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Abstract

Acute lymphoblastic leukemia is the most common cause of cancer-related death in chil-
dren and represents a poor prognosis for patients in high-risk groups. Current treatment
protocols are based on intensive polychemotherapy, which is associated with a significant
toxicity profile. Due to their higher specificity and lower toxicity, immunotherapies based
on monoclonal antibodies, in particular antibody–drug conjugates (ADCs), are revolution-
izing cancer therapy. However, reports on the potential efficacy of ADC-targeted therapy
in ALL and its subgroups are limited. Gene expression data suggest that potentially new
ADC antigens are highly abundant in ALL subgroups and represent promising targets
for cancer therapy. In addition, the PI3K/AKT and RAS/MAPK signaling pathways are
often persistently activated in ALL and recent data showed that active feedback loops
following inhibition of these pathways can lead to redundancy of cell surface receptors
that can potentially serve as antigens for ADC treatment. Therefore, we provide here an
overview of the most interesting receptors of the various ALL subgroups and discuss the
influence that feedback loops of the PI3K/AKT and RAS/MAPK signaling pathways may
have on increasing protein expression of the aforementioned receptors, which could lead to
targeted combination therapy approaches in the future.

Keywords: PI3K/AKT-signaling; RAS/MAPK-signaling; acute lymphoblastic leukemia;
drug response profiling; antibody–drug conjugates; immunotherapy

1. Introduction
Antibody-Based Immunotherapies and Their Great but Underutilized Potential in ALL

1.1. Current Challenges in ALL Treatment

Despite improved overall prognosis, the treatment of ALL (acute lymphocytic
leukemia) remains a serious clinical challenge, as 5-year and long-term survival rates
decline with increasing age. While the survival rate in children (<15 years) is still compara-
tively high (90–95%), it drops significantly in young adults (15–39 years; approximately
70–80%) and especially in adults. Therefore, depending on the risk group, these patients
only achieve a long-term survival rate of 40–70% [1–5].

Thereby, some subgroups are associated with a particularly poor prognosis, but each
ALL subtype brings its own challenges (prognosis, risk of relapse, infestation of the central
nervous system) [5]. For example, BCR-ABL1 (breakpoint cluster region/Abelson murine
leukemia viral oncogene homolog 1)-positive ALL is present in 3% of pediatric B-ALL and
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25% of adult B-ALL cases and is linked to poor outcome and a higher proportion of relapses.
KMT2A (Histone-lysine N-methyltransferase 2A) gene rearrangements are found in 70% of
infants and 15% of adults and confer a very poor prognosis. Moreover, therapy options for
relapsed/refractory (r/r) T-cell-ALL (T-ALL) are limited [6]. In summary, both children
and adults with a KMT2A-rearrangement, hypodiploidy, the presence of the BCR-ABL1
fusion gene, the Ph-like subtype (which has a similar genetic profile to the Ph-positive
subtype without carrying the BCR-ABL1 fusion gene) and T-ALL frequently have a poor
prognosis, thus requiring additional therapeutic options. However, other subtypes, such as
the ETV6-RUNX1 subtype, also pose challenges, as up to 20% of patients may relapse [7].
Current ALL treatment protocols are essentially based on intensive polychemotherapy and
associated with severe side effects, the occurrence of secondary tumors and r/r-disease.

1.2. Role of Antibody–Drug Conjugates

Compared to conventional chemotherapy, antibody-based therapy options (e.g., antibody–
drug conjugates; ADCs) have a wider therapeutic window. ADCs combine a monoclonal
antibody, a cytotoxic drug (payload) and a chemical linker to deliver chemotherapy specifi-
cally to cancer cells. In the treatment of B-ALL, standard chemotherapy leads to significantly
worse results than the new immunotherapies and combinations. This has been proven
by international, randomized studies [8,9]. Small-molecule inhibitors and humanized
monoclonal antibodies directed against RTKs (receptor tyrosine kinases) are among the
most effective targeted therapies in the clinic [10]. To date, immunotherapy approaches
targeting the B cell antigen CD19 (blinatumomab), CD22 (inotuzumab ozogamicin) and
CD20 (rituximab) were successfully included into treatment of B-ALL [11]. Of importance,
immunotherapy may partly overcome high risk genotypes as highlighted by the imposing
result of blinatumomab in KMT2A-r infants [12].

Up to now, 12 ADCs (tisotumab vedotin, loncastuximab tesirine, belantamab
mafodotin, sacituzumab govitecan, trastuzumab deruxtecan, enfortumab vedotin, po-
latuzumab vedotin, inotuzumab ozogamicin, trastuzumab emtasine, brentuximab vedotin
and gemtuzumab ozogamicin) have been approved for treatment of hematological and
solid tumors, along with more than 150 novel ADCs in clinical development [13]. The
CD22-directed ADC inotuzumab ozogamicin (InO) received approval for r/r B-ALL. How-
ever, not all patients benefit from InO therapy and therapy failure due to downregulation
or alternative splicing of the CD22 antigen is commonly observed [14]. Reports on potential
efficacy of ADC-targeted therapy in ALL and its subgroups beyond CD22-targeted therapy
are limited [15]. CD19-targeted therapy is a promising approach, since CD19 is expressed
on a variety of B cells and has a broader expression profile than that of other B-cell spe-
cific antigens like CD20 and CD22. However, the emergence of B-cell antigen-loss tumor
escape variants (e.g., CD19) after treatment demonstrates that additional target antigens
are required [16].

