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Abstract: IκB kinases (IKKs), specifically IKKα and IKKβ, have long been recognized for their
pivotal role in the NF-κB pathway, orchestrating immune and inflammatory responses. However,
recent years have unveiled their dual role in cancer, where they can act as both promoters and
suppressors of tumorigenesis. In addition, the interplay with pathways such as the MAPK and
PI3K pathways underscores the complexity of IKK regulation and its multifaceted role in both
inflammation and cancer. By exploring the molecular underpinnings of these processes, we can
better comprehend the complex interplay between IKKs, tumor development, immune responses,
and the development of more effective therapeutics. Ultimately, this review explores the dual role
of IκB kinases in cancer, focusing on the impact of phosphorylation events and crosstalk with other
signaling pathways, shedding light on their intricate regulation and multifaceted functions in both
inflammation and cancer.
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1. Introduction

The NF-κB (Nuclear Factor-κB) pathway is a linchpin of cellular responses to external
stimuli, especially in the realms of immune and inflammatory processes [1]. Within the
broader context of the NF-κB signaling pathway, the IκB kinases (IKKs) (Table 1), particu-
larly IKKα and IKKβ, occupy a pivotal position in the intricate regulatory network of these
pathways. Traditionally recognized for their roles in immune surveillance and defense, the
IKKs have recently emerged as enigmatic figures in the landscape of cancer biology [2–5].
Their Janus-faced nature, promoting or suppressing tumorigenesis depending on context,
has prompted an intensive exploration of their molecular mechanisms within the context
of cancer and the possibility of targeting them [6].
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Table 1. Types of IκB kinases.

Type of IκB Kinase Role in NF-κB Pathway Function in NF-κB Regulation Targets

IKKα (Inhibitor of κB Kinase
Alpha) [7]

Non-Canonical NF-κB
pathway

Phosphorylates p100, leading to partial
proteasomal processing into p52. Initiates
non-canonical gene transcription. Involved
in cellular senescence.

p100

IKKβ (Inhibitor of κB Kinase
Beta) [8] Canonical NF-κB pathway

Phosphorylates IκBα and IκBβ, marking
them for degradation. Releases p50-RelA
dimers for nuclear translocation. Associated
with chronic inflammation and
tumor promotion.

IκBα, IκBβ

IKKε (Inhibitor of κB Kinase
Epsilon) [9]

Both canonical and
non-canonical pathways

Regulates NF-κB activation, particularly in
response to viral infections. Can promote
cell survival.

-

TBK1 (TANK-binding
kinase 1) [10]

Non-Canonical NF-κB
pathway

Activates IKKα and promotes non-canonical
NF-κB signaling. Also involved in antiviral
immune responses.

IKKα

IKKζ (Inhibitor of κB Kinase
Zeta (MAIL)) [11]

Both canonical and
non-canonical pathways

Modulates NF-κB signaling and immune
responses. May play a role in inflammation
and autoimmunity.

-

NEMO (NF-κB Essential
Modulator) [12] Central scaffold protein

Acts as an essential scaffold for IKKα and
IKKβ, facilitating their activation. Essential
for canonical NF-κB activation.

IKKα, IKKβ

The NF-κB pathway, with its intricate family members, represents a dynamic signaling
network that orchestrates cellular responses to a multitude of extracellular signals [13].
The fundamental aspect of this pathway revolves around the NF-κB transcription factors,
comprising various members such as p65 (RelA), RelB, c-Rel, p105/p50, and p100/p52.
These members of the NF-κB family combine in different dimeric forms, each playing
specific roles in overseeing signaling pathways, particularly those involved in immune
responses [14–16].

Central to the regulation of NF-κB is the presence of inhibitory proteins referred to
as IκBs, responsible for maintaining NF-κB dimers in an inactive state within the cell’s
cytoplasm [17]. The activation of the pathway involves the phosphorylation of IκBs, tagging
them for degradation by the proteasome machinery. This process liberates NF-κB dimers,
allowing them to migrate into the nucleus and commence gene transcription (Figure 1) [18].

The NF-κB pathway, essential for various physiological processes, exists in multiple
branches. Primarily, there are two well-characterized pathways: the canonical (or classical)
and non-canonical (or alternative) [19]. These pathways differ in terms of the stimuli
that activate them, the proteins involved, and the nature of their functions. The effective
enhancement of NF-κB involves a complex regulation process mediated by the IκB kinase
(IKK) complex. This intricate system orchestrates the phosphorylation of IκB proteins,
leading to their ubiquitination and subsequent degradation via the proteasome [20–22].
This series of events ultimately results in the liberated NF-κB complexes translocating into
the nucleus.

Within the nucleus, these NF-κB complexes engage with specific DNA sequences,
thereby governing the transcription of genes involved in diverse processes, including
immune responses, cellular growth regulation, and the modulation of cell survival [23–25].
Notably, within the context of cancer, NF-κB-dependent genes encompass those responsible
for encoding cytokines, chemokines, cyclin D1, matrix metalloproteinases, and antiapop-
totic proteins such as Bcl-xL [26–28].
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Figure 1. Schematic representation of the roles of IκB in the canonical and non-canonical NF-κB
pathway. The NF-kB pathway involves key proteins such as Tumor Necrosis Factor Receptor-
Associated Factor 3 (TRAF3), Precursor protein 100 (p100), V-rel avian reticuloendotheliosis viral
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2. Canonical NF-κB Pathway

In the Canonical Nuclear Factor-kappa B (NF-κB) pathway, activation is initiated by a
diverse array of stimuli, encompassing proinflammatory cytokines like Tumor Necrosis
Factor-alpha (TNF-α) and Interleukin-1 beta (IL-1β), as well as microbial products like
lipopolysaccharides (LPSs) (Figure 1) [29–32]. Key to this pathway is the activation of
IKKβ, which subsequently phosphorylates and targets IκBα and IκBβ for degradation. As
a result, this liberation allows for the movement of p50-RelA dimers into the nucleus. Once
in the nucleus, these dimers function as transcription factors, overseeing the expression of
genes linked to inflammation, immune responses, and cell survival (Figure 1) [33–35].

3. Non-Canonical NF-κB Pathway

Conversely, the Non-Canonical NF-κB pathway is typically triggered by a unique
group of receptors, which encompass the lymphotoxin-β receptor (LTβR) and B-cell acti-
vating factor receptor (BAFF-R) [36]. This pathway is reliant on the conversion of p100 to
p52, a process orchestrated by the activation of IKKα. Subsequently, the p52-RelB dimers
relocate to the nucleus, assuming critical roles in the development of secondary lymphoid
organs, B-cell maturation, and the organization of lymphoid tissues (Figure 1) [37–39].

NIK, or NF-κB-inducing kinase, holds a crucial position in regulating the non-canonical
NF-κB signaling pathway [40]. Initially acknowledged for its role in activating the canoni-
cal NF-κB pathway, the absence of NIK did not hinder the TNF-induced IKKβ/p65/p50
activation. However, it was later discovered to be essential for triggering the non-canonical
NF-κB pathway [41–43]. The regulation of NIK predominantly occurs post-translationally.
Structurally, NIK encompasses four domains: a TRAF3-binding N-terminal region, a nega-
tive regulatory domain (NRD), a core kinase domain, and a C-terminal domain responsible
for binding with proteins like IKKα and p100 [44–46].

Initially recognized as a mediator following TNF and IL-1 receptor activation, NIK’s
kinase activity was deemed crucial in facilitating this particular process. Additionally,
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it mediates stimulation through various receptors like CD27, CD30, CD40, LTβR, and
BAFFR [47–50]. The overexpression of NIK activates NF-κB, protecting cells from TNF-
induced apoptosis, while kinase-dead NIK mutants inhibit NF-κB activation by TNFα [51–53].

Under normal conditions, NIK binds to TRAF2/3 and cIAP1/2, leading to its con-
tinuous ubiquitination and degradation [54]. Stimulation by cytokines (such as CD40L,
TWEAK, LTα/β, or LPS) sequesters TRAF2/3, allowing the cIAP1-mediated ubiquitination
of TRAF3 [55]. The subsequent degradation of TRAF3 leads to the accumulation of newly
synthesized NIK within the cell. This stabilization and buildup of NIK are crucial for
initiating the noncanonical NF-κB pathway [56–58]. Upon receptor activation, NIK triggers
IKKα phosphorylation at Ser-176 and Ser-180, activating it to phosphorylate p100. The
phosphorylation of p100 prompts the binding to ubiquitin ligase β-TrCP, resulting in partial
proteasomal processing to p52. This processing removes the inhibitory C-terminal ankyrin
repeat domain of p100, akin to the function of mature IκB proteins, thus maintaining RelB
inactive in the cytoplasm. Subsequently, p52-RelB translocates to the nucleus to regulate
transcription [59–62].

NIK interacts with and activates both IKKα and IKKβ, phosphorylating IKKα to
a greater extent. Consequently, NIK acts as an upstream kinase for the IKK complex,
facilitating signaling from multiple cytokine receptors [63–65]. Several other kinases,
including MEKK1 and TAK1, were identified as IKK kinases, sometimes acting alongside
NIK. TAK1, for instance, can activate NIK/IKK/NF-κB signaling independently of NIK
in certain contexts [66]. Additionally, proteins like TRAF2, 5, and 6, as well as TBK-1,
contribute to NF-κB activation by acting upstream of NIK. Moreover, Bcl10 has been
reported to phosphorylate NIK under specific inflammatory conditions in human colonic
epithelial cells treated with carrageenan (CGN) [22,67,68].

4. The Dark Side: IκB Kinases as Tumor Promoters
4.1. IKKα (Inhibitor of κB Kinase Alpha)

IKKα plays a multifaceted role in cancer, impacting both its initiation and progres-
sion, along with metastasis. In colorectal cancer cells (HT29), IKKα exhibits abnormal
activation within the nucleus of tumor cells [69]. Here, it binds to specific genes reliant
on Notch signaling, such as hes1 and herp2. The nuclear IKKα phosphorylates a nuclear
co-repressor, SMRT, causing its release from chromatin and the subsequent expression of
Notch-dependent genes [70], leading to more aggressive growth and proliferation. Pan-IKK
inhibition re-establishes SMRT chromatin binding, curbing Notch-related gene expression,
and restraining tumor growth in experimental models [71].

