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Abstract: Proteoglycan 4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and
superficial zone chondrocytes, released into synovial fluid, and adsorbed on cartilage and synovial
surfaces. PRG4′s roles include cartilage boundary lubrication, synovial homeostasis, immunomodu-
lation, and suppression of inflammation. Gouty arthritis is mediated by monosodium urate (MSU)
crystal phagocytosis by synovial macrophages, with NLRP3 inflammasome activation and IL-1β
release. The phagocytic receptor CD44 mediates MSU crystal uptake by macrophages. By binding
CD44, PRG4 limits MSU crystal uptake and downstream inflammation. PRG4/CD44 signaling is
transduced by protein phosphatase 2A, which inhibits NF-κB, decreases xanthine oxidoreductase
(XOR), urate production, and ROS-mediated IL-1β secretion. PRG4 also suppresses MSU crystal
deposition in vitro. In contrast to PRG4, collagen type II (CII) alters MSU crystal morphology and
promotes the macrophage uptake of MSU crystals. PRG4 deficiency, mediated by imbalance in
PRG4-degrading phagocyte proteases and their inhibitors, was recently implicated in erosive gout,
independent of hyperuricemia. Thus, dysregulated extracellular matrix homeostasis, including
deficient PRG4 and increased CII release, may promote incident gout and progression to erosive
tophaceous joint disease. PRG4 supplementation may offer a new therapeutic option for gout.
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1. Introduction

The pathophysiology of gout, the most common cause of inflammatory arthritis,
includes intersections between genetics, urate homeostasis, innate immunity, and diseases
of metabolism, and renal and cardiovascular function [1–3]. Urate is particularly limited in
its solubility in joint tissues. Additionally, sustained hyperuricemia is a primary risk factor
for deposition of monosodium urate (MSU) crystals in synovial joints, and a variety of soft
tissues including bursae and tendons [2–4]. Inflammatory joint disease in gout is chronic,
and characteristically punctuated clinically by bouts of acute and excruciatingly painful
arthritis and soft tissue inflammation.

Acute inflammation in gout is driven via recognition of urate crystals by tissues’
monocytes/macrophages and their subsequent phagocytosis [5,6]. Activation of the NOD-,
LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes in tissue phagocytes
underlies their acute response to urate crystals, resulting in the recruitment of pro-caspase-1
and its conversion to active caspase-1 [6]. Active caspase-1 converts pro-interleukin-1
beta (pro-IL-1β) to mature IL-1β, which drives inflammation in gout [4]. Synovium is
comprised of a surface layer, the intima and an underlying subintima [7,8]. The intima
of normal synovium is one to three cell layers thick, with two cell types: fibroblast-like
synoviocytes and macrophages [7,8]. Synovial macrophages comprise heterogenous pop-
ulations whose functions include the clearance of cell debris and foreign bodies, tissue

Gout Urate Cryst. Depos. Dis. 2023, 1, 122–136. https://doi.org/10.3390/gucdd1030012 https://www.mdpi.com/journal/gucdd

https://doi.org/10.3390/gucdd1030012
https://doi.org/10.3390/gucdd1030012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gucdd
https://www.mdpi.com
https://orcid.org/0000-0002-8925-4255
https://orcid.org/0000-0003-1517-8488
https://orcid.org/0000-0001-5368-7473
https://doi.org/10.3390/gucdd1030012
https://www.mdpi.com/journal/gucdd
https://www.mdpi.com/article/10.3390/gucdd1030012?type=check_update&version=1


Gout Urate Cryst. Depos. Dis. 2023, 1 123

immune surveillance, and the resolution of inflammation [9,10]. Importantly, cartilage-
derived damage-associated molecular patterns (DAMPs) activate macrophages, and this
contributes to the pathophysiology of synovitis [11]. In this review, we comprehensively
summarize the current understanding of how synovial joint extracellular matrix homeosta-
sis and specific synovial fluid (SF) components impact gout pathophysiology. Our primary
focus is on how proteoglycan 4 (PRG4) limits gouty arthritis, with attention also given to
the contrasting effects of cartilage-derived collagen type II (CII).