ADCs selectively deliver potent cytotoxic substances to tumor cells by binding to
their target on the tumor cells. One of the key challenges for ADC design and clinical
success is the selection of a suitable target for the specific tumor. Furthermore, the choice
of the highly potent payload and the design of the linker for effective drug delivery must
be carefully considered. The optimal target for ADC development should exhibit both
high and uniform expression in tumor cells while precluding expression in normal and
healthy cells [17]. However, ADC targets, which are currently under development, exhibit
a broad expression profile in both tumor and normal cells. Some studies have already very
successfully carried out the identification process of ADC targets for solid tumors [17–19].
The lack of validated suitable secondary target antigens for ALL is also a crucial reason for
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the failure of treatment of resistant cells. Therefore, the identification of a broad repertoire
of diverse target antigens is essential.

1.3. Key Signaling Pathways and Feedback Loops

Here, we utilize transcriptomics, proteomics, immunohistochemistry and cell surface
membrane data from publicly available datasets and databases for evidence-based filtering
to identify ADC targets with improved tumor selectivity. This review aims to provide
a more detailed characterization of the different genetic subtypes of ALL. To this end,
we discuss subgroup-specific cell surface markers that may serve as novel targets for
ADC treatment of ALL cells. In addition, we explain that PI3K/AKT and RAS/MAPK
signaling pathways play an important role in the regulation of cell surface receptors and
why combination therapy with PI3K/AKT (phosphoinositide 3-kinase/protein kinase B)
and RAS/MAPK (rat sarcoma/mitogen-activated protein kinase) pathway inhibitors can
improve patient response to ADC immunotherapy.

2. The AKT and MAPK Pathway—Important Intracellular Regulatory Nodes
2.1. The AKT Pathway

AKT (Protein kinase B) belongs to the superfamily of AGC kinases (cAMP dependent
protein kinase A/G/C), which also includes protein kinase A and C (PKA and PKC). AKT
was identified as a viral oncogene of the transforming retrovirus AKT8 and as a homolog
of PKA and PKC [20,21]. In mammalian cells, three AKT isoforms, AKT1, AKT2 and
AKT3, have been identified, which are encoded by three different genes with partially
different phenotypes and functions [22,23]. AKT1-null mice show growth retardation
and increased lethality [24]. AKT2 knockout mice show altered glucose metabolism and
insulin-resistant diabetes [25]. In contrast, AKT3 knockout mice have reduced brain size,
combined with smaller neuronal cells [26]. AKT isoform-specific knockdown leads to
increased phosphorylation of the other remaining AKT isoforms [27].

The activation of the PI3K/AKT signaling pathway starts with the binding of a ligand
to the RTK. After RTK activation, the PI3K recruits to the plasma membrane, interacts with
the phosphotyrosine residues of the receptor via the SH2 (src homology 2) domain of its
p85 subunit and undergoes a conformational change with activation of its catalytic p110
subunit. Subsequently, the p110 subunit converts PtdIns(4,5)P2 to PtdIns(3,4,5)P3. AKT
can bind to PtdIns(3,4,5)P3 with its N-terminal PH (pleckstrin homology) domain and
becomes phosphorylated after conformational change at threonine residue 308 by PDK
(phosphoinositide-dependent protein kinase-1) and for full activation at serine residue
473 by mTORC2 (mechanistic target of rapamycin complex 2). Phosphorylation of AKT at
serine residue 473 also correlates with AKT kinase activity [28]. AKT regulates numerous
substrates and thereby inhibits apoptosis, increases proliferation and, through the activation
of mTOR, increases translation. While AKT itself is a crucial regulator in translation,
mTORC1 is often considered the most important protein mediating translation.

A recurrent point mutation in the PH domain (E17K) of AKT isoform 1 has been
identified in different tumors and leads to a conformational change in the PH domain,
which allows AKT to bind to the membrane even when no PtdIns(3,4,5)P3 is present
there. This subsequently leads to constitutive activation of AKT. In an animal model,
the AKT1 (E17K) mutation leads to leukemia development with a 60% probability [29].
Constitutive activation of AKT is observed in 87% of patients with T-ALL and in over 80%
of patients with B-ALL [30–32]. In addition, it was shown that the overexpression of AKT2
correlates with the aggressiveness of cancer and a poor survival rate [33,34]. Capivasertib,
a selective AKT inhibitor, was approved together with fulvestrant for patients with ER-
positive and HER2-negative breast cancer whose tumors harbored PIK3CA (catalytic
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subunit alpha)/AKT1/PTEN (phosphatase and tensin homolog) alterations [35]. Recent
data have shown that active feedback loops following inhibition of these pathways can
lead to redundancy of cell surface receptors that can potentially serve as antigens for
ADC treatment.

2.2. The MAPK Pathway

RAS belongs to the Ras superfamily, which includes over 150 small GTPases (guano-
sine triphosphateases) divided into five distinct subfamilies (RAS, RHO/RAC, RAN, RAB
and ARF GTPases). Members of the RAS GTPases family encode different protein isoforms:
HRAS, KRAS and NRAS with partially different transformation potential in different cel-
lular contexts. In addition, KRAS4A and KRAS4B arise from alternative splicing of exon
4 of the KRAS locus [36,37]. The RAS proteins continuously cycle between active (GTP-
bound) and inactive (GDP-bound) conformational states. To this end, RAS proteins interact
with negative (RAS-GAP; GTPase-activating proteins) and positive (RAS-GEF; guanine
nucleotide exchange factor) cellular regulators. Members of the RAS GTPase family play
an important role in human malignancies by regulating cell growth, differentiation and
survival through downstream signaling cascades, including the RAF/MEK/ERK (rapidly
accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-related
kinase) and PI3K/AKT pathways.

The importance of Ras signaling in tumorigenesis is underscored by the deregulation
of many of its activator and effector pathways. Activation of RTKs by extracellular ligands
leads to tyrosine phosphorylation of their cytoplasmic domains. These phosphorylation
sites serve as a docking site for the SH2 domain-containing GRB2 (growth factor receptor-
bound 2) adaptor protein. SOS (son of sevenless) can bind to GRB2 and then phosphorylate
tyrosine-residues of the activated receptor. Subsequently, activated SOS promotes the
exchange of GDP for GTP from RAS via its GEF activity. The active, GTP-bound RAS
subsequently activates the RAF-MEK-ERK axis. ERK kinases can translocate to the nucleus
and activate various transcription factors. Negative regulators of this pathway include
members of the DUSP (dual specificity phosphatase), SPRY (sprouty) and SPRED (sprouty-
related protein with EVH-1 domain) families, which are able to suppress this signaling.
RAS family members are frequently activated by point mutations in human cancers, leading
to constitutive activation of their downstream signaling pathways. Oncogenic mutations at
position 12, 13 or 61 of RAS family member genes are among the most common genetic
lesions in human cancers [38]. These mutations result in significant impairment of the
GTPase activity of RAS proteins, locking them in a constitutively activated state, even in
the absence of extracellular stimuli.

RAS mutations have been reported to make B-ALL cells more susceptible to relapse, as
reflected by a higher relapse frequency. NRAS mutations, in particular, are overrepresented
in children with ALL [39,40]. Overall, more than 50% of relapsed pediatric ALL patients
have been shown to harbor mutations in the RAS pathway (KRAS, NRAS, NF1, EPOR) and
recent studies on RAS mutations show a prevalence of 25.2% in newly diagnosed and 38.9%
in relapsed children with ALL [40]. Several potent KRAS-G12C small-molecule inhibitors
have been discovered, including AMG-510, MRTX849 and ARS-1620 [41–43]. However,
NRAS-mutated cancer cells are resistant to KRAS-G12C-targeted inhibitors [42,43], high-
lighting the limitations and specificity of RAS isoform-targeted therapy. Furthermore,
studies using MEK inhibitors (e.g., selumetinib) to treat leukemia patients with NRAS
mutations do not lead to satisfactory responses due to the complex RAS downstream
signaling and its compensatory effects [44].

The expression of the HRAS, NRAS and KRAS genes is nearly ubiquitous and largely
conserved across species. However, there are specific differences in expression and activa-
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tion status in certain tumor types and their developmental stages, often due to mutations,
suggesting that the different RAS members have distinct biological characteristics with
specific downstream signaling and transcriptional networks [45]. For example, NRAS mu-
tations occur in a high percentage of acute leukemias, whereas HRAS and KRAS mutations
are significantly less common [46–48]. Interestingly, several syndromes are associated with
aberrant RAS signaling (such as Noonan or LEOPARD syndrome) [49,50]. This is frequently
due to mutations in the PTPN11 gene, which encodes SHP2, a negative regulator of the
RAS signaling pathway [49]. Moreover, patients with Noonan syndrome (NS) have a pre-
disposition to leukemia and certain solid tumors [51] and would therefore also benefit from
ADCs against targets upregulated by the constitutively activated RAS signaling pathway.

3. Feedback Signaling of the PI3K/AKT and RAS/MAPK Pathways
Influence the Regulation of Cell Surface Markers

ALL risk groups are defined by alterations in tyrosine kinases and transcription
factors, particularly those involved in lymphoid development. As a result, an aber-
rantly altered phosphorylation cascade or transcription leads to altered gene expression,
including receptors.

Recent results show that the B-cell-specific transcription factor EBF1 (early B-cell
factor1) is a key regulator of CD22 expression and thus influences the response to the CD22-
specific ADC inotuzumab ozogamicin [52]. These risk subgroups often respond poorly to
standard chemotherapy. While remission can usually be achieved in approximately 75%
of cases after induction of chemotherapy, overall survival in all risk groups across ALL
drops to 50% [53]. The identification of genetic subgroups in recent years has increased the
likelihood of response to targeted therapy.

Activated cell surface receptors, for example, receptor tyrosine kinases (RTKs), recruit
adaptor proteins to trigger a cascade of protein interactions between intracellular effectors,
ultimately leading to altered gene expression as well as protein function and thus strongly
influence critical cellular processes such as proliferation and survival. This downstream
signaling includes effectors such as RAS/MAPK or PI3K/AKT pathway proteins. Genetic
alterations of RTKs, such as gene rearrangements or amplifications, lead to constitutively
active signaling of these pathways. Attempts to inhibit individual downstream molecules of
these signaling pathways frequently result in complex feedback mechanisms that redirect
cell signaling back to RTKs or result to cross talk between these pathways [10,54]. In
particular, the PI3K/AKT and RAS/MAPK signaling pathways can compensate for each
other in promoting cell proliferation and survival [55].

The PI3K/AKT/mTOR signaling pathway is constitutively activated in various solid
cancers and the majority of hematological malignancies, including ALL [56]. Genetic
alterations of RTKs (B-ALL: 4–10% and T-ALL: 2–23%) and aberrantly activated tyrosine
kinases (BCR-ABL) are one of the main causes of constitutive activation of AKT. Despite
the knowledge of the therapeutic significance of the AKT signaling pathway, monotherapy
with inhibitors targeting various components of the PI3K/AKT/mTOR pathway was
shown to be ineffective and often led to resistance [57,58]. Consequently, increased AKT
activation in patients with pre-B-ALL correlates with poor response to chemotherapy and
is also associated with poor overall survival [59]. For example, AKT is responsible for the
development of therapy resistance in T-ALL cells to glucocorticoids [60]. Furthermore,
imatinib-resistant Ph-positive ALL cells show upregulation of the PI3K/AKT/mTOR and
RAS/MAPK signaling pathways. However, it was shown that inhibition of constitutively
activated AKT helps to overcome chemotherapy resistance in cancer cells [61].

Activation of the PI3K/AKT signaling pathway in tumors is modulated by negative
feedback, including mTORC1-mediated inhibition of upstream signaling proteins. In turn,
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AKT inhibition has been shown to induce the expression and activation of several recep-
tor tyrosine kinases in a wide range of tumor types, including HER3 (human epidermal
growth factor receptor 3), IGF-1R (insulin-like growth factor 1 receptor) and the insulin
receptor [62,63]. The PI3K/AKT signaling pathway is a crucial regulator and orchestrates
its downstream effectors FOXO (forkhead box class O), mTOR, GSK3 and S6K via phospho-
rylation, ultimately leading to a complex cascade of cellular events (Figure 1A). Inhibition
of mTORC1 leads to inhibition of S6 kinase (S6K), a mediator of many transcriptional
responses downstream of PI3K and AKT.

Figure 1. Inhibitory and feedback mechanisms of the PI3K/AKT/mTOR signaling pathway. (A) AKT
and mTOR are two important proteins that serve as hubs in the regulation of PI3K/AKT/mTOR
signaling. mTOR regulates translation via S6 kinase and adaptor proteins such as IRS-1. AKT
regulates receptor expression through transcription factors such as FOXO. (B) AKT inhibition leads
to the loss of negative feedback in the pathway and thus to increased receptor expression. It also
leads to the inhibition of mTOR. mTOR inhibition leads to the stabilization of IRS-1 and thus to
increased receptor and PI3K activation. (C) Schematic representation of the combined therapeutic
approach consisting of an AKT inhibitor that upregulates receptor expression on the cell surface and
an antibody–drug conjugate that binds to the upregulated receptor and specifically transports the
conjugated cytotoxin into the cell by subsequent endocytosis.

S6K-mediated negative IRS (insulin receptor substrate)-dependent feedback also in-
creases the expression and activity of receptor tyrosine kinases and thus the PI3K/AKT
signaling pathway [64]. Furthermore, AKT can directly regulate transcription factors,
including the FOXO family members. Inhibition of AKT leads to a FOXO-dependent
activation of receptor expression (Figure 1B). Consequently, inhibition of mTOR or AKT
leads to increased AKT phosphorylation and upregulation of IRS-1 and FOXO, which
subsequently leads to increased expression and activity of receptor tyrosine kinases in
approximately 70% of primary AML cells [65]. Moreover, tumors in which AKT suppresses
HER3 expression respond more effectively to combined inhibition of AKT and HER3 than
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to inhibition of either inhibitor alone [63]. In addition, HER2 (human epidermal growth
factor receptor 2) inhibition (e.g., trastuzumab) abrogates PI3K/AKT signaling, thereby
activating FOXO3A-mediated ERBB3 transcription. Elevated ERBB3 levels thus provide
compensatory input for PI3K/AKT signaling and offer the potential to protect cancer cells
from HER2-targeted therapies [66]. Inhibition of AKT or mTOR alone showed insufficient
results to stop the growth of B-ALL cells [27].

The observed effects can be explained by a pronounced feedback mechanism and in-
creased phosphorylation and activation of signaling molecules downstream of the receptor-
PI3K-AKT-mTOR axis. However, the combination of mTOR and AKT inhibitors inhibits
the phosphorylation of S6, as a readout signal for mTOR pathway activation, more ef-
fectively. In turn, the knockdown of AKT leads to the increase in the activity of several
receptor tyrosine kinases in ALL, including ERBB2/3/4, EPHA1/2/3/4/5 (ephrin type-
A receptor 1/2/3/4/5), EGFR (epidermal growth factor receptor), RET, MERTK, AXL,
INSRR (insulin receptor related receptor), ROS1, TRKB (tropomyosin receptor kinase B),
DDR1/2 (discoidin domain receptor 1/2), FGFR2/3 (fibroblast growth factor receptor
2/3) and VEGFR (vascular endothelial growth factor receptor) [27]. Overall, a combined
therapeutic approach consisting of an AKT inhibitor that upregulates receptor expression
on the cell surface and an antibody–drug conjugate that binds the upregulated receptor and
specifically transports the conjugated cytotoxin into the cell represents a stringent therapy
approach (Figure 1C).

The RAS/MAPK pathway represents a second important cellular signaling pathway
that transduces signals from receptors into the nucleus and subsequently activates various
transcription factors, including members of the FOXO family, SOX10 (SRY-related HMG-
box 10), MYC or HIF1/2 (hypoxia inducible factor 1/2), that can alter receptor expression at
the cell surface [67–69] (Figure 2A). Inhibition of MEK (e.g., by trametinib) leads to feedback
activation of cell surface receptors, including the IGF1 receptor, which in turn leads to
increased activation and signaling of RAS, PI3K and IRS proteins (Figure 2B) [70–72].
MEK or RAF inhibition has been shown to upregulate the expression of several RTKs by
suppressing the transcription factor SOX10.

MYC, a transcriptional suppressor of ERBB2 and ERBB3, is stabilized by ERK-mediated
phosphorylation. Inhibition of MEK, upstream of ERK, reduces ERK activity and leads to
dephosphorylation and degradation of MYC in the nucleus. The lack of MYC suppression,
in turn, leads to increased transcription of ERBB2 and ERBB3 and upregulation of their
protein expression [73].

In addition, negative feedback can also be conveyed by ERK-mediated phospho-
rylation of inhibitory phosphorylation sites on EGFR (tyrosine 669) or ERBB2 (tyrosine
677) [74]. CDC25C (cell division cycle 25C) is a phosphatase that negatively regulates
EGFR. ERK signaling activates CDC25C function, but CDC25C becomes inactive after
BRAF inhibition [75].

FRS2 (fibroblast growth factor receptor substrate 2) is a membrane-anchored docking
protein that links EGFR and FGFR receptors to the MAPK signaling cascade by recruiting
Grb2/SOS. Upon receptor stimulation with FGF, FRS2 is phosphorylated not only at
tyrosine residues but also at several threonine residues by ERK. Threonine phosphorylation
of FRS2 is associated with reduced tyrosine phosphorylation of the docking protein and
reduced Grb2 recruitment. Preventing threonine phosphorylation (e.g., by ERK inhibition)
leads to enhanced tyrosine phosphorylation of FRS2 and increased MAPK stimulation [76].

It has been previously reported that inhibition of the RAS/MAPK signaling pathway
can cause the upregulation and activation of several RTKs, including PDGFRB (platelet-
derived growth factor receptor B), FGFR1, IGF1R, KDR (kinase insert domain receptor),
AXL, ERBB2/3, EGFR and DDR1/2, as well as their ligands, in various tumor identi-
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ties. Activation of these RTKs, in turn, is associated with increased AKT and ERK signal-
ing [10,77,78]. The complex network of PI3K/AKT and RAS/MAPK signaling can mutually
compensate for each other and promote cell proliferation and survival, in part through
the same key downstream effectors, including mTOR/S6K/MYC and FOXO, as shown
in Figure 2C. A common mechanism for tumors to evade RTK pathway inhibition is to
activate and increase expression of alternative RTKs. For example,

 

Figure 2. Inhibitory and feedback mechanisms of the RAS/MAPK signaling pathway. (A) Receptor
tyrosine kinases (RTKs) at the plasma membrane are activated by extracellular ligands. Binding of
the ligand to the receptor facilitates the activation of the tyrosine kinase activity of the cytoplasmic
domain of the receptor. The tyrosine phosphorylated receptor serves as docking site for the SH2-
domain containing GRB2 adapter protein. SOS, in turn, can bind to GRB2 and becomes activated.
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Activated SOS, via its GEF activity, promotes the exchange of GDP for GTP from a member of the
RAS subfamily. GTP bound and active RAS then activates RAF kinases. RAF kinases phosphorylate
and activate MEK kinases. MEK kinases phosphorylate and activate ERK kinases. ERK kinases
can translocate into the nucleus of the cell and can activate different transcription factors, which
among others, upregulates its own negative regulators of the DUSP, SPRY and SPRED family. High
ERK activity leads to feedback mechanism and in consequence to reduced expression and/or lower
activity of the initiating RTK through various mechanisms. (B) RAS/MAPK pathway inhibition leads
to the loss of negative feedback in the pathway and thus to increased receptor expression, which in
turn can again activate the mitogen-activated protein kinase pathway. (C) AKT- and ERK-mediated
regulation of cell surface receptors. AKT and ERK control cellular transcription and activation of
cell surface receptors, in part, through MYC, HIF1 and FOXO. AKT and ERK phosphorylate and
inhibit TSC1/2 thus activating mTORC1 by relieving inhibition of RHEB. The S6K is a downstream
target of mTORC1 and can activate MYC and HIF1 or inhibit the receptor adaptor protein IRS-1. AKT
can also inhibit FOXO, MYC and HIF1, partly by inhibiting GSK3. GSK3-mediated phosphorylation
of MYC and HIF1 targets their proteasomal degradation. ERK can also influence the expression
and activation of receptors directly by phosphorylation or by phosphorylation of mediators such as
CDC25C and FRS2.

EGFR inhibition upregulates PDGFRB, MET and AXL expression [79–81]. However,
it is reported that not only RTKs are upregulated by inhibition of the PI3K/AKT and
RAS/MAPK signaling pathways. There are several reports describing MYC-, FOXO-, or
HIF1/2-dependent regulation of non-RTKs cell surface markers (e.g., CSPG4, GLUT1/3,
NOTCH3, CD20, PTPRZ1, CD146; F3, CNR1, VIPR2) [82–93]. Thus, treatment of tumor
cells with PI3K/AKT (Figure 1) or RAS/MAPK pathway (Figure 2) inhibitors may lead to
upregulation of receptor tyrosine kinases or other cell surface markers proteins, improving
accessibility to ADC immunotherapeutics. In the next section, we therefore discuss the
identification of novel potential antibody targets.

4. Identification of ALL Subgroup-Specific Expression of Cell
Surface Markers

The exponential growth of large transcriptome data opens a new dimension in molec-
ular biology by analyzing the entire spectrum of RNA transcripts in a cell. Large transcrip-
tome datasets from ALL samples from major studies [94–96] provide important information
and have led to groundbreaking discoveries. To explore novel cell surface targets from
publicly available transcriptome datasets of ALL patient samples, we first selected protein-
coding genes using Ensembl BioMart (Ensembl release 115; EMBL-EBI, Hinxton, UK). In
the next step, we selected plasma membrane genes using an annotation list consisting of
datasets from “the in silico human surfaceome” database, the Human Protein Atlas (HPA;
subcellular location: selected for plasma membrane and cell junctions), the Gene Ontology
database (GO:0009986; cell surface) and an “immune inhibitory receptor” dataset by Sing
and colleagues (Figure 3) [97–102].

To increase the probability of true expression from background noise, we selected
the receptors based on significance, expression level and subgroup-specific expression
profile (Table S1). To minimize potential side effects of ADC targeting on healthy cells,
we considered the removal of genes with high expression in hematopoietic stem cells and
progenitor cells and thus prioritized cell surface targets with high expression on tumor cells.

The absence of targetable antigens on hematopoietic stem cells offers an advantage,
as normal blood cells can be replenished from hematopoietic stem cells after transient
ADC-induced depletion. Genes were carefully reviewed for their location on the outer
cell membrane for their accessibility to immunotherapeutics using the STRING database
analysis function and manual analysis of different datasets (UniProt keywords: KW-
0472/membrane; UniProt keywords: KW-1133/transmembrane helix; Gene Ontology—
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cellular component: GO:0005886/plasma membrane; Gene Ontology—cellular component:
GO:0071944/cell periphery; Gene Ontology—cellular component: GO:0016021/integral
component of membrane and HPA—predicted location) [103] (Table S2) as well as pri-
oritized based on their protein expression using immunohistochemical (IHC) data [104]
(Table S3). The three most promising candidates for each B-ALL subgroup and T-ALL cells
were listed (Table 1).

Figure 3. Cell surface marker identification workflow. Workflow depicting approach used for
identification of new targets for the treatment of ALL patients divided into different ALL subgroups.
Starting from all protein-coding genes from patient material in the publicly available datasets, we
first selected for genes located at the plasma membrane. In the next step, we selected these genes
for each B-ALL subgroup based on significance, expression level and subgroup-specific expression
profile. We then eliminated genes that exhibited high expression in hematopoietic stem cells and
progenitor cells. Genes exhibiting a leukemia subgroup-specific profile were thoroughly examined for
their localization on the outer cell membrane and thus their accessibility to immunotherapy. Genes
that met these criteria were analyzed for their protein expression in corresponding leukemia cell
databases. The three most promising candidates for each B-ALL subgroup and T-ALL cells were listed.
HPA: human protein atlas; GO: gene ontology; UniProt: universal protein database; FC: fold change;
STRINGdb: STRING database; FORALL: functional omics resource of acute lymphoblastic leukemia.
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For each target, we then examined the literature evidence regarding its potential role
in tumor biology by assigning it to the biologically important PI3K/AKT or RAS/MAPK
signaling pathway and investigated whether antibodies had already been generated for
each target (Table 2). For 12 of the 46 targets on our list, ADCs have already been tested
preclinically or clinically, including ERBB2 and F3. This underscores the validity and
potential of the depicted antigens in this review. In contrast, we introduce 34 additional
targets that, to our knowledge, have not yet been used for ADC development.

However, there are some potential candidates for which an unconjugated antibody
has already been generated. One potential target candidate in this list is the OSM receptor
(oncostatin M), for which a fully human monoclonal antibody (vixarelimab) has already
been developed. The antibody is already being used in clinical trials for the treatment of
pruritus in prurigo nodularis [105]. Preclinical data show that overexpression of OSMR
leads to adverse outcomes in a variety of tumor types [106,107]. In summary, these cell
surface markers may have the potential to be developed into ADCs to target specific
antigens for each ALL subgroup.
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Table 1. Information of new putative ADC target structures.

Subtype Gene 1 Protein ID
Normal
Tissue

Expression
Pathway Gene 2 Protein ID

Normal
Tissue

Expression
Pathway Gene 3 Protein ID

Normal
Tissue

Expression
Pathway

KMT2A-r CSPG4 CSPG-4 Intestine MAPK;
AKT PSD2 PSD-2 Brain n.a. PCDHGC3 PCDH-

gamma-C3 Brain MAPK

ETV6-
RUNX1 DSC3 DSC-3 Esophagus,

Skin
MAPK;

AKT LRRC4B NGL-3

Brain,
Cervix,

Pituitary
gland

MAPK;
AKT PTPRK R-PTP-kappa Low tissue

specificity n.a.

TCF3-HLF CLSTN2 CLSTN2 Brain,
Ovary n.a. LPAR1 LPA-1 Brain MAPK;

AKT F3 TF/CD142 Low tissue
specificity

MAPK;
AKT

Hyperdiploid
(HeH) EFNB1 Ephrin-B1 Low tissue

specificity MAPK IL3RA IL-3R-
alpha/CD123

Low tissue
specificity

MAPK;
AKT IL13RA1 IL-13R-

alpha/CD213a1
Low tissue
specificity

MAPK;
AKT

IKZF1-
N159Y TRPC4 TrpC4

Endometrium,
Seminal
vesicle,
Smooth
muscle

MAPK;
AKT ATP1A2 ATP1A2

Brain,
Skeletal
muscle,
Tongue

n.a. CACNG4 TARP
gamma-4 Brain n.a.

Low hyper-
diploid
(L-HD)

PDGFRB PDGF-R-
beta/CD140B

Low tissue
specificity

MAPK;
AKT SLC6A9 GlyT-1 Brain, Skin n.a. DDR2 CD167b Low tissue

specificity
MAPK;

AKT

MEF2D PTPRZ1 R-PTP-zeta Brain AKT TNFRSF13B CD267

Intestine,
Lymphoid

tissue,
Skeletal
muscle

n.a. DCHS2 Cadherin-27 Brain,
Intestine n.a.

PAX5alt ERBB2 HER2/CD340 Low tissue
specificity

MAPK;
AKT VIPR2 VIP-R-2 Low tissue

specificity
MAPK;

AKT MS4A1 CD20 Lymphoid
tissue

MAPK;
AKT

Ph-like CRLF2 CRLF-2

Bone
marrow,
Gallblad-

der,
Lymphoid

tissue

AKT TTYH2 hTTY2 Brain n.a. CHRNA1 CHRNA-1 Skeletal
muscle n.a.
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Table 1. Cont.

Subtype Gene 1 Protein ID
Normal
Tissue

Expression
Pathway Gene 2 Protein ID

Normal
Tissue

Expression
Pathway Gene 3 Protein ID

Normal
Tissue

Expression
Pathway

PAX5-P80R MEGF10 MEGF-10 Brain,
Retina n.a. TNFRSF13B CD267

Intestine,
Lymphoid

tissue,
Skeletal
muscle

n.a. PDGFRB PDGF-R-
beta/CD140B

Low tissue
specificity

MAPK;
AKT

TCF3-PBX1 LRRC15 LRRC-15 Lymphoid
tissue, Skin n.a. ITGA8 ITG-alpha-8 Prostate AKT SLAMF1 IPO-3/CD150 Lymphoid

tissue AKT

Ph-pos IL2RA CD25

Adipose
tissue,

Lymphoid
tissue,

Urinary
bladder

MAPK;
AKT TSPAN15 Tspan-15 Low tissue

specificity MAPK OSMR IL31RB Low tissue
specificity

MAPK;
AKT

ZNF384 XKR3 XKR-3 Testis n.a. SLC2A3 GLUT-3 Bone
marrow

MAPK;
AKT CD226 DNAM-

1/CD226

Lymphoid
tissue,

Parathy-
roid gland

MAPK;
AKT

DUX4 PTPRM R-PTP-mu Low tissue
specificity

MAPK;
AKT MCAM MUC18/CD146 Low tissue

specificity
MAPK;

AKT CLEC12B CLEC-12B
Bone

marrow,
Skin, Testis

MAPK;
AKT

BCL2-MYC CNR1 CB-1

Adipose
tissue,

Pituitary
gland

MAPK;
AKT CD70 CD70 Lymphoid

tissue
MAPK;

AKT BEST3 Bestrophin-3
Skeletal
muscle,
Tongue

MAPK

T-ALL CD1B CD1b Lymphoid
tissue n.a. NOTCH3 Notch-3 Low tissue

specificity
MAPK;

AKT CCR9 CCR-
9/CD199

Lymphoid
tissue

MAPK;
AKT

n.a.: not available; normal tissue expression taken from HPA [97].
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Table 2. Antibody–drug conjugates for novel cell surface receptors in ALL.

Subtype Gene 1 ADC Reference Gene 2 ADC Reference Gene 3 ADC Reference

KMT2A-r CSPG4
anti-CSPG4-(PDD);
anti-CSPG4(scFv)-

SNAP-AURIF

[108,109],
experimental PSD2 No PCDHGC3 No

ETV6-RUNX1 DSC3 No LRRC4B No PTPRK No

TCF3-HLF CLSTN2 No LPAR1 No F3 Tisotumab
vedotin

[110],
approved

Hyperdiploid
(HeH) EFNB1 No IL3RA BAY-943 [111],

experimental IL13RA1 No

IKZF1-N159Y TRPC4 No ATP1A2 No CACNG4 No

Low
hyperdiploid

(L-HD)
PDGFRB No SLC6A9 No DDR2 No

MEF2D PTPRZ1 No TNFRSF13B

anti-
TNFRSF13B
(Tabalumab)-
MC-Vc-PAB-

MMAE

CreativeBiolabs,
CAT#ADC-W-1907

experimental
DCHS2 No

PAX5alt ERBB2

Trastuzumab
deruxtecan;

Trastuzumab
emtansine

[112,113],
approved VIPR2 No MS4A1 MRG001

[114],
NCT05155839

(Phase 1)

Ph-like CRLF2 No TTYH2 No CHRNA1 No

PAX5-P80R MEGF10 No TNFRSF13B

anti-
TNFRSF13B
(Tabalumab)-
MC-Vc-PAB-

MMAE

CreativeBiolabs,
CAT#ADC-W-1907

experimental
PDGFRB No

TCF3-PBX1 LRRC15 ABBV-085
[115],

NCT02565758
(Phase 1)

ITGA8 No SLAMF1 No
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Table 2. Cont.

Subtype Gene 1 ADC Reference Gene 2 ADC Reference Gene 3 ADC Reference

Ph-pos IL2RA Camidanlumab
tesirine

[116],
NCT04052997

(Phase 2)
TSPAN15 No OSMR No

ZNF384 XKR3 No SLC2A3
anti-SLC3A2

ADC
(19G4-MMAE);

[117],
experimental CD226 No

DUX4 PTPRM No MCAM AMT-253
[118],

NCT06209580
(Phase 1/2)

CLEC12B No

BCL2-MYC CNR1 No CD70

PRO1160;
Vorsetuzumab

mafodotin
(SGN-75)

[119],
NCT05721222
(Phase 1/2),

NCT01015911
(Phase 1)

BEST3 No

T-ALL CD1B No NOTCH3 PF-06650808
[120],

NCT02129205
(Phase 1)

CCR9 No

Trial identifier/NCT number from ClinicalTrials.gov; accessed on 27 September 2025.

ClinicalTrials.gov
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5. Introduction of New ADC Target Genes
In this review, we highlight ALL subgroup-specific cell surface markers as potential

candidates for immunotherapies. To identify novel ALL subgroup-specific candidates,
we explored publicly available expression data and compared the gene expression of
the different ALL subgroups (Table S1). The detailed functions of the different genes
per subgroup, including ADC availability/development status (see also Table S4) and
PI3K/AKT and RAS/MAPK pathway affiliation, are listed in the following section (see
Figure 4 for overview).

5.1. KMT2A-r (CSPG4, PSD2, PCDHGC3)

CSPG4: Chondroitin sulfate proteoglycan 4 is a membrane-bound proteoglycan and
was originally identified as a tumor antigene on the surface of melanoma cells with re-
stricted distribution in normal tissue [121]. However, it is expressed on malignant cells,
including cancer-initiating cells in various types of solid tumors. It was also shown that
CSPG4 is aberrantly expressed on the leukemic blasts of a subset of AML (acute myeloid
leukemia) and ALL patients, but absent from the surface of healthy hematopoietic cells [122].
In AML, CSPG4 expression has been shown to correlate with KMT2A rearrangement, but
was not dependent on specific fusion partner genes of KMT2A [122]. However, CSPG4 ex-
pression was shown to correlate with the monocytic morphology status of blasts [122,123].
CSPG4-mediated activation of the FAK (focal adhesion kinase) integrin signaling pathway
increases chemotherapy resistance through sustained activation of the AKT signaling path-
way [124]. Furthermore, CSPG4 activates RAS/MAPK signaling via RTK-dependent and
-independent mechanisms [125,126]. CSPG4 has been shown to play an important role in
tumor cell growth, migration and metastasis [124,127]. An ADC targeting CSPG4 has been
developed, containing a single-chain antibody fragment conjugated to auristatin F. This
ADC was developed for triple-negative breast cancer [109]. Another ADC comprises an
anti-CSPG4 antibody linked to pyrridinobenzodiazepine (PDD). Anti-CSPG4-PDD inhib-
ited the growth and colony formation of CSPG4-expressing melanoma cells and induced
apoptosis at low concentrations without off-target toxicity [108].

PSD2: Pleckstrin and Sec7 domain-containing 2 is a guanine nucleotide exchange
factor for ADP-ribosylation factor 6 (ARF6) that regulates membrane trafficking of small G
proteins [128]. The 5′ end of the PSD gene contains five CpG islands, so that its expression
can be controlled by epigenetic modification. In addition, PSD mRNA correlates positively
with its methylation status and in gastric cancer PSD was shown to be silenced by epigenetic
modification. However, it has recently been implicated in the progression of various
other cancers [129].

PCDHGC3: Protocadherin gamma-C3 is a putative calcium-dependent cell adhesion
protein and member of the PCDH cluster. In cancer, clustered PCDHs are subject to
epigenetic silencing through hypermethylation [130]. Hypermethylation and suppressed
expression of PCDHGC3 were detected in 17 of 28 (~61%) carcinomas [131]. Interestingly,
this epigenetic alteration was detected in primary tumors that developed metastases several
years later. Downregulation of PCDHGC3 leads to metastasis-promoting capabilities by
increasing cell proliferation, migration and invasion [132]. Knockout of PCDHGC3 leads
to an increased migration rate of cerebral microvascular endothelial cells, mediated by
RAS/MAPK, β-catenin/Wnt and mTOR signaling pathways [133]. Overexpression of
PCDHGC3 in colon cancer cell lines resulted in reduced cell proliferation and colony-
forming capacity [131]. Furthermore, PCDHGC3 is highly expressed in glioblastoma and
its high expression is associated with longer progression-free survival of patients [134].
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Figure 4. Visual overview of ALL subgroup-specific cell surface markers as potential candidates for
immunotherapies. The diagram shows the cell surface markers and the different ALL subgroups.
The most relevant markers (according to their expression) in the respective subgroup are highlighted
in gray. The antibody symbol (black) indicates all targets for which ADCs are already being used
preclinically or clinically. The signpost symbol (red) indicates all targets for which there is evidence
of involvement in the AKT or RAS signaling pathway.
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5.2. ETV6-RUNX1 (DSC3, LRRC4B, PTPRK)

DSC3: Desmocollin-3 belongs to the cadherin superfamily and is an integral compo-
nent of the intercellular desmosome junctions. Methylation of DSC3 has been detected in
41% of colorectal cancer samples, which is associated with a poor prognosis. Furthermore,
DSC3 has been reported to be hypomethylated in patients with ETV6-RUNX1 (ETS variant
transcription factor 6/runt-related transcription factor 1) subtype compared to other B-ALL
subtypes [135]. In the hyperdiploid B-ALL subtype (HeH), DSC3 was hypermethylated
and downregulated compared to non-leukemic controls [136]. It has also been shown to be
regulated by p53 [137]. DSC3, in turn, inhibits EGFR/MAPK and AKT signaling [138,139].

LRRC4B (NGL-3): Leucine-rich repeat protein C4 belongs to the leucine-rich repeat
protein family and has been shown to be expressed in brain tissue [140]. It is a synaptic
adhesion protein that regulates the formation of excitatory synapses. LRRC4 inhibits
glioblastoma cell proliferation, migration, invasion and angiogenesis by downregulating the
expression and response of pleiotropic cytokines. LRRC4 negatively regulates the ERK, AKT
and STAT3 (signal transducer and activator of transcription 3) signaling pathways [141,142].
Furthermore, LRRC4 induces cell cycle delay in the late G1 phase by affecting the expression
of various cell cycle-regulating proteins (e.g., p21 and p27). Overall, LRRC4 plays an
important role in maintaining normal functions and suppressing tumorigenesis in the
central nervous system [143].

PTPRK (R-PTP-kappa): Receptor-type tyrosine-protein phosphatase kappa belongs to
the R2B family (PTPRT, PTPRM, PTPRK and PTPRU). The MAM domain of PTPRK con-
tributes to the homophilic adhesion of PTPRK and PTPRM while preventing the interaction
of PTPRK with PTPRM [144,145]. PTPRK is stabilized by transhomophilic interactions at
cell–cell contact at the plasma membrane and regulates processes involving cell contact
and adhesion, such as growth control, tumor invasion and metastasis. PTPRK acts as a
negative regulator of EGFR signaling [146]. PTPRK was found methylated in 27 of 57
(47%) primary ALL samples. Methylation of the PTPRK promoter was associated with
increased cell proliferation, decreased apoptosis and reduced overall survival [147]. Methy-
lation was reversible with decitabine and histone deacetylase inhibitors [147]. Reduced
PTPRK expression activates AKT, ERK1/2 and the β-catenin/Wnt signaling pathway and
influences the stabilization of the E-cadherin complex at the cell membrane to promote
cell–cell adhesion [147,148].

5.3. TCF-HLF (CLSTN2, LPAR1, F3)

CLSTN2: Calsyntenin-2 modulates calcium-mediated postsynaptic signaling. CLSTN2
showed strong expression in ALL cells with TCF3-HLF (transcription factor 3/hepatic
leukemia factor) translocation compared to other ALL subtypes. After knockout of
TCF3-HLF in HAL-01 cells, CLSTN2 was one of the significantly differentially expressed
genes [149]. CLSTN2 was found hypermethylated in the hyperdiploid subtype of pediatric
B-ALL cases [150].

LPAR1 (LPA-1): Lysophosphatidic acid receptor 1 is a G protein-coupled receptor for
lysophosphatidic acid (LPA) binding. LