algorithms to enhance the accuracy and
speed of computational chemistry calculations, with the goal of expediting the identification
of therapeutic candidates. Pfizer and QC Ware collaborate on a molecular discovery
platform to disrupt and accelerate pharmaceutical, chemical, and materials discovery [50].
Pfizer and QC have developed pharmaceutical workflows to address differences in ligand
binding, better understand how molecules determine interaction energies, and identify the
lowest energy conformers [50]. The exploration of quantum algorithms in computational
chemistry focuses on leveraging quantum computing to enhance the accuracy and speed of
molecular simulations. Traditional methods for simulating complex molecular interactions,
such as those involved in drug discovery, are computationally intensive and often limit the
capabilities of classical computing power. Quantum algorithms, particularly those such
as the VQE and QPE, have demonstrated potential in modeling molecular systems more
efficiently by simulating quantum behavior. These approaches can significantly accelerate
the identification of promising therapeutic candidates by enabling faster and more precise
calculations of molecular properties, such as binding affinities and reaction mechanisms.
By reducing the time and computational resources required for early-stage drug screening,
quantum computing could streamline the drug development pipeline, ultimately leading
to quicker discovery and optimization of novel therapeutics.

While quantum computing remains exploratory in the pharmaceutical industry, early
successes combined with AI demonstrate significant potential. Industry–academic part-
nerships promise breakthroughs in drug discovery, precision medicine, and therapeu-
tic innovation. As computational power advances in hybrid approaches to integrating
quantum-inspired algorithms and AI become more accessible, quantum chemistry simula-
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tions are poised to play a central role in pharmaceutical innovation. These tools empower
scientists to explore chemical spaces more thoroughly, design molecules with precision,
and accelerate time to impact vital global sectors.

3. Regulatory Challenges in AI- and Quantum-Driven Drug Discovery
3.1. Current Drug Approval and Validation Processes

The current process for studying new potential drugs requires testing in clinical trials
to demonstrate their safety, toxicity levels, and efficacy. Human clinical trials are crucial in
providing evidence-based data that the US Food and Drug Administration (FDA) relies
on to evaluate a drug’s suitability for human consumption, but it is time-consuming [51].
AI-driven drug discovery tasks focus on uncovering the properties of potential new drugs
and proteins, as well as their interactions [52]. The FDA drug approval and validation
process is a structured, multi-step system that ensures drugs are safe, effective, and of high
quality before they reach the market.

(1) Discovery and Preclinical Testing [53]

• Researchers identify and develop new drug candidates.
• Preclinical studies are conducted in labs (in vitro) and animals (in vivo) to evalu-

ate safety, toxicity, dosage, and pharmacological effects.

(2) Investigational New Drug (IND) Application

• Before clinical trials, sponsors submit an IND to the FDA, including the following:

# Preclinical data.
# Proposed clinical study protocols.
# Safety information and investigator qualifications.

• The FDA reviews the IND to determine if human testing can begin, ensuring the
safety of the study.

(3) Clinical Trials
Clinical trials are conducted in phases:

• Phase 1: Safety

# Small group (20–100 healthy volunteers or patients).
# Evaluate safety, side effects, and optimal dosage.

• Phase 2: Effectiveness

# Larger group (100–300 patients).
# Assesses the effectiveness of drugs and further evaluates their safety and

efficacy.

• Phase 3: Confirmatory Studies

# Large-scale (hundreds to thousands of patients).
# Confirms efficacy, monitors adverse reactions, and compares drugs with

existing treatments or placebo.

(4) New Drug Application (NDA)

• Upon successful completion of clinical trials, the sponsor submits an NDA con-
taining the following:

# Clinical trial results.
# Manufacturing processes.
# Proposed labeling information.

• The FDA thoroughly reviews efficacy, safety data, and manufacturing practices.

(5) FDA Review and Approval
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• FDA experts review the data submitted with the New Drug Application (NDA).
• Advisory committees may provide independent recommendations.
• The FDA decides whether to approve, request additional studies, or deny ap-

proval based on the following:

# The drug’s demonstrated safety and efficacy.
# Risks vs. benefits profile.
# Manufacturing quality and controls.

(6) Post-Marketing Surveillance (Phase 4)

• After approval, drugs continue to be monitored:

# Identify rare or long-term side effects.
# Ensure ongoing safety, efficacy, and quality standards.
# FDA may require additional studies or modifications based on surveil-

lance data.

This rigorous process typically takes several years (often more than 10 years from
initial discovery) and requires extensive documentation and evidence to ensure the safety
and effectiveness of the drug.

The European Medicines Agency (EMA) drug approval process involves several
structured steps to ensure that medicines marketed in the European Union (EU) are safe,
effective, and of high quality [54].