2. Proteoglycan 4 (PRG4)/Lubricin: Articular Localization, Structure, Regulation and
Biological Activity

The PRG4 gene is alternatively spliced and is responsible for the mucinous glycopro-
teins lubricin and superficial zone protein (SZP). Lubricin is secreted by synovial type B
fibroblasts, and SZP by superficial zone chondrocytes [12–15]. PRG4 is a major component
of synovial fluid (SF) and is localized on the surface of articular cartilage, where it functions
as a boundary lubricant at near-zero sliding speeds and prevents cell and protein adhe-
sions [13,16–18]. The boundary-lubricating property of PRG4 prevents friction-induced
mitochondrial dysregulation and chondrocyte apoptosis [19,20]. PRG4 is also found in the
synovium [21]. The full length synovial form of PRG4/lubricin has a semi-rigid structure.
The protein core has 1404 amino acids with N and C termini and a central mucin do-
main that is heavily glycosylated via O-linked β(1–3) Gal-GalNac oligosaccharides (which
account for ~50% of the mucin weight) and is responsible for its boundary-lubricating
function [16,22] (Figure 1). The globular N- and C-termini of PRG4 may be involved in
multiple biological functions [16]. In the N-terminus, there is a heparin-binding site, a chon-
droitin sulfate chain, and a somatomedin B-like domain [15,16]. The C-terminus contains
a hemopexin-like domain [15,16]. In both domains, PRG4 has greater than 40% sequence
similarity with vitronectin, though PRG4 has a unique repeating motif of KEPAPTT in
which O-glycosylations are found [16]. Either the N- or C-terminus or both mediate PRG4’s
anchoring to surfaces, which results in a brush-like conformation that provides optimal
boundary lubrication [23]. The N-terminus is also the site of disulfide bonding, wherein
PRG4 exists as monomers, dimers, and multimers, with improved boundary lubrication
observed with multimeric PRG4 [24,25]. The concentration of PRG4 is normally high in SF
(200 to 400 µg/mL) [26].
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Figure 1. Schematic depicting the various motifs within the full length synovial 1404 amino acid
proteoglycan 4 (PRG4) polypeptide. The N-terminus contains a somatomedin B-like domain, a
heparin binding site and a chondroitin sulfate chain. The N-terminus is also the site for the disulfide
bonding of PRG4 monomers. The central domain is mucin-like, and is responsible for boundary
lubrication. The C-terminus contains a hemopexin-like domain.
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The loss of function mutation in PRG4 is evident in the autosomal recessive disease
camptodactylyl-arthropathy-coxa vara-pericarditis (CACP), a rare juvenile onset arthropa-
thy [21,27]. The murine Prg4 knockout model displays key features of CACP disease, and
the joints of Prg4 null animals exhibit synovial inflammation, hyperplasia, and fibrosis
in addition to cartilage surface damage and chondrocyte apoptosis, which may not be
completely reversed by Prg4 re-expression [21,28–30]. Human studies that have examined
PRG4 SF levels in different cohorts of joint injuries, moderate OA, and advanced OA have
reported either a decrease, no change, or an increase in SF PRG4 levels in reference to
healthy subjects [31]. Studies that reported a decrease in SF PRG4 levels were more likely
to include patients with anterior cruciate ligament or meniscal tears within one year of
injury, whereas four out of five studies that reported an increase in SF PRG4 levels included
patients with advanced OA [31]. It is unclear whether the different assays used in these
studies to quantify SF PRG4 could differentiate between full-length and degraded protein.

Multiple studies in animals showed that cartilage, synovial PRG4 expression, or a com-
bination thereof were reduced in mouse, rat and guinea pig models of naturally occurring
and posttraumatic OA (PTOA) [32–36]. Using in vitro models, PRG4 expression in chon-
drocytes and synoviocytes was shown to be reduced by IL-1β and tumor necrosis factor
(TNF), and increased by transforming growth factor beta 1 (TGF-β1) [37–41]. Furthermore,
PRG4 is proteolytically degraded by multiple enzymes, e.g., elastase, and cathepsins B
and G [36,42]. A summary of studies that showcase the disease-modifying effects of native
and recombinant PRG4 in pre-clinical PTOA models is presented in Table 1 [43–50]. In
addition, Prg4 gene therapy is efficacious in mitigating murine age and injury-related OA
development [51–53].

Table 1. In vivo efficacy of native and recombinant PRG4/lubricin in pre-clinical models of post-
traumatic osteoarthritis (PTOA) and the pharmacokinetic profile of recombinant human PRG4 as a
potential biologic therapeutic for PTOA.

Study Model and Treatment(s) Outcome(s)

Flannery et al. [43]
Rat meniscectomy; I.A. recombinant human
lubricin construct with one third KEPAPTT-like
sequence 3× week or 1× week for 4 weeks.

Both treatments reduce cartilage degeneration and
total joint scores.

Jay et al. [44] Rat ACLT; I.A. recombinant full-length lubricin,
HSL or HSFL 2× week for 4 weeks.

HSL reduces cartilage degeneration scores; HSL and
HSFL reduce uCTXII levels, and all lubricins enhance
aggrecan synthesis.

Teeple et al. [45] Rat ACLT; I.A. hyaluronan, HSFL or hyaluronan +
HSFL 2× week for 4 weeks.

HSFL alone or hyaluronan + HSFL reduce
radiographic and cartilage degeneration scores with no
effect by hyaluronan alone.

Jay et al. [46] Rat ACLT; I.A. HSL once on day 7 post-surgery
and analysis at 10 weeks.

HSL enhances aggrecan synthesis, reduces uCTXII
levels, and improves weight bearing in injured joints.