Additionally, IKKα phosphorylates N-CoR, akin to SMRT, facilitating its nuclear export
from CRC cells [72]. The active nuclear IKKα isoform, IKKα(p45), is crucial for preventing
apoptosis and thereby fostering tumor growth, specifically in HCT116 cells. Mechanisti-
cally, the association between active TAK1, BRAF, a complex containing IKKα(p45), and
NEMO leads to SMRT and Histone H3 phosphorylation, which is vital for BRAF-mediated
transformation independent from NF-κB signaling [73].

In keratinocytes, evidence demonstrates IKKα’s involvement in cancer initiation
independently of NF-κB [74]. The deletion of IKKα induces skin squamous cell carcinoma
in mice, affecting 14-3-3σ expression and prompting aberrant cell proliferation, disrupting
skin homeostasis, and promoting cell transformation [75]. Additional studies support
IKKα’s tumor suppressor role in the skin, linking its activity to the transforming growth
factor beta (TGFβ) pathway. Moreover, a specific variant of nuclear IKKα in keratinocytes
leads to more aggressive tumors upon exposure to chemical carcinogens [76,77].

Basal cell carcinomas (BCCs) are the most prevalent among human cancers affecting
the skin [78]. While the noncanonical NF-κB pathway relies on IKKα, its specific role in
BCC remains unclear. One study indicated that, within both BCC and non-malignant
conditions, IKKα is present in the nucleus. Within BCC, the nuclear IKKα directly interacts
with the promoters of inflammation factors and LGR5, a marker for stem cells. This
interaction leads to an increase in LGR5 expression through the activation of the STAT3
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signaling pathway, thereby contributing to cancer progression. The activation of the
STAT3 pathway influences the LGR5 expression in a manner dependent on IKKα, as
demonstrated by the interplay between STAT3 and IKKα. Moreover, suppressing the IKKα

impedes the tumor growth and transition from the epithelial stage to the mesenchymal
stage. This finding highlights IKKα’s role as a genuine chromatin regulator in BCC. Its
heightened expression facilitates oncogenic transformation by promoting the expression
of genes related to stemness and inflammation. Consequently, these findings offer a fresh
perspective on how IKKα may participate in the progression of BCC tumors within an
inflammatory microenvironment [79].

Moreover, in a study by Mahato and colleagues [80], they have shown that the sup-
pression of IKKα in prostate cancer cells using synthetic siRNAs affects tumor cell growth
and invasiveness. In this study, the authors designed three synthetic siRNAs targeting the
specific regions of IKKα mRNA and evaluated their ability to silence IKKα in PC-3 and
DU145 cells. A range of assays, including wound healing, migration, proliferation, and
cell cycle analysis, were employed to investigate how IKKα siRNAs biologically impacted
prostate cancer cells. Interestingly, their results uncovered potent siRNAs that could silence
IKKα by up to 70%, resulting in decreased wound healing, migration, invasion, and cell
attachment capabilities in prostate cancer cells. Additionally, this study observed compara-
ble anti-invasive effects in the presence of RANKL. However, silencing IKKα had minimal
effects on cell proliferation and cell cycle distribution. These findings strongly indicate
that IKKα significantly influences prostate cancer invasion and metastasis while playing
a minor role in cell proliferation. Targeting IKKα using siRNA emerges as a promising
therapeutic approach for managing prostate cancer by reducing invasion and metastasis
without directly impacting cell proliferation [81,82].

Moreover, IKKα contributes to progesterone-induced tumor promotion in breast
cancer, downstream of RANKL induction, and fosters metastatic spread relying on RANKL
produced by tumor-infiltrating regulatory T cells. It phosphorylates Estrogen Receptor α, its
coactivator AIB1/SRC3, and induces targets like cyclin D1 and c-myc, driving breast cancer
cell proliferation [83]. Clinical observations link IKKα expression in breast cancer cells with
patient outcomes regardless of cellular localization. In triple-negative breast cancer (TNBC)
cells, IKKα mediates Notch signaling triggered by the Notch ligand Jagged1, a pivotal
pathway for TNBC Cancer Stem Cell survival [84]. Combining therapies targeting the
intersection of Notch, AKT, and NF-κB pathways holds promise for therapeutic applications
against cancer stem cells in TNBC [85].

4.2. IKKβ (Inhibitor of κB Kinase Beta)

In contrast to IKKα, IKKβ is predominantly associated with the canonical NF-κB
pathway. One of its key functions is the phosphorylation of IκBα and IκBβ. This phos-
phorylation event marks IκB proteins for degradation, allowing the release of p50-RelA
dimers [86]. The degradation of IκB proteins leads to the liberation of NF-κB, a transcription
factor crucial in orchestrating the expression of pro-inflammatory genes. This includes
genes responsible for cytokine and chemokine production, thus fostering a sustained and
amplified inflammatory response within the tumor microenvironment [87]. This persistent
inflammation, driven by IKKβ, creates a milieu that nurtures tumor growth, angiogenesis,
and metastasis [88].