(1) Pre-Submission (Preparation)

• Pharmaceutical companies conduct extensive preclinical and clinical studies to
gather data on the quality, safety, and efficacy of medicines.

• Companies consult with EMA (Scientific Advice procedure) to ensure their data
and development plans meet regulatory standards.

(2) Application Submission

• The company submits a Marketing Authorisation Application (MAA) through a
centralized procedure, which is mandatory for certain medicines, e.g., biotech-
nology products, cancer treatments, rare diseases.

(3) Validation

• EMA validates the application to confirm that it meets regulatory and technical
requirements, including all required documentation.

(4) Scientific Evaluation

• Assessment by the Committee for Medicinal Products for Human Use (CHMP):
A Rapporteur and Co-Rapporteur from CHMP lead the evaluation, assessing
quality, safety, and efficacy data.

• CHMP can request additional information or clarification from the applicant.
The clock stops and restarts to allow the company time to respond.

(5) Opinion

• CHMP issues a recommendation based on their evaluation:

# Positive opinion: recommending authorization.
# Negative opinion: refusing approval.

• The CHMP’s recommendation is typically provided within 210 days (excluding
clock stops).

(6) European Commission Decision

• The CHMP opinion is sent to the European Commission (EC).
• EC makes a legally binding decision (usually within 67 days):
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# Approval of marketing authorization is valid throughout the entire EU.
# Refusal of authorization.

(7) Post-Approval Monitoring

• Pharmacovigilance: Continuous monitoring for safety after approval, including
reporting adverse effects.

• Risk Management Plans (RMPs): Companies must implement strategies to moni-
tor and minimize risks.

• Periodic Safety Update Reports (PSURs): Regular submission of safety updates
and ongoing evaluation.

(8) Renewal and Variations

• Initial marketing authorization is valid for five years; after this period, it may be
renewed based on reassessment.

• EMA must also submit and review variations to authorization, such as label
updates or new indications.

3.1.1. Regulatory Pathways (FDA, EMA, ICH Guidelines)

Scientists identify potential drug candidates through research, a complex, multi-step
process that involves scientific discovery and rigorous testing. Preclinical studies, including
laboratory and animal testing, assess safety, toxicity, dosage, and efficacy [53]. The IND
allows the sponsor drug developer to legally ship an experimental drug across state lines
and begin clinical trials in humans. The IND includes results from laboratory and animal
studies demonstrating the safety and potential effectiveness of the drug (Figure 3).

 

Figure 3. Schematic comparing the traditional FDA approval process with a new in silico-based
pathway [53,55].

Clinical trials (human testing) in three main phases [53]:

• Phase I:

# Tests a small number (20–100) of healthy volunteers or patients.
# Determines safety, dosage range, side effects, and pharmacokinetics.

• Phase II:

# Includes a larger group (100–300 patients).
# Evaluate effectiveness, optimal dosing, and side effects.
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• Phase III:

# Tests an even larger group (hundreds to thousands of patients).
# Confirms efficacy, monitors adverse reactions, and compares them to standard

treatments or placebo.

Upon successful completion of clinical trials, a New Drug Application (NDA) or
Biologics License Application (BLA) is submitted to regulatory agencies. Regulators review
trial data, proposed labeling, manufacturing processes, and safety data [54]. This is similar
to the FDA process and is required before submitting a clinical trial application (CTA)
in the EU. The NDA provides comprehensive data demonstrating that the drug is safe
and effective for humans and its intended use. A team of FDA scientists, doctors, and
statisticians evaluates the NDA to assess the drug’s safety, efficacy, and manufacturing
quality. Approval decisions are made after extensive assessment.

3.1.2. Preclinical and Clinical Validation Requirements

Pharmaceutical companies must file a safety report that outlines the overall safety
findings, emphasizing the identified risks and benefits of the drug before approval is
given to proceed with clinical trials. The safety report should encompass an overview
and summary, risk assessment, preclinical safety data, clinical safety data (human studies),
pharmacovigilance plans, known and potential risks, immunogenicity (for biologics),
special population considerations, comparative studies, investigational new drug (IND)
safety reporting, integrated summaries of safety (ISS), statistical analyses of safety data,
and conclusions [56,57].

3.2. Challenges of In Silico Validation

The FDA must provide clear guidance on how computational models will be de-
veloped, validated, and documented. Standardized methodologies and criteria must be
established for various applications, e.g., drug development, medical devices. The FDA
has already begun to accept certain types of computational models, e.g., in silico clinical
trials or modeling in pharmacokinetics [58]. Expanding this acceptance would require case
studies and examples that show the effectiveness of computational data.

Computational models must be well-documented and made available so that indepen-
dent parties, including the FDA, can replicate and validate the data. Transparency about
the algorithms, data inputs, and assumptions used in the model is essential. The FDA must
trust that computational models are unbiased and not subject to proprietary, unverified
methods [59].

The FDA must assess the risk–benefit ratio before accepting computational in silico to
in vivo validation data. The FDA may be more cautious about accepting computational
data in high-risk areas, e.g., the safety of new drugs or devices [54]. It may be more
open to receiving in silico to in vitro/in vivo validation data in lower-risk areas. The FDA
sometimes uses a hybrid approach, combining computational data with experimental data
before considering complete replacement.

3.2.1. Trustworthiness and Interpretability of AI Models

Ensuring the trustworthiness and interpretability of AI models in drug discovery is
essential for regulatory approval, user adoption, ethical acceptance, and practical implemen-
tation. The increasing reliance on AI for drug development necessitates a comprehensive
understanding of the fundamentals of machine learning and deep learning [60]. The Eu-
ropean Union’s strategy on trustworthy AI underscores the importance of collaboration
among developers, stakeholders, policymakers, and domain experts in guiding AI applica-
tions in drug discovery [60]. To gain regulatory acceptance, AI models must be supported
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by well-defined guidelines, harmonized frameworks, and effective policies that ensure
safety, scalability, data privacy, governance, transparency, and equitable treatment [61].

Trustworthiness refers to an AI system’s ability to consistently deliver accurate, un-
biased, reproducible, and transparent outcomes. Reliable models should yield consistent
predictions across similar conditions, with validation against multiple independent datasets.
Clear documentation of data preprocessing, model training, hyperparameter tuning, and
evaluation metrics is vital for building confidence in AI predictions.

AI models must be robust to variations in chemical structures, patient populations,
and biological environments. Performance degradation can occur gradually or suddenly
after a period of prolonged stability, underscoring the need for ongoing model monitor-
ing [62]. Models should quantify uncertainty in their predictions to help users assess
confidence levels and potential risks. Continuous retraining, periodic updating of data
sources, and benchmarking against real-world data are essential to maintaining model
relevance. Monitoring for concept drift ensures that AI models remain accurate over time.

Addressing bias is critical. Datasets used for training AI models must represent a
diverse range of chemical scaffolds, patient demographics, and biological conditions to
minimize biases that can affect predictions. Class imbalances in datasets can lead to the
overrepresentation of certain groups or molecular features [63]. Incorporating diverse
perspectives during data curation and employing systematic bias audits—such as scenario
testing and stress testing—are necessary to identify and mitigate bias. Reducing bias is an
ongoing process that requires continuous research and improvement.

Regulatory frameworks (e.g., the FDA, EMA) must be considered to ensure trans-
parency in the development and deployment of AI models. Ethical concerns, including
patient safety, data privacy, fairness, and accountability, must be systematically addressed.
AI models should be designed to provide explanations for their predictions, facilitating trust
among scientists and regulators. Explainable Artificial Intelligence (XAI) techniques, such
as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic
Explanations), enable the interpretation of complex models by highlighting feature con-
tributions and local decision boundaries [64]. Such interpretability fosters transparency,
supports regulatory compliance, and can reveal potential errors or biases, preventing
downstream failures.

Developing robust, interpretable, and trustworthy AI models ensures that they can
reliably support drug discovery pipelines while maintaining scientific rigor, regulatory
compliance, and public trust [65].

3.2.2. Reproducibility and Reliability of Quantum-Enhanced Simulations

Reproducibility and reliability are pivotal for the acceptance and practical use of
quantum-enhanced simulations in drug discovery. Quantum systems are sensitive to envi-
ronmental noise, which can affect the consistency of results [66]. Current quantum hard-
ware, known as Noisy Intermediate-Scale Quantum (NISQ) devices, exhibits noise-induced
fluctuations that complicate reproducibility [67]. Additionally, differences in hardware im-
plementations (e.g., superconducting qubits, trapped ions) contribute to variability across
platforms [68]. Quantum algorithms themselves introduce probabilistic outcomes and
quantum randomness, making exact replication of results challenging without advanced
error correction.

To enhance reproducibility, benchmarking problems—such as small-molecule binding
or basic quantum chemistry calculations—should be standardized across platforms, with
comprehensive documentation of hardware configurations, quantum circuit parameters,
and computational steps. Open-source frameworks, such as IBM’s Qiskit, Google’s Cirq,
and Rigetti’s Forest, can enhance transparency and consistency [68]. Implementing quan-
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tum error mitigation techniques, including zero-noise extrapolation and readout error
mitigation, can further improve the stability of results. Classical post-processing and
validation routines complement quantum outputs by verifying the accuracy of the results.

Reliability refers to the confidence in the accuracy and robustness of simulation results.
NISQ devices often have limited coherence times and high error rates, which can compro-
mise the accuracy of simulation outcomes [69]. Quantum algorithms such as the Variational
Quantum Eigensolver (VQE) and Quantum Monte Carlo methods are particularly suscep-
tible to noise amplification [70]. Therefore, quantum predictions must be cross-validated
against classical computational methods, such as density functional theory (DFT) and
molecular dynamics simulations, as well as experimental data [55]. Hybrid quantum–
classical workflows that integrate classical error correction loops and post-processing steps
enhance the reliability of quantum-enhanced simulations.

Establishing frameworks to quantify uncertainty due to quantum noise—providing
confidence intervals alongside results—will build trust in simulation outputs. Recent advances
in quantum hardware, including increased qubit counts, improved coherence times, and lower
error rates, are bringing practical applications closer to reality. Continued progress in quantum
error correction, algorithm efficiency, and scalability is essential. Clear industry standards and
regulatory guidelines will be necessary to ensure consistent and trustworthy applications of
quantum-enhanced simulations in pharmaceutical research pipelines.

3.2.3. Data Biases and Ethical Considerations

Biases in data can compromise the performance and fairness of AI and quantum-driven
models in drug discovery, potentially leading to inequitable or unsafe outcomes. Familiar
sources of bias include clinical trial datasets that may disproportionately represent specific
demographics, thereby limiting the model’s applicability to diverse populations [71]. Histori-
cal data used for AI training can perpetuate existing healthcare disparities, such as gender-
or ethnicity-based treatment inequalities [72]. Annotation biases—such as labeling errors in
toxicity or disease classification—can also distort model predictions. Additionally, biased
algorithm design can exacerbate existing data biases, notably if interpretability is lacking.

Ethical concerns encompass transparency, fairness, accountability, privacy, and the
well-being of humans. The complexity of deep learning and quantum models often lim-
its interpretability, reducing trust among regulators, clinicians, and patients [73]. Large
datasets required for training pose significant challenges to privacy and data protection,
particularly when involving sensitive patient information [74]. When AI or quantum
models contribute to harmful outcomes—such as adverse drug reactions—accountability
becomes complex, necessitating clear frameworks for determining responsibility among
developers, regulators, and clinicians [75]. Automation may also displace roles traditionally
held by laboratory personnel, with social and economic implications that must be managed.

Implementing secure data access, end-to-end encryption, and robust identity verifica-
tion mechanisms is crucial for protecting patient data. Compliant cloud infrastructures and
secure on-premises solutions can further enhance data privacy and security. Transparent
explanations of AI and quantum predictions enable regulators and clinicians to assess risks
and make informed decisions, improving trust and accountability.

Addressing biases and ethical considerations is essential to ensure that AI and quan-
tum computing tools support equitable [76] and safe drug discovery processes. Continuous
monitoring, rigorous validation, and adaptive frameworks are needed to maintain model
fairness and transparency when comparing in silico versus in vivo data (Table 2).
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Table 2. Comparing in silico quantum computational methods with in vivo live organization in a
laboratory setting with live organisms.

Method Quantum Calculation Laboratory Validation Comparison

Molecular Structure
Prediction

Uses quantum computing
methods (including
quantum chemistry
algorithms) to simulate the
molecular structure,
interactions, and stability
of a potential drug
candidate. This involves
calculating properties,
including bond lengths,
angles, and molecular
energy states.

Experimentally determines
the molecular structure
using methods such as
X-ray crystallography or
nuclear magnetic
resonance (NMR)
spectroscopy.

The calculated molecular
structure (e.g., bond
lengths, angles) is
compared to the
experimentally derived
structure. Discrepancies
may indicate areas where
the quantum model needs
refinement or where
experimental conditions
differ from theoretical
assumptions.

Binding Affinity to Targets

Quantum refers to the
study and prediction of
how strongly a molecule
(e.g., a drug or ligand)
binds to its target, e.g., a
protein, using quantum
mechanics (QM) principles.
By calculating the
interactions at the
electronic level, QM-based
methods provide highly
accurate insights into
binding energetics and
mechanisms, surpassing
traditional approaches in
procession.

Measures binding affinities
experimentally using
techniques such as surface
plasmon resonance (SPR),
isothermal titration
calorimetry (ITC), or
enzyme-linked assays.

Compare the predicted
binding energies or
disassociation constants
from quantum calculations
with the experimental
results. A close match
indicates that the quantum
molecule accurately
represents the molecular
interactions.

Reaction Pathways and
Mechanisms

It utilizes quantum
computing to simulate the
chemical reactions a drug
may induce in the body,
including metabolic
pathways and interactions
with enzymes. This
provides insights into
potential metabolites or
degradation products.

Experimentally determines
the reaction products or
metabolites using
techniques such as mass
spectrometry (MS) or
liquid chromatography
(LC).

Check whether the reaction
pathways and products
predicted using quantum
simulations align with
experimental observations.
This helps to validate
whether the quantum
model accurately predicts
real biochemical reactions.

Thermodynamics in
Kinetic Properties

Simulates thermodynamic
properties, including free
energy and entropy
changes for reactions
involving the drug, as well
as kinetic parameters such
as reaction rates and
activation energy.

Experimentally measures
thermodynamic properties
using calorimetry or
kinetic properties through
reaction rate analysis (e.g.,
spectroscopic methods or
chromatographic
separation).

Compares the predicted
thermal dynamic and
kinetic values with those
obtained from lab
experiments. Deviations
can help refine quantum
models to include
additional factors such as
solvation effects or specific
experimental conditions.
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Table 2. Cont.

Method Quantum Calculation Laboratory Validation Comparison

Solubility in
Pharmacokinetics

Quantum solubility refers
to the application of
quantum mechanical (QM)
principles to predict and
understand the solubility
of drug molecules in
various solvents, a key
parameter in
pharmacokinetics (PK).
Solubility impacts drug
absorption, distribution,
metabolism, and excretion
(ADME) and influences a
drug’s bioavailability in
terms of therapeutic
efficacy.

Tests solubility
experimentally and excess
pharmacokinetics in vitro
(e.g., cell-based assays) or
in vitro (e.g., animal
models).

Compare the predicted
solubility, permeability,
and metabolic stability
with experimental data to
validate the model’s
accuracy. If they match
closely, the quantum
predictions can be
considered reliable for
further development.

Toxicity Predictions

It utilizes quantum models
to predict potential toxic
interactions by simulating
the interactions of the drug
candidate with off-target
proteins or DNA or by
predicting potential toxic
metabolites.

Conducts in vitro toxicity
tests (e.g., using cell
cultures) and in vivo
toxicity studies in animal
models to measure toxic
effects.

Compare the predicted
toxicity levels with
laboratory findings. If the
predictions align, this may
help reduce reliance on
extensive animal testing, as
quantum molecules can be
trusted for early-stage
toxicity screenings.

3.2.4. Integration of Computational and Experimental Validation

Refining experimental assays through iterative feedback between computational
predictions and experimental data enhances precision and minimizes the need for trial-
and-error experimentation. Optimized experimental parameters, including concentration
ranges, time points, and cell line selection, are guided by computational predictions [77].
AI-driven hypotheses, such as target identification and biomarker discovery, are vali-
dated using molecular biology techniques, including Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR), Ribonucleic Acid RNA sequencing (RNA-seq), and
proteomics [78]. Similarly, quantum mechanical predictions of binding modes and reac-
tion mechanisms are corroborated with structural biology methods such as X-ray crystal-
lography, NMR spectroscopy, and cryo-electron microscopy [79]. This integrated work-
flow tailors experiments to specific biological systems or patient profiles prioritizes the
most promising candidates and streamlines the drug development process by minimizing
failed experiments.

Computational models, especially AI-driven ADMET predictions, enhance dosing
strategies, identify potential safety concerns early, and refine experimental protocols,
thereby significantly reducing the need for animal testing [80]. In vivo data on efficacy and
toxicity outcomes are systematically fed back into these models, creating a self-improving
cycle that accelerates hypothesis generation, testing, and refinement.

Regulatory standards, including those from the FDA and EMA, require rigorous
validation, reproducibility, and transparent documentation of computational methods.
Interdisciplinary collaboration among computational chemists, biologists, clinicians, quan-
tum computing specialists, AI engineers, and regulators ensures the development of
standardized and compliant workflows. Comprehensive documentation of computational
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methodologies and validation procedures promotes reproducibility and facilitates regula-
tory acceptance.

Future research should focus on standardizing biological datasets, integrating multi-
omics data, and developing explainable AI (XAI) models to enhance interpretability and
trust [81]. Advances in quantum computing are expected to provide higher-fidelity simula-
tions, narrowing the gap between computational predictions and experimental outcomes.
Integrating computational models with automated laboratory experiments and robotics
will further expedite the transition from in silico predictions to clinical validation, ultimately
accelerating drug development and improving clinical success rates.

3.2.5. Standardizing AI and Quantum Model Validation

Standardization of AI and quantum model validation is essential for ensuring reliabil-
ity, reproducibility, regulatory compliance, and industry-wide adoption. Clear standards
build confidence among researchers, regulators, and industry partners by facilitating con-
sistent benchmarking and comparability [82]. Harmonized interactions with regulatory
bodies such as the FDA and EMA can be achieved by establishing open-access repositories
for algorithms and quantum circuits, defining consistent performance metrics—such as
accuracy, specificity, sensitivity, F1-score, and Area Under the Curve (AUC-ROC—and
thoroughly documenting data sources, preprocessing methods, and quality assurance
protocols [61,82].