Elsaid et al. [47] Rat ACLT + forced exercise; HSFL on day 7
post-surgery and analysis at 5 weeks

Forced exercise aggravates cartilage damage and
increases uCTXII excretion; HSFL treatment protects
against ACLT + forced exercise cartilage damage.

Elsaid et al. [48]
Rat ACLT; I.A. IL-1ra 4× week for one week; I.A.
IL-1ra + rhPRG4 once on day 7 post-surgery and
analysis at 5 weeks.

IL-1ra reduces synovial inflammation and increases
lubricin levels in SF; rhPRG4 and IL-1ra synergistically
reduce chondrocyte apoptosis.

Waller et al. [49]
Minipig DMM; I.A. rhPRG4, hyaluronan or
rhPRG4 + hyaluronan 3× week for one week and
analysis at 26 weeks post-surgery.

rhPRG4 reduces medial tibial plateau macroscopic
cartilage damage, uCTXII levels, SF, and serum IL-1β.

Hurtig et al. [50] Minipig ACLT; I.A. 131 I-rhPRG4 once with
analysis at 10 min, 24, 72 h, 6, 13 and 20 days.

rhPRG4 joint elimination kinetics follows a
two-compartment model with t1/2β of 4.81 days.

ACLT: anterior cruciate ligament transection; DMM: destabilization of the medial meniscus; HSL: human syn-
oviocyte lubricin; HSFL: human synovial fluid lubricin; I.A.: intra-articular; IL-1β; interleukin-1 beta; IL-1ra:
interleukin-1 receptor antagonist; rhPRG4: recombinant human proteoglycan 4; SF: synovial fluid; uCTXII: urinary
C-terminal crosslinked telopeptide type II collagen.

Biologically, PRG4 binds transmembrane CD44 receptors and competes with high-
molecular-weight hyaluronic acid (Hyaluronan) to do so. As a consequence of preferen-
tially binding CD44, PRG4 reduces the mitogen-activated proliferation of mouse Prg4−/−
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synoviocytes and human synoviocytes from patients with OA and rheumatoid arthritis
(RA) [54,55]. In OA synoviocytes, recombinant human PRG4 (rhPRG4) treatment reduces
NF-κB nuclear translocation via inhibition of IκBα phosphorylation [55], with downstream
reduction of the expression of matrix metalloproteinases (MMP1, MMP3, MMP9, MMP13)
and cytokines IL-6 and IL-8 [55]. PRG4 also binds to the toll-like receptor (TLR) family of
pattern recognition receptors [56,57], and PRG4 suppresses activation of TLR2 and TLR4
receptors by DAMPs in SF aspirates from patients with OA [57].

PRG4 plays a significant role in regulating synovial macrophages. In Prg4-deficient
mice, macrophages accumulate in synovial tissues with age [58], while the tissue resi-
dent fraction is reduced. Total macrophages in the synovium skew to a predominantly
CD86+ pro-inflammatory phenotype, and away from the CD206+ anti-inflammatory phe-
notype [58]. Prg4 re-expression in mice reduces total macrophages in synovial tissues
and re-establishes homeostasis with an enrichment in anti-inflammatory CD206+ synovial
macrophages [58]. Furthermore, Prg4 deficiency appears to prime acute synovitis, as
demonstrated by enhanced inflammatory macrophage recruitment [58]. Interestingly, syn-
ovial macrophage depletion in otherwise Prg4-deficient mice reduces synovial hyperplasia
and synovial fibrosis [58]. These collective observations support PRG4’s immunomodula-
tory and anti-inflammatory roles in the joint.

3. The PRG4/Lubricin Receptor CD44 and Protein Phosphatase 2A Signal Transduction

CD44 is a single-pass heavily glycosylated transmembrane receptor that is alternatively
spliced to generate various isoforms [59]. CD44 is widely expressed, including by cells of the
immune system, and CD44 contributes to signaling by a broad array of microenvironmental
constituents, e.g., not only CD44 ligands, but also cytokines and growth factors [60]. Beyond
ligand binding by the CD44 extracellular domain (ECD), the transmembrane domain of
CD44 interacts with co-factors and adaptor proteins, and directs lymphocyte homing [59,60],
whereas the intracellular domain binds different signaling partners and may translocate to the
nucleus to activate gene transcription involved in cancer cell survival and metastasis [61–63].
CD44 ligands include hyaluronan, osteopontin, collagens, and MMPs, and the role of CD44 in
mediating cell migration and growth is ligand-dependent [64–66]. CD44 has additional roles
in regulating inflammation and immune responses via its role as a phagocytic receptor [67].
CD44 functions to clear apoptotic cells and pathogens [68,69]. CD44 is sufficient by itself
to mediate the phagocytosis of large particles, and it also contributes to phagocytosis as a
coreceptor that tethers foreign particles which are internalized using other molecules, e.g.,
phosphatidylserine [67].