The released dimers subsequently move into the nucleus, where they commence the
transcription of genes linked with the canonical NF-κB pathway. Notably, the activation
of IKKβ is frequently prompted by proinflammatory stimuli, connecting it to persistent
inflammation [89]. This linkage further underscores IKKβ’s significance in fostering tumor
progression, the formation of new blood vessels (angiogenesis), and the spread of cancer to
distant sites (metastasis), highlighting its critical role in the context of cancer. However, it is
important to note that the outcome of this inflammatory response is context-dependent,
either influencing the promotion of tumor formation or the initiation of an immune reaction
against tumors [90].
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To date, diverse chemical inhibitors targeting IKKβ have been discovered, each em-
ploying distinct mechanisms [91] (see Table 2). Most of these inhibitors mimic ATP, display-
ing reversible, ATP-competitive behavior, often exhibiting some preference for inhibiting
IKKβ over IKKα and other kinases [92]. Yet, due to the structural similarity of protein
kinase ATP-binding sites, these ATP mimics can inadvertently affect other kinases, causing
unintended effects at concentrations required to inhibit their primary target in cells [93].
Specifically, some commonly used ‘specific’ IKKβ inhibitors, such as Bay 11-7082 and
TPCA-1, have been found to induce significant off-target effects [94]. For instance, Bay
11-7082 disrupts NF-κB by irreversibly deactivating the E2-conjugating enzymes Ubc13 and
UbcH7, as well as the E3-ligase LUBAC, rather than directly inhibiting IKK activity. Simi-
larly, TPCA-1 hampers the STAT3 signaling by directly binding to the STAT3 Src Homology
2 (SH2) domain, alongside its IKKβ inhibitory activity [95].

Table 2. The selected compounds of natural and synthetic origin that were investigated for their
effects on IKKβ in various cancer cell lines. They modulate IKKβ activity, leading to a suppression of
NF-κB signaling, and the consequent downregulation of genes associated with inflammation, cell
survival, and proliferation.

Compound Name Source or
Synthesis

Cell
Line/Organism

Concentration
(µM)

Incubation
Time (h)

Observed Effect on
IKKβ/Target Structure

Curcumin [96] Turmeric (Plant)
Various cancer
cell lines (e.g.,
MCF-7, A549)

10–50 12–48

Inhibition of IKKβ
phosphorylation and NF-κB

activation, leading to reduced
pro-inflammatory and

pro-survival gene expression.
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lines (e.g., HeLa, U87) 5–20 2–24 

Direct inhibition of 
IKKβ activity, leading to 
the suppression of NF-

κB signaling and the 
downregulation of pro-

survival and pro-
inflammatory genes.  

EGCG
(epigallocatechin-

3-gallate) [99]
Green tea (plant)

Various cancer
cell lines (e.g.,

A549, HCT-116)
20–100 24–48

Suppression of IKKβ
phosphorylation, leading to

decreased NF-κB activity and
inhibition of pro-survival and
pro-inflammatory pathways.
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Table 2. Cont.

Compound Name Source or
Synthesis

Cell
Line/Organism

Concentration
(µM)

Incubation
Time (h)

Observed Effect on
IKKβ/Target Structure

PS1145 [102] Synthetic
compound

Various cancer
cell lines

(e.g., A549,
MDA-MB-231)

1–10 4–24

Selective inhibition of IKKβ,
resulting in the attenuation of

NF-κB signaling and the
reduction in

pro-inflammatory and
anti-apoptotic

gene expression.
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IκBζ as a crucial modulator of the proinflammatory SASP [114]. 
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Currently, the most potent ATP-competitive inhibitors for IKKβ include MLN-120B
and BI605906, showcasing over 50-fold and over 300-fold selectivity for IKKβ over IKKα,
respectively [105].

Recent research indicates potential toxicity and side effects correlated with IKKβ

inhibition, such as the onset of inflammatory skin diseases and the heightened vulnerability
of colonic epithelium to various stressors [106,107]. Severe liver malfunction has been
observed in mice with IKKβ deficiencies, and intestinal and liver toxicity has surfaced
in numerous clinical trials involving IKKβ inhibitors, potentially restricting their clinical
applicability [108].

5. The Bright Side: IKKs as Tumor Suppressors
5.1. IKKα in Tumor Suppression

Despite its role in promoting cancer in some contexts, IKKα also has tumor-suppressive
functions. It can induce cellular senescence in response to oncogenic stress, causing cells
to enter a state of irreversible growth arrest [109]. Cells that undergo senescence not only
cease dividing but also release substances referred to as the senescence-associated secretory
phenotype (SASP). These substances attract immune cells, which in turn play a role in
eliminating cells that could potentially develop into tumors [110].