For quantum models, standardized benchmarks should include energy calculation
accuracy, binding affinity predictions, and quantification of quantum noise. The adoption
of industry-wide benchmark datasets will further facilitate the evaluation of model per-
formance. AI and quantum predictions should be validated through standardized in vitro
assays, including binding assays, toxicity screens, and cell-based assays [83]. Acceptance
thresholds for model predictions must be defined to align with experimental results, and
protocols should be established for translating in silico predictions into animal experiments
with clear endpoints (e.g., PK/PD, efficacy, safety).

Furthermore, AI models should be consistently integrated into clinical workflows
for patient stratification, dosing optimization, and predictive biomarker identification.
Clearly defined metrics for evaluating the impact of AI and quantum assistance on clinical
prediction accuracy and outcomes will ensure robust performance and facilitate clinical
integration. Cross-validation techniques should be employed to estimate model robustness
and mitigate the risk of overfitting. Regulatory submissions should document AI and quan-
tum modeling processes, validation methodologies, datasets, and outcomes in accordance
with guidance from agencies such as the FDA’s Good Machine Learning Practice (GMLP)
and the EMA’s AI validation guidelines [84].

4. Proposed Regulatory Framework for AI and Quantum Computing in
Drug Discovery
4.1. AI Model Validation and Transparency

Robust validation of computational models against experimental data is essential to
ensure predictive reliability. The FDA has issued draft guidance recommending that oral
biopharmaceutical modeling approaches complement in vivo bioavailability and bioequiv-
alence studies to support product quality and performance [22]. This guidance highlights
the importance of developing accurate computational models that can reliably replace
laboratory-generated data. Validation efforts must be collaborative, involving academia,
industry, and regulatory agencies to establish reproducibility across diverse product types.
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4.1.1. Explainable AI (XAI) Requirements for Regulatory Compliance

Standardized regulatory documentation is crucial for detailing AI methodologies, as-
sumptions, limitations, and risk mitigation strategies. Compliance with guidelines, such as
the FDA’s GMLP and the EMA’s AI validation guidance, requires thorough documentation
of algorithm design, validation processes, and risk management frameworks. Explainable
AI reports should provide clear explanations of model predictions and their underlying
rationale, supported by human-in-the-loop (HITL) systems that integrate expert over-
sight at critical decision points. This approach maintains accountability and reinforces the
importance of human expertise in AI-driven decision-making.

AI implementation must also align with ethical principles emphasizing fairness, trans-
parency, accountability, and non-maleficence. Regulatory agencies, including the FDA, EMA,
and ICH, have articulated expectations for transparency, reproducibility, auditability, and ac-
tive risk management [85]. Human oversight remains integral to ensuring that AI augments—
rather than replaces—expert judgment, supported by thorough and accessible documentation.

Compliance with laws such as the General Data Protection Regulation (GDPR) and
the Health Insurance Portability and Accountability Act (HIPAA) requires transparent
data governance. Techniques such as federated learning and differential privacy can help
secure sensitive patient data [86]. Clear communication about data usage, storage, and
protection enhances stakeholder trust, facilitating dialogue among regulators, healthcare
professionals, and patients. Non-expert stakeholders also benefit from plain-language
explanations of AI model outputs, limitations, and uncertainties.

4.1.2. Model Auditing and Documentation and Bias Assessment

Model auditing systematically evaluates AI and quantum models to ensure regulatory
compliance, reliability, and ethical integrity. Audits should assess model accuracy, per-
formance, and adherence to regulatory requirements while also evaluating transparency,
explainability, and reproducibility [87]. Detailed documentation of datasets, including
composition, provenance, limitations, and potential biases, helps identify and address
issues related to data imbalance, algorithmic favoritism, and measurement inconsistencies.

Quantum drug discovery models, such as those utilizing the VQE or QML, necessitate
specialized documentation, including quantum circuit design, parameter optimization, and
hardware specifications. Audits should verify the security of encryption and incorporate
robust cybersecurity measures to ensure the integrity of sensitive data. Given increasing
regulatory expectations, standardized documentation frameworks—such as Model Cards
and Datasheets—should be adopted. Continuous bias monitoring and proactive ethical
assessments are crucial for the responsible deployment of AI and quantum models. Integrat-
ing these practices into model development processes fosters transparency, accountability,
and continuous improvement.

4.2. Quantum Computing Guidelines

Quantum computing applications in drug discovery encompass molecular simulations
(VQE/QPE), prediction of drug–target interactions, quantum-appropriate optimization
(QAOA), and QML for large biological datasets [86,88]. Hardware variability—such as
qubit counts, coherence times, and error rates—necessitates consistent benchmarking to
ensure reproducibility.

Bias auditing is crucial in personalized drug development, necessitating equitable
representation in training datasets and a rigorous evaluation of quantum model limita-
tions. Transparent documentation of quantum architectures, gate sequences, measurement
protocols, and training processes supports effective regulatory review. Integrating privacy-



J. Pharm. BioTech Ind. 2025, 2, 11 22 of 29

preserving techniques, including federated learning and differential privacy, is crucial for
safeguarding patient data [86].

Adherence to regulatory standards—including those from the FDA, EMA, and ICH—
requires detailed documentation of quantum workflows and proactive engagement with
regulators via pilot programs or regulatory sandboxes. These interactions enable early
feedback, continuous compliance, and effective risk management.

Global harmonization efforts, such as the ICH’s exploration of quantum computing
validation guidelines and collaborations among the FDA, EMA, and MHRA, are still
in the early stages. These agencies recognize the potential of quantum computing in
molecular modeling, clinical trial optimization, and enhancing AI and machine learning
(ML) capabilities [88]. Although no dedicated, harmonized guidelines currently exist,
ongoing initiatives under digital health frameworks are expected to evolve in tandem with
the maturation of quantum technology [89].

4.3. Ethical and Data Governance Considerations

Ethical frameworks must guide the integration of AI and quantum computing into
pharmaceutical research to ensure fairness, accountability, and transparency. AI bias—
stemming from unrepresentative training data—can compromise the efficacy and safety of
drugs across populations, highlighting the importance of inclusive and diverse datasets.
Explainability is crucial for securing regulatory approval and clinical trust, given the
opaque nature of many AI and quantum algorithms. Ensuring that patients and clinicians
understand the rationale behind AI-generated recommendations is crucial, supported by
explicit and informed consent for the use of data.

The reuse of datasets for secondary predictions—while enabling insights into new
indications—must be governed by robust data management practices to prevent misuse,
such as the design of harmful compounds. Governance mechanisms should strike a balance
between openness and security to mitigate risks while supporting scientific innovation. The
question of ownership of AI- or quantum-discovered drugs remains complex, involving
researchers, institutions, and technology developers. Quantum computing’s capacity to
accelerate molecular simulations adds further complexity to intellectual property con-
siderations, requiring clear legal frameworks to manage novel methodologies and data
dependencies [90].

5. Future Directions and Conclusions
5.1. Technological Advancements and Industry Adoption

Generative models, such as GANs, VAEs, and diffusion models, enable the design of
novel, drug-like molecules from scratch. Tools like AlphaFold have transformed protein
structure prediction, accelerating target identification. Large language models (LLMs)
efficiently mine the biomedical literature and clinical trial data. AI systems integrate
genomic, atomic, and clinical data to identify biomarkers and patient subtypes, as well as
predict drug responses, thereby enhancing the selection of candidates for targeted therapies
(Table 3).

Table 3. AI-driven drug discovery models.

AI-Model Description of Model Function

DeepTox
It utilizes deep learning to predict toxicological endpoints, including mutagenicity,

carcinogenicity, and organ toxicity. It analyzes molecular structures to identify potentially
toxic properties.



J. Pharm. BioTech Ind. 2025, 2, 11 23 of 29

Table 3. Cont.

AI-Model Description of Model Function

Tox21 Challenge Models
Developed in collaboration with the NIH, EP, and FDA, these machine learning models
predict drug toxicity by screening compounds for various toxicological effects, utilizing

large datasets such as Tox21.

IBM Watson for Drug
Discovery

Machine learning is used to predict adverse drug reactions and potential toxicity by
analyzing extensive datasets, including chemical properties, biological activities, and

clinical trials.

ADMET Predictor
From Simulations Plus, this software predicts absorption, distribution, metabolism,

excretion, and toxicity (ADMET) properties, focusing on identifying any red flags in a
compound’s structure.

ToxCast An EPA initiative, ToxCast, uses computational models and machine learning to assess
chemical toxicity. It is beneficial for screening chemicals without extensive toxicology data.

Multi-Instance
Multi-Label

(MIML) Models

These are advanced machine learning models tailored to predict multiple toxicological
endpoints simultaneously and are used by some drug development companies.

NIH, national institutes of health; EP: European parliament.

Active and reinforcement learning refine compound screening and lead optimization
iteratively, while reinforcement learning models also assist in finding optimal synthesis
routes and modifying chemical structures. Quantum computing offers more accurate
simulations of molecular interactions, binding affinities, and reaction pathways compared
to classical systems, addressing the challenges of modeling complex molecules. Hybrid
algorithms, including Variational quantum eigensolver (VQE) and Quantum Approximate
Optimization Algorithms (QAOAs), blend classical and quantum capabilities to deliver
scalable solutions. Applications already include molecular energy estimation, which is
crucial for understanding drug behavior.