CD44 has been associated with multiple central signaling pathways including Rho
GTPases, Ras-MAPK, PI3K/AKT, and phosphatase pathways [70]. The signaling pathway
that is predominantly activated is CD44 isoform-, cell- and ligand-specific [70]. CD44
engagement by hyaluronan triggers activation of downstream effectors, e.g., AKT, ERK,
and protein phosphatase 2A (PP2A) [71]. PP2A is a highly conserved member of the
serine/threonine phosphatase family of enzymes that regulate the signal transduction
pathways of most cellular processes [72]. The holozyme is a heterotrimer of catalytic,
regulatory, and structural subunits, which when assembled generate multiple structurally
and functionally distinct enzyme complexes [73]. The composition of the holozyme deter-
mines substrate specificity and cellular localization, while post-translational modification
of PP2A’s catalytic subunit by methylation or phosphorylation regulates its enzymatic ac-
tivity [74]. Dysregulated cellular PP2A activity has been associated with multiple diseases
including neurodegenerative disorders, diabetes, cancer, heart disease, and inflamma-
tion [75–78]. In inflammation, PP2A restrains the phosphorylation of the NF-κB signaling
pathway via dephosphorylation of IKKβ, IκBα, and RelA [79]. PP2A has a role in reg-
ulating the innate immune response of macrophages; enzyme inactivation via targeted
deletion of the catalytic subunit increases TNF expression in LPS-stimulated murine bone
marrow-derived macrophages (BMDMs) [80].
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4. CD44 Receptors and MSU Crystals: The Role of PRG4 as a Ligand and PP2A as a
Signal Transducer

We identified CD44 as a major, biologically significant, phagocytic receptor for MSU
crystals [81]. We also discovered that its ligand, PRG4, inhibits MSU crystal phagocy-
tosis by human and murine macrophages through a CD44-dependent mechanism [82],
suppresses xanthine oxidoreductase (XOR) expression and urate production by murine
macrophages [83], and ameliorates inflammation in two pre-clinical rodent models of
acute gout [82,84]. PP2A inactivation in human monocytes and murine macrophages as a
result of MSU crystal exposure was determined to be permissive for NLRP3 inflammasome
activation and IL-1β release [85].

Key findings that support the roles of CD44 as a phagocytic receptor, PRG4 as an anti-
inflammatory therapeutic in acute gout, and PP2A’s involvement in gout pathophysiology
are presented in Table 2.

Table 2. Summary of studies on the PRG4/CD44/PP2A circuit in gout pathogenesis. Key findings
supporting a biological role of CD44 as a urate crystal phagocytic receptor, with its ligand PRG4
as an anti-inflammatory biologic in acute gout, and a mechanism of action mediated by enhancing
PP2A activity.

Study Models and Treatment(s) Outcome(s)

Qadri et al. [86]
• TLR2 ligand stimulated human THP-1 macrophages; effect of

hyaluronan or CD44-directed antibody.
• TLR2 ligand stimulated murine Cd44+/+ and Cd44−/− BMDMs.

• TLR2 ligand enhances CD44 density on macrophages with no
effect on TLR density. Hyaluronan and CD44 antibody reduce
IL-1b and TNF via inhibition of the NF-kB pathway. PP2A
mediates hyaluronan’s and anti-CD44 antibody
anti-inflammatory effects.

• Lower TNF secretion with Cd44−/− BMDMs.

Bousoik et al. [81]

• MSU crystal phagocytosis and IL-1b release by Cd44+/+ and
Cd44−/− BMDMs.

• CD44 antibody treatment in MSU crystal stimulated human
THP-1 macrophages.

• Peritoneal model of acute gout in Cd44+/+ and Cd44−/−mice;
Cd44+/+ mice ± I.P. anti-CD44 antibody.

• MSU crystal phagocytosis and IL-1b release are lower in
Cd44−/− BMDMs.

• The antibody induces CD44 ECD shedding, reduces MSU
crystal and ECD internalization, enhances PP2A activity, and
suppresses NLRP3 inflammasome activation.

• Neutrophil and Ly6Chi monocyte recruitment and IL-1b
secretion are suppressed in Cd44−/−mice; I.P. anti-CD44
antibody reduces markers of inflammation.

Qadri et al. [82]
• MSU crystal phagocytosis by THP-1 macrophages ± rhPRG4.
• MSU crystal phagocytosis and IL-1b release by Prg4+/+ and

Prg4−/− peritoneal macrophages.
• Rat knee model of acute gout ± I.A. rhPRG4.

• rhPRG4 reduces MSU crystal phagocytosis, NLRP3
inflammasome activation and IL-1b release in a
CD44-dependent manner.

• Prg4−/− peritoneal macrophages show greater MSU crystal
uptake and IL-1b release.

• I.A. rhPRG4 reduces SF lavage MPO activity and normalizes
weight bearing.