A significant association exists between DNA damage-triggered senescence and the
NF-κB-regulated SASP [111]. When exposed to genotoxic stress, the Ataxia telangiectasia
mutated (ATM) kinase activates NF-κB by triggering the post-translational modifications
(PTMs) of NEMO, which play a pivotal role in NF-κB activation. NEMO activation by
ATM subsequently triggers the IKK complex, culminating in the nuclear translocation
of NF-κB and the transcription of numerous genes related to SASP [112]. In melanoma,
senescent cells produce a secretome characterized by the pro-invasive and pro-tumorigenic
properties, relying on PARP-1 and NF-κB [113].

The expression of SASP components IL-6 and IL-8 necessitates IκBζ during both DNA
damage-induced senescence and oncogene-induced senescence (OIS), establishing IκBζ as
a crucial modulator of the proinflammatory SASP [114].

Multiple strands of evidence indicate that the continuous DNA damage response
(DDR) is crucial for robust SASP production. The depletion of DDR elements like ATM,
NBS1, or CHK2 inhibits the expression of IL-6, IL-8, and several GRO family members [115].
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Consequently, it has been demonstrated, at least in specific experimental setups, that DDR
activation—not just the presence of DNA damage itself—governs senescent states and
SASP regulation [116].

Metformin, an anti-diabetic medication with diverse effects, also exerts activity on
senescent cells [117]. One of its effects involves impairing the SASP of RAS-induced senes-
cent cells without impeding proliferative arrest. This occurs through the inhibition of
IKKα/β and IκB phosphorylation by metformin, preventing the nuclear translocation of
p65 (RelA) [118]. Metformin negatively influences NF-κB without affecting other inflam-
matory pathways like p38, JNK, and IRF. The inhibition of SASP by metformin might
contribute to the observed anti-aging effects post-metformin treatment [119].

5.2. IKKβ in Antitumor Immune Responses

One of the central mechanisms through which IKKβ contributes to antitumor immu-
nity is the activation of immune cells, particularly T cells and dendritic cells (DCs) [2].
These immune cells play pivotal roles in orchestrating immune responses against cancer.

IKKβ activation in T cells enhances their responsiveness and effector functions. T cells
are the foot soldiers of the immune system, responsible for recognizing and eliminating
cancer cells [120]. The activation of the IKKβ/NF-κB pathway in T cells augments their
activation and proliferation. This, in turn, leads to an increased pool of cytotoxic T lympho-
cytes (CTLs) that can effectively target and kill cancer cells [121]. Additionally, activated T
cells can infiltrate the tumor microenvironment, exerting their antitumor effects directly at
the site of malignancy.

T cells capable of recognizing tumor-associated antigens exhibit potential in eradicat-
ing tumors [122]. Despite their presence in cancer patients—both in circulation and within
tumors—these tumor-reactive T cells often fail to prevent tumor progression over time,
indicating a probable decline in their functional abilities [123]. The direct analysis of these
tumor antigen-specific T cells revealed deficiencies in cytokine production and cytolytic
activity. Efforts to intervene and restore T cell function have shown promise in clinical set-
tings but frequently result in partial responses. Understanding the mechanisms underlying
T cell dysfunction in cancer remains crucial for enhancing therapeutic efficacy [124].

One critical pathway for T cell function involves the activation of IκB kinase β (IKKβ)
and the subsequent activation of NF-κB. In the tumor environment, T cell-NF-κB activity is
often hindered, leading to reduced functionality in T cells isolated from cancer patients [125].
Recent studies conducted with mouse models exhibiting compromised NF-κB downstream
of the T cell receptor (TCR) underscored the critical importance of T cell-NF-κB activation in
the release of cytokines, specific targeting, and the destruction of antigens, and the in vivo
eradication of tumors [126]. This indicates that reduced T cell-NF-κB activity induced
by growing tumors compromises anti-tumor T cell responses, fostering a cycle favoring
tumor growth. Consequently, exploring methods to stimulate T cell-intrinsic NF-κB activity
becomes a compelling avenue for enhancing anti-tumor immunity [127,128].

In a study by Evaristo et al. [129], novel genetic mouse models expressing constitutively
active IKKβ (caIKKβ) specifically in T cells were employed. The results demonstrated
that the T cell-specific expression of caIKKβ significantly improved tumor control, even
in cases of established tumors. Thus, stimulating T cell-intrinsic NF-κB appears crucial
in responding to cancer growth, suggesting that the therapeutic manipulation of the
IKKβ/NF-κB axis holds promise for boosting anti-tumor immune responses.

DCs are antigen-presenting cells that play a critical role in initiating and shaping
antitumor immune responses. IKKβ activation in DCs enhances their ability to capture,
process, and present tumor antigens to T cells [130]. This process, known as antigen
presentation, is a crucial step in initiating an adaptive immune response against cancer. The
activation of the IKKβ/NF-κB pathway in DCs results in the upregulated expression of
co-stimulatory molecules and cytokines that are necessary for efficient T-cell priming [131].

IKKβ activation in DCs leads to the upregulation of co-stimulatory molecules, such
as CD80 and CD86 [132]. These molecules interact with their corresponding receptors on
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T cells, providing essential co-stimulatory signals that are required for T-cell activation
and proliferation. The enhanced expression of these co-stimulatory molecules by IKKβ-
activated DCs amplifies the effectiveness of T-cell priming and the subsequent antitumor
immune response [133].