QML combines quantum computing with AI to enhance learning and inference in
high-dimensional molecular spaces, supporting tasks such as drug-enhanced feature se-
lection and drug repurposing. Drug discovery platforms now incorporate end-to-end
solutions that span from target discovery to candidate prediction, integrating digital twins,
automated labs, and in silico trials.

The pharmaceutical industry is adapting documentation and validation strategies
to meet regulatory expectations for AI- and quantum-derived drugs. This includes clear
explanations of model outputs, ensuring traceability and addressing audit requirements.
Although quantum hardware scalability remains a challenge, progress is ongoing. Stan-
dardization and validation of AI and hybrid models, which bridge the gap between com-
putational predictions and laboratory results, remain critical areas of focus.

The integration of advanced technologies—including digital computing, AI, and quan-
tum computing—has transformed drug discovery, approval processes, and innovation
pipelines [91]. These technologies streamline drug development by enabling virtual screen-
ings and digital models, thereby increasing the efficiency of the process. Enhanced pre-
dictive capabilities allow researchers to estimate drug toxicity and efficacy with improved
precision, aligning with regulatory expectations. Collaborative frameworks, rigorous vali-
dation of computational methods, and technological advancements foster efficiency and
open new opportunities for personalized and innovative therapies. Collectively, these
advances promise to overcome longstanding limitations in drug development, contributing
to a more effective and responsive pharmaceutical industry.

Bioinformatics tools now facilitate the large-scale prediction of protein structures,
shifting the paradigm from traditional laboratory-based, hypothesis-driven approaches
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to data-driven computational models. This transition enables a deeper understanding of
drug interactions, toxicity, and efficacy at the molecular level [92]. The ability to simulate
dynamic and complex systems is essential for elucidating how drugs interact with biological
targets and behave within the human body [81].

5.1.1. Summary of Key Takeaways

Comparative validation between computational predictions and experimental results
is crucial for ensuring the reliability of drug development. In silico validation involves
computational simulations, such as molecular docking, pharmacokinetics, and toxicity
assessments, to predict drug behavior. In vitro validation then tests these predictions
in biological samples (e.g., cell cultures and enzymes), while in vivo studies in model
organisms or clinical trials further confirm efficacy and safety. Quantum computing and
AI technologies expedite the screening of large chemical libraries to identify promising
candidates, accelerating timelines and reducing costs. AI alone enhances the accuracy and
speed of candidate identification The integration of real-time data and predictive modeling
is expected to become standard practice, given its impact on drug efficacy and safety [5].
Advances in virtual screening technologies increasingly leverage the convergence of AI
and quantum computing [6], offering frameworks for integrating quantum algorithms with
classical methods and accelerating drug discovery.

5.1.2. Recommendations for Researchers, Industry Stakeholders, and Policymakers
For Researchers

Incorporate ethical impact assessments, such as bias detection and fairness analysis,
into the research design to ensure a thorough examination of potential ethical implications.
Collaborate with ethics and legal experts to address the broader implications of drug
discovery. Use high-quality, diverse, and representative datasets to avoid biased outcomes.
Prioritize explainable AI (XAI) to enhance transparency and reproducibility and share
datasets, models, and quantum simulation protocols under open-source licenses whenever
feasible. Adhere to FAIR data principles and open-access publishing to foster collaboration.
Develop interpretable hybrid AI–quantum frameworks and contribute to standardization
efforts for the validation and benchmarking of quantum models.

For Industry Stakeholders

Establish ethical review boards within R and D teams and ensure compliance with
data protection regulations (e.g., GDPR, HIPAA) in AI and quantum pipelines. Invest
in cybersecurity measures to safeguard sensitive health and molecular data. Implement
secure computing methods, including differential privacy and federated learning, to protect
data integrity. Engage in pre-competitive collaborations to build shared AI and quantum
platforms. Fund and support academic–industry partnerships that prioritize ethical and
explainable innovation. Provide ongoing training in AI ethics, quantum computing, and
regulatory knowledge and promote interdisciplinary talent development through joint
university programs.

For Policymakers and Regulators

Develop risk-based, proportional regulations tailored to AI- and quantum-enabled
drug discovery tools. Promote regulatory sandboxes to test innovative approaches before
market authorization is granted [93]. Support initiatives that ensure global access to AI
and quantum computing resources for the advancement of drug discovery. Mandate the
inclusion of underrepresented populations in datasets used for drug development and
research. Collaborate internationally to establish shared standards for validation, data
governance, and ethical compliance. Define clear regulatory expectations for quantum–
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classical hybrid models. Fund public AI and quantum research centers and open-access
data repositories and provide grants and incentives for projects aligned with public health
priorities and responsible innovation [94].
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