Elsaid et al. [83]
• XOR expression and urate secretion by IL-1b + GM-CSF

stimulated murine BMDMs ± rhPRG4.
• XOR expression in synovial macrophages in Prg4-deficient mice

± I.A. IL-1b

• rhPRG4 reduces XOR expression and urate secretion.
• XOR expression in Prg4-deficient macrophages is higher and

confined to CD86+ pro-inflammatory macrophages. CD206+
anti-inflammatory macrophages have minimal XOR expression.

Elsayed et al. [84]

• MSU crystal phagocytosis by THP-1 monocytes and downstream
signaling ± rhPRG4 or IL-1ra.

• MSU crystal phagocytosis by gout and normal PBMCs ± rhPRG4
or IL-1ra.

• Peritoneal model of acute gout in Prg4-deficient and
Prg4-competent mice; efficacy of I.P. rhPRG4 in
Prg4-deficient mice.

• rhPRG4, but not IL-1ra, reduces MSU crystal phagocytosis.
Both treatments reduce IL-1b release. rhPRG4 activates PP2A in
monocytes.

• MSU crystal phagocytosis is higher in monocytes from gout
patients compared to normal subjects, and both rhPRG4 and
IL-1ra are efficacious in reducing IL-1b release.

• Prg4-deficient mice demonstrate ineffective resolution of
inflammation (higher neutrophils and IL-1b levels), and
rhPRG4 treatment promotes the effective resolution
of inflammation.

Qadri et al. [85]

• PP2A activity following MSU crystal phagocytosis by THP-1
monocytes; impact of PP2A catalytic subunit silencing on IL-1b
release in MSU-challenged monocytes.

• Impact of the PP2A-activating drug, fingolimod phosphate, on
NLRP3 inflammasome activation and IL-1b release by monocytes.

• PP2A activity is reduced following MSU crystal phagocytosis.
PP2A silencing increases IL-1b release in MSU-challenged
monocytes.

• Fingolimod phosphate activates PP2A in MSU-challenged
monocytes, and inhibits NLRP3 inflammasome activation and
IL-1b release.

BMDMs: bone marrow-derived macrophages; ECD: extracellular domain; GM-CSF: granulocyte macrophage colony-
stimulating factor; I.A.: intra-articular; I.P.: intra-peritoneal; IL-1β: interleukin-1 beta; IL-1ra: inteleukin-1 receptor
antagonist; MPO: myeloperoxidase; MSU: monosodium urate; PBMCs: peripheral blood mononuclear cells; PP2A:
protein phosphatase 2A; TLR2: toll-like receptor 2; TNF: tumor necrosis factor; XOR: xanthine oxidoreductase.
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PP2A dysfunction, under different conditions that include inflammation, might be related
to the accumulation of reactive oxygen species (ROS). The ROS, in turn, inactivate the enzyme
via mechanisms that include tyrosine phosphorylation, leucine carboxy methylation, and the
dissociation of the enzyme’s catalytic subunit [87–89]. We identified XOR in macrophages as a
major source of ROS production in MSU crystal-stimulated BMDMs [90]. This is in line with a
previous study, in which ROS generated from XOR were identified as a significant driver of
NLRP3 inflammasome activation and IL-1β production [91]. XOR-derived ROS accumulation
inactivates PP2A in macrophages [90]. In addition, a PP2A-activating drug treatment inhibits
XOR expression, ROS and urate production and stimulates the expression of nuclear factor
erythroid 2-related factor 2 (Nrf2), a key transcriptional activator of antioxidant response in
macrophages [90,92]. Upon pharmacological activation of PP2A in vivo, the recruitment of
neutrophils and inflammatory classical monocytes is reduced in a peritoneal model of acute gout,
and this effect is associated with enhancement in anti-inflammatory nonclassical monocytes’
ingress into the site of inflammation [90].

The role of PP2A in gout inflammation at the macrophage cellular level is schematized
in Figure 2. According to our model, the PRG4/CD44/PP2A circuit functions to suppress
XOR expression and hence the production of urate and ROS. Addition to the extracellular
pool of urate can promote MSU crystal deposition, and XOR activity-derived ROS promote
activation of the NLRP3 inflammasome. Dysfunction of the circuit can occur at the level of
the ligand, PRG4, which is downregulated by IL-1β and/or proteolytically degraded. In
addition, dysfunction can occur at the level of the intracellular signal transducer, wherein
PP2A is inactivated by XOR-derived ROS. Hence, enhancing intracellular PP2A activity
may represent a new target area in gout management.Gout Urate Cryst. Depos. Dis. 2023, 1, FOR PEER REVIEW 7 
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Figure 2. Macrophage activation by urate crystals and the role of the PRG4/CD44/PP2A axis.
Mechanistic overview of the regulation of XOR-derived reactive oxygen species (ROS) generation in
macrophages by protein phosphatase 2A (PP2A), and corresponding PP2A’s inactivation by XOR-
derived ROS as the basis for PP2A’s role in gout inflammation. Resident macrophages are primed by
IL-1β or by DAMPs (Signal 1). Both stimuli independently activate the NF-κB pathway, resulting in its
nuclear translocation and expression of pro-IL-1β, inflammasome proteins, and XOR. PP2A regulates
the NF-κB pathway via dephosphorylation of IκBα, which prevents the translocation of NF-κB. Under
inflammatory conditions, PRG4 is downregulated at the gene level and/or proteolytically degraded,
thus compromising the integrity of the PRG4/CD44/PP2A signaling pathway. Unoccupied CD44
receptors bind MSU crystals, which are then internalized by the macrophages (Signal 2). MSU
crystals and macrophage M1 (pro-inflammatory) signals, including IL-1β and DAMPs, upregulate
XOR expression, which results in increased XOR activity and production of urate; XOR activity-
derived ROS can activate the NLRP3 inflammasome and inactivate PP2A. Inflammasome assembly
activates caspase-1, which in turn converts pro-IL-1β to mature IL-1β.
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4.1. The PRG4/CD44/PP2A/XOR Circuit and Regulation of Synovitis

Cumulative evidence, derived from both in vitro and in vivo experiments, points to a
native PRG4/CD44/PP2A/XOR regulatory circuit that is fundamental to synovial tissue home-
ostasis. The failure of this circuit is permissive for acute gout inflammation, which if ineffectively
resolved, may potentially lead to chronic synovitis and joint destruction [93,94]. The conceptual
framework of this regulatory model is presented in Figure 3. Circuit failure can occur at the
ligand level (PRG4) via a downregulation at the gene level and/or proteolytic degradation
by enzymes, e.g., cathepsin G [83]. Failure at the receptor level occurs via upregulation of
CD44 expression on macrophages by inflammatory cytokines shifting the equilibrium towards
unoccupied CD44 receptors. Failure of the signaling transducer occurs via inactivation of
PP2A by ROS, and the downstream effect of the regulatory circuit is an enhancement of XOR
expression driving M1 polarization and secretion of cytokines and chemokines, resulting in the
promotion of acute gout inflammation. Conversely, anti-inflammatory cytokines, e.g., TGF-β,
which is produced by inflammatory and anti-inflammatory macrophages [95] to promote the
resolution of inflammation, upregulates PRG4 expression by synoviocytes [30]. The increase in
PRG4 levels in the synovial microenvironment “cloaks” the CD44 receptor and arrests active
MSU crystal phagocytosis. Furthermore, PRG4 binding to CD44 results in the activation of
PP2A, which inhibits the NF-κB signaling pathway, M1 macrophage polarization, and shifts the
balance of resident macrophages towards the anti-inflammatory M2 phenotype characterized
by secretion of anti-inflammatory cytokines, e.g., IL-10. As a result, nonclassical monocytes
entry into synovium surges, and such monocytes preferentially differentiate to M2 macrophages,
which facilitate tissue repair and the resolution of inflammation.
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Figure 3. Foundation of synovial tissue homeostasis by the PRG4/CD44/PP2A/XOR circuit. The
failure of this circuit includes (A) Inhibition of PRG4 synthesis and/or its degradation by proteases
(denoted by scissors) in the setting of acute inflammation, while simultaneously increasing CD44
expression on synovium-resident macrophages (SRMs). Unoccupied CD44 mediates urate crystal
uptake and downstream XOR expression. IL-1β and GM-CSF (gout mediators) also induce XOR
in macrophages (MACs). (B) XOR drives SRMs towards XORhi M1 MACs, while PRG4 deficiency
exacerbates M1 MAC accumulation. XOR products: urate (UA) is secreted into the joint space
and promotes crystal deposition/growth, and reactive oxygen species (ROS) activate the NLRP3
inflammasome and inhibit PP2A activity. PRG4 also interferes with MSU crystal formation [83]. M1
MACs release chemokines and pro-inflammatory cytokines that recruit neutrophils and classical
monocytes (CMs). Circuit reconstitution effectively resolves acute inflammation using the following
mechanisms: (C) TGF-β upregulates PRG4, resulting in “cloaking” of CD44 on SRMs and inhibition
of urate crystal phagocytosis. (D) PRG4 binding CD44 activates intracellular PP2A, inhibits NF-κB,
and prevents M1 polarization. XORlo M2 MACs secrete IL-10, which promotes the viability of and
preferential differentiation into anti-inflammatory/wound-healing M2 MACs of the non-classical
monocytes (NCMs) that have surged into the acutely inflamed gouty joint.
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4.2. PRG4 Deficiency Associated with Erosive Gouty Arthritis Independent of Hyperuricemia

Characterization of unusual and severe cases of disease is highly informative for patho-
physiology. In our work, we characterized a central pathogenic role of PRG4 deficiency in a
healthy 22-year-old white female diagnosed with an aggressive, destructive autoinflamma-
tory disease meeting the criteria for gout, despite a normal serum urate level (5 mg/dL) [83].
Imaging and SF examination confirmed the presence of MSU crystals and upon treatment
with allopurinol (400 mg/day), her serum urate level decreased to ~2 mg/dl, and this
was associated with a marked reduction in gout flares. Whole genome sequencing, whole
blood RNA sequencing and quantitative proteomics revealed the presence of an NLRP3
V198M variant, a low serum PRG4 level, and genomic and serum proteomic interactome
network changes that favored increased PRG4 degradation. The changes included a pre-
dicted deleterious mutation in the protease inhibitor ITIH3, and low serum levels of the
protease inhibitors thrombospondin1 and Serpin B6. ELISA and proteomics studies iden-
tified that the PRG4 level in the patient’s serum needed to be attenuated, and very low
serum PRG4 was also seen in 5 out of 18 patients with gout. Whole-blood PRG4 mRNA
was not decreased in the patient compared to her parents or healthy controls. Follow-up
studies demonstrated that the activity of the neutrophil-released protease cathepsin G
activity was increased in patient’s serum, and in multiple gout patients, while undetected
in healthy controls. Furthermore, the activated neutrophil-released cathepsin G co-activator
lactoferrin was increased in the patient’s serum, and also elevated in a cohort of gout
patients relative to matched non-gout controls. Strikingly, the serum level of the cathepsin
G substrate amyloid precursor protein (APP) was attenuated in the patient and her parents.
While this presentation is rare, it provides strong corroborating evidence for the central im-
plication of PRG4 in gout disease pathophysiology. Moreover, the study provided evidence
for multiple potential new biomarkers for susceptibility to both incident and progressive,
erosive gout, such as an “interactome” network of physically interacting serum proteins
cited above that mediate proteolysis of PRG4, as well as phagocyte inflammatory responses
and NETosis, which itself is implicated in tophus generation and the resolution of acute
gouty inflammation [96].

5. Cartilage Proteins and Gout Pathogenesis

DAMPs comprise a heterogenous group of cartilage fragments, extracellular matrix
(ECM) proteins, secreted intracellular proteins, and crystals including MSU crystals, which
play a significant role in mediating synovial inflammation [97–99]. DAMPs bind to pattern
recognition receptors including membrane-bound receptors, e.g., the TLRs or receptors for
advanced glycation end products (RAGE), and cytoplasmic receptors such as NOD-like
receptors (NLRs) [97,98]. DAMPs are broadly classified based on their origins as either
intracellular or extracellular. Intracellular DAMPs are immunogenic molecules, released
from apoptotic cells such as S100A9, a member of the calcium-binding S100 proteins that
stabilize the cytoskeleton [98]; high-mobility group box protein 1 (HMGB1), a nuclear
protein that facilitates transcription factor and nucleosome stability; and urate [97,98].
Extracellular DAMPs are ECM proteins and their breakdown fragments. Native ECMs
that act as DAMPs include CII, biglycan and fibronectin [100–102]. Common among
these native ECMs is their ability to activate the p38 and NF-κB signaling pathways via
binding to the discoidin domain receptor (DDR2) (CII) [100] and TLR2/TLR4 (biglycan
and fibronectin) [101,102]. ECM fragments that act as DAMPs include aggrecan 32-mer
fragment, fibronectin fragments, low-molecular-weight hyaluronan, the Coll2-1 CII peptide,
and the N-terminal telopeptide of CII [97,103–106]. Similarly, TLR2 and TLR4 contribute
significantly to the pro-inflammatory signaling of these breakdown DAMPs [103–106].

Few studies have investigated the contribution of cartilage-derived DAMPs to MSU
crystal inflammation in the joint [107,108]. This is surprising, given the significant associa-
tion between OA and gout, where OA joints have a greater clinical chance of developing
gout, suggesting overlapping pathophysiological mechanisms [109]. Chhana et al. stud-
ied the impact of normal and diseased cartilage homogenates on urate crystal formation
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in vitro, and found that both normal and diseased cartilage increase the total mass of
MSU crystals and result in the formation of shorter crystals [107]. To identify the cartilage
factor(s) responsible for formation of shorter urate crystals, the authors repeated the MSU
crystallization assays in the presence of different cartilage factors, and only CII was found
to cause the formation of shorter MSU crystals. MSU crystals grown with cartilage ho-
mogenates produce significantly higher IL-8 compared to control MSU crystals, suggesting
a higher potential to induce inflammation. In another study, and using Raman spectroscopy,
Xu et al. discovered that in gout patients with cartilage injuries, CII is enriched on MSU
crystals [108]. Full-length CII also causes the formation of shorter crystals and influences
the alignment of crystal bows, resulting in greater phagocytosis by macrophages with
downstream ROS generation, chemokine and pro-inflammatory cytokine expression [108].
Interestingly, PRG4 prevents MSU crystal formation in vitro [83], and being a major com-
ponent in SF, PRG4 potentially has a biophysical role against formation of particulate
danger signals in the SF. Since CII-enriched MSU crystals are more readily phagocytosed
by macrophages, and since the CII-MSU complex enhances TLR2 and TLR4 expression by
macrophages, PRG4 may act to counteract the effect of CII via inhibition of MSU crystal
formation, phagocytosis, and the TLR2/TLR4-NF-κB signaling pathway. The posited op-
posing roles of CII and PRG4 in the context of MSU crystal formation, phagocytosis, and
synovial macrophage activation are presented in Figure 4.
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Figure 4. A hypothetical model of proteoglycan 4 (PRG4) and collagen type II (CII) in gout patho-

genesis. We posit that PRG4 and CII have opposing roles in the joint environment. CII fragments Figure 4. A hypothetical model of proteoglycan 4 (PRG4) and collagen type II (CII) in gout pathogen-
esis. We posit that PRG4 and CII have opposing roles in the joint environment. CII fragments are
released from cartilage in response to mechanical injuries and MMP-mediated proteolysis. PRG4 is
known to prevent cartilage surface damage and degeneration via biophysical and biological mech-
anisms. CII fragments initiate the formation of shorter MSU crystals, while PRG4 inhibits MSU
crystallization. The CII-MSU crystals are more readily phagocytosed by synovial macrophages, while
PRG4 inhibits the phagocytic function of macrophages. Phagocytosis of CII-MSU crystals results in
release of IL-1 and IL-8, and upregulates TLR2 and TLR4 expressions on macrophages, which leads
to a positive feedforward effect, as DAMPs in the joint promote further inflammation. PRG4, on the
other hand, inhibits IL-1 and IL-8 release MSU-stimulated macrophages and binds TLR2 and TLR4
receptors, thereby attenuating their activation by DAMPs.

6. Future Areas for Research

The discovery of a PRG4/CD44/PP2A/XOR circuit that acts in the joint to maintain
synovial tissue homeostasis raises interesting new questions:

• What is the importance of PRG4 to synovial macrophage barrier integrity in the
joint [110] in the context of acute urate crystal inflammation?

• Does disruption to the integrity of this barrier layer increase the likelihood of a gout
flare and/or increase its severity?
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• To what extent does XOR regulate synovial macrophage plasticity in the synovium,
and in which patients will the urate produced in the joint increase the disease burden?
This is quite relevant, since an erosive form of gout with urate crystal deposition was
observed in an otherwise normouricemic patient [83].

• Does SZP regulate urate crystal deposition on cartilage surfaces and affect XOR
expression via superficial zone articular chondrocytes?

• What is the impact of changes in the O-glycomap of PRG4 or its degradation fragments
on urate crystal formation and synovial macrophage priming in gout? Potentially,
there is a pro-inflammatory effect that is a consequence of these changes, since in
late-stage OA, synovial PRG4 may have increased unsialylated core 1 O-glycans,
which compromise its ability to bind galectin-3, a pro-inflammatory mediator [111];
meanwhile, truncated O-glycans of PRG4, commonly found in OA, promote pro-
inflammatory cytokine production and may exacerbate synovitis [112]. Moreover,
tryptase-mediated cleavage of PRG4 in OA SF activates TLR2 and TLR4 receptors [113].

7. Summary and Conclusions

The mucinous glycoprotein, PRG4, has a multifaceted role in the joint, including
boundary lubrication and synovial homeostasis. PRG4 binds different receptors, e.g., CD44,
TLR2, and TLR4, and suppresses pro-inflammatory and pro-fibrotic signaling pathways.
PRG4 suppresses urate crystal uptake by mouse macrophages, human monocytes, and
macrophages, and prevents NLRP3 inflammasome activation and the secretion of mature
IL-1β. Mechanistically, this is accomplished by binding and cloaking the CD44 receptor,
a direct mediator of urate crystal phagocytosis by macrophages. PRG4-CD44 interaction
also activates intracellular PP2A signaling that inhibits NF-κB activation and suppresses
the levels of XOR, urate and ROS in inflammatory macrophages. PRG4 deficiency was
implicated in an erosive, destructive form of autoinflammatory arthritis that met the criteria
for gout in an otherwise healthy, normouricemic young female adult. rhPRG4 ameliorates
acute gout inflammation in mouse and rat models, and reduces IL-1β secretion from gout
PBMCs, which is comparable to the effect of IL-1Ra. PRG4 biology and turnover may
provide novel biomarkers for the risk of incident and progressive gout. Furthermore,
changes in PRG4 expression and turnover may help explain the linkages of gout to NETosis
and to osteoarthritis. Since PRG4 acts upstream of the disease onset and progression
processes in gout, PRG4 has the potential to provide a new approach for the management
of acute and chronic gouty arthritis, including using engineering means to protect and
supplement PRG4 for refractory erosive and tophaceous gout.
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