Baratin et al., 2015 [134] conducted a comparative analysis of the transcriptomes of
NLT-DCs within the skin and their migratory counterparts located in the draining lymph
nodes (LNs). Through this investigation, they identified a novel gene network that is
regulated by the NF-kB pathway and is specific to migratory dendritic cells. Their findings
demonstrate that the targeted deletion of IKKβ, a key activator of NF-kB, in dendritic cells,
hampers the accumulation of NLT-DCs in LNs and impairs the conversion of regulatory T
cells in vivo. These outcomes are closely associated with disruptions in immune tolerance
and the onset of autoimmune responses.

The activation of IKKβ leads to a heightened production of proinflammatory cytokines
like interleukin-12 (IL-12) and interferon-gamma (IFN-γ) by DCs [135]. These cytokines
serve a pivotal function in fostering an immune environment that supports anti-tumor
immunity. IL-12, for instance, can skew the immune response towards a Th1 phenotype,
characterized by enhanced cytotoxic activity and IFN-γ production by T cells. IFN-γ, on the
other hand, has direct antitumor effects and can activate other immune cells to contribute
to tumor eradication [136].

6. Distinct Phosphorylation Events and Kinases

Serine/threonine phosphorylation by IKKα and IKKβ plays a pivotal role in regulating
the NF-κB pathway. When NF-κB is inactive, it is typically sequestered in the cytoplasm
by inhibitor proteins known as IκB (Inhibitor of κB) [137]. The phosphorylation of serine
residues within IκB proteins, especially IκBα and IκBβ, is a critical event orchestrated by
IKKβ. This phosphorylation serves as a recognition signal for the E3 ubiquitin ligase, which
ubiquitinates IκBα and IκBβe [138].

Tyrosine-phosphorylated STAT dimers represent the culmination of these intricate
processes. Once formed, these dimers are ready to exert their transcriptional influence.
STAT dimers translocate from the cytoplasm into the cell nucleus. Inside the nucleus, they
bind to specific DNA sequences known as enhancer elements or response elements in
the regulatory regions of target genes [139]. This binding event is specific to the dimer’s
composition and the cytokine signals received.

The binding of tyrosine-phosphorylated STAT dimers to these regulatory elements
serves as a molecular switch, initiating the transcription of genes associated with immune
responses and inflammatory processes [140]. The regulated genes often encode critical
immune effectors, signaling molecules, and cytokines, shaping the cell’s response and
ultimately contributing to the immune and inflammatory outcomes observed in response
to cytokine stimulation. Importantly, the activation of tyrosine kinases, such as JAKs,
indirectly stimulates the NF-κB pathway [141]. This occurs through the cooperative efforts
of transcription factors like STATs, which activate the gene expression related to immune
responses. These genes may include those encoding proinflammatory cytokines and
chemokines [142].

The coordination of various signaling pathways, involving both tyrosine phosphory-
lation and serine/threonine phosphorylation events, ensures that the cellular response is
robust, efficient, and finely tuned to the needs of the immune system [143]. For instance,
in viral infection, the release of interferons triggers the activation of JAK–STAT signaling,
leading to the transcription of antiviral genes [144]. At the same time, the activation of the
NF-κB pathway stimulates the production of proinflammatory cytokines, which, in turn,
serve to attract immune cells to the site of infection. The interplay between these signaling
pathways optimizes the host’s response to the viral threat, underscoring the complexity of
cross-talk mechanisms in immune regulation [145].
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In the non-canonical NF-κB activation pathway, IKKα primarily phosphorylates a
different substrate, p100. This phosphorylation leads to a unique processing event that is
crucial for the activation of non-canonical NF-κB [146].

The phosphorylation of p100 by IKKα is followed by its partial proteasomal process-
ing. This processing event results in the generation of a smaller protein fragment, p52.
Importantly, p52 contains the DNA-binding domain necessary for transcriptional activity,
allowing it to function as an NF-κB transcription factor [147]. The p52 subunit combines
with other proteins, like RelB, to create dimers that then move into the nucleus. This
sequence of events triggers the activation of the non-canonical NF-κB pathway, which
functions differently compared to the canonical pathway [148].

The mechanism behind the phosphorylation of the IκB kinase T-loop remains a sig-
nificant unanswered query. Suggestions have arisen proposing the involvement of IKK
kinases (IKKKs) in this process, drawing an analogy to other signaling pathways [149].
One prominent example is TAK1, known for its involvement in the JNK pathway [150]. In
cell-free assays, TAK1, along with the adaptor proteins TAB 1 and TAB 2, has been identified
as a TRAF6-regulated IKK activator [151]. TAB 2’s role in recruiting TAK1 to the K63-linked
polyubiquitin chains of upstream regulators likely induces IKKβ phosphorylation through
proximity-driven mechanisms [152]. However, TAK1 is not a universal IKKK but rather
functions as a regulatory module impacting the IKK activation based on stimuli and cell
type. Another potential IKKK, MEKK3 [153], has been proposed as it can phosphorylate
IKK in vitro, and its deficiency correlates with the reduced NF-κB activation in response
to various stimulations like TNF, IL-1, or TLR. IL-1-induced NF-κB activation has been
linked to MEKK3 alongside TAK1 [154]. However, it is also suggested that IKK subunits
might undergo activation through trans-autophosphorylation rather than via an IKKK.
Recent structural and composition analyses support these possibilities, indicating that
trans-autophosphorylation and IKKK-dependent phosphorylation might work sequentially
or in parallel to achieve optimal kinase activation [155].

The dimeric NF-κB transcription factor, consisting of Rel family subunits that bind
to DNA, plays a pivotal role in immune and inflammatory responses. NF-κB has recently
been identified as a protector against apoptosis induced by tumor necrosis factor (TNF)
and various genotoxic agents [156]. Typically, NF-κB dimers are confined within the cyto-
plasm due to their interaction with inhibitory IκB proteins. These proteins bind to the Rel
homology domain (RHD), which is responsible for the dimerization, nuclear translocation,
and DNA binding functions of NF-κB/Rel proteins [157]. When cells are stimulated by
proinflammatory cytokines (e.g., IL-1, TNF), bacterial lipopolysaccharide (LPS) or phorbol
ester (TPA), specific IκBs (such as IκBα and IκBβ) undergo rapid phosphorylation at certain
N-terminal residues. This phosphorylation leads to their subsequent polyubiquitination
and degradation via the 26S proteasome [158].

The breakdown of these inhibitory IκB proteins liberates the NF-κB dimer, enabling its
migration into the nucleus to commence gene transcription [159]. Altering the phosphoryla-
tion sites on IκBα through specific mutations prevents its phosphorylation, ubiquitination,
and subsequent degradation. Mutants like IκBα(A32/36) act as powerful inhibitors of
NF-κB activation. Efforts to comprehend the regulation of this pathway have concentrated
on identifying the responsible protein kinase(s). The IκB kinase (IKK) complex, a 900 kDa
protein kinase complex, phosphorylates IκBα and IκBβ at sites crucial for their ubiquiti-
nation and degradation [160]. Another protein kinase complex phosphorylating IκB has
been described, but its relationship with IKK remains unclear. IKK’s activity is rapidly
stimulated by IL-1 or TNF and is dependent on its phosphorylation [161]. One component
of the IKK complex, IKKα, an 85 kDa polypeptide containing a protein kinase domain and
protein interaction motifs, has been molecularly identified. IKKα’s expression is vital for
NF-κB activation by various stimuli. IKKα has been isolated as a NIK-interacting protein,
suggesting its role in NIK-mediated NF-κB activation [162]. While a catalytically inactive
IKKα mutant can inhibit NF-κB activation, it can still interact with other IKK components
to form a functional but less active IκB kinase complex.
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Ubiquitination is a post-translational modification that tags proteins for degradation by
the proteasome [163]. Following ubiquitination, IκBα and IκBβ are targeted for proteasomal
degradation. As a result, they are rapidly degraded, freeing NF-κB from its sequestration.
The released NF-κB transcription factors can subsequently migrate to the cell nucleus and
initiate the transcription of genes [164].

The activation of IKKs appears to hinge on induced proximity from densely organized
signaling complexes and the binding of adapter proteins like NEMO or TAB proteins.
Non-degradative polyubiquitination, essential for IKK complex activation, triggers these
processes [165].

TRAF6 stands as the initial ubiquitin E3 ligase identified, catalyzing K63-linked auto-
ubiquitination alongside Ubc13 and Uev1A, subsequently initiating IKK activation. TRAF6
participates in numerous NF-κB-stimulating signaling pathways, including those triggered
by IL-1R, TLR, TCR, RIG-I-like receptor, and DNA double-strand breaks [166]. In IL-1
signaling, TRAF6’s enzymatic activity, rather than auto-ubiquitination, is essential for
NF-κB activation. TRAF6 not only self-ubiquitinates but also mediates the K63-linked
polyubiquitination of various pathway components like IRAK1, MALT1, and TAK1 [167].
Moreover, it is suggested that TRAF6 generates free, unanchored K63-linked polyubiquitin,
serving as a docking platform in IKK activation [168]. Several K63-specific E3 ligases
involved in distinct NF-κB signaling cascades were identified, such as TRAF2/5, or TRIM25
in the TNFR, IL-1R/TLR, and RIG-I pathways. Additionally, several proposed NF-κB
pathway regulators are substrates of inducible K63 ubiquitination, including Bcl10, NOD2,
and ELKS [169].

TNFα signaling does not rely on K63-linked ubiquitination, suggesting the importance
of alternative non-degradative polyubiquitination in this pathway [170]. For instance, the
linear, M1-linked ubiquitination of NEMO and RIP1 by the LUBAC complex is crucial
for NF-κB activation. LUBAC is associated with the TNFR1 signaling complex. LUBAC-
mediated M1-linked ubiquitination contributes to various NF-κB activations but is dispens-
able for B-cell receptor signaling. Mutations affecting LUBAC components were linked to
immune-related disorders, showcasing their physiological relevance [171].

Multiple ubiquitin linkages seem to play roles in NF-κB signaling, adding to the com-
plexity of ubiquitin-mediated processes [172]. E3 ligases like cIAP1 and TRIM23 catalyze
distinct ubiquitin chain types, and certain proteins show modifications with various ubiq-
uitin linkages in response to stimuli. Additionally, the mono-ubiquitination of proteins like
NEMO has been shown to impact NF-κB activation. These diverse modifications coordi-
nate specific protein interactions in NF-κB signaling pathways, although many intricacies
regarding these actions remain undiscovered [173].

7. Genetic and Epigenetic Regulation

While primary genetic mutations within the IκB kinase genes themselves are relatively
rare occurrences in the realm of cancer, modifications affecting their upstream regulatory
elements can exert profound and far-reaching effects. Somatic mutations affecting lysine
171 within the IKBKB gene, responsible for encoding the critical activating kinase (IKKβ) in
the canonical NFκB signaling pathway, were observed in splenic marginal zone lymphomas
and multiple myeloma. Lysine 171 is part of a positively charged pocket crucial for
interaction with the activation loop phosphate in the naturally activated kinase [174].

Their findings demonstrate that both K171E IKKβ and K171T IKKβ variants function
as kinases that remain constantly active, even in the absence of activation loop phospho-
rylation. Through predictive modeling and biochemical investigations, we elucidate why
mutations in a positively charged residue within the cationic pocket of a kinase reliant on
activation loop phosphorylation lead to persistent activation [175].

Utilizing transcription activator-like effector nuclease (TALEN)-based knock-in mu-
tagenesis, we present evidence from a B lymphoid context indicating the involvement of
K171E IKKβ in the development of lymphomas. Genetic mutations in TRAF proteins have
the potential to engender the persistent and aberrant activation of the NF-κB pathway, a
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phenomenon observed in various cancer types [176]. A notable instance is the frequent
occurrence of mutations in the TRAF3 gene within the context of multiple myeloma, which
leads to a chronic state of NF-κB pathway activation. The discernment of such genetic
anomalies, often made possible through advanced techniques like whole-genome sequenc-
ing, not only advances our comprehension of the multifaceted terrain of cancer biology but
also unveils promising therapeutic targets for potential intervention [177].

Multiple mechanisms contribute to NF-κB transcriptional regulation beyond its bind-
ing to κB regulatory elements in DNA. In non-neuronal cells, the signaling elements of the
NF-κB pathway participate in gene expression control through histone phosphorylation
and acetylation in coordination with histone deacetylases (HDACs). The IκB protein vari-
ant, IκBα, independently governs transcription by engaging with HDAC1 and HDAC3.
Additionally, the IKKα subunit operates distinctly from the IKK complex, influencing
the cytokine-induced gene expression by modulating histone H3 phosphorylation [178].
These investigations reveal the novel functions of NF-κB signaling components, like IκBα
and IKKα, in autonomously regulating the chromatin structure and gene expression from
NF-κB’s direct DNA binding.

Previously formed memories are prone to disruption immediately post-recall, necessi-
tating reconsolidation. While protein translation mechanisms are acknowledged for their
role in memory reconsolidation, research into gene transcription mechanisms remains
relatively limited in this context [179].

An interesting study [180] indicated that the retrieval of contextual conditioned fear
memories activates the NF-κB pathway, regulating histone H3 phosphorylation and acety-
lation at specific gene promoters in the hippocampus, particularly mediated by IKKα rather
than the NF-κB DNA-binding complex. Behaviorally, inhibiting IKKα’s control over a
chromatin structure or NF-κB DNA-binding complex activity results in impairments in
fear memory reconsolidation. Elevated histone acetylation offsets this memory deficit
when faced with the IKK blockade. These results offer new insights into IKK-mediated
transcriptional mechanisms in the hippocampus essential for memory reconsolidation.

MicroRNAs (miRNAs) are another essential post-transcriptional regulator of IκB
kinases [181]. One example is miR-21, a well-known oncogenic miRNA that plays a role in
regulating the NF-κB pathway in various cancers. In certain scenarios, miR-21 targets PTEN
(Phosphatase and Tensin Homolog), an inhibitor of the NF-κB pathway. This targeting
leads to increased NF-κB activity in cancer cells, which, in turn, promotes cell survival,
proliferation, and resistance to apoptosis [182].

8. Conclusions

IκB kinases, IKKα and IKKβ, represent a multifaceted and pivotal aspect of cancer
biology, serving as central players in inflammation, immune responses, and tumorigenesis.
Their dual role in cancer, which is shaped by myriad factors including distinct phosphory-
lation events, genetic and epigenetic regulation, and therapeutic implications, underscores
the intricacies of their functions.

The potential of IκB kinases as therapeutic targets in cancer therapy is a burgeoning
field. Precision medicine, which aims to individualize the treatment strategies based on
genetic and molecular profiles, is at the forefront of this effort. While challenges such
as resistance to IKK inhibitors persist, the development of combinatorial therapies and
immunomodulation strategies offers hope for overcoming these obstacles.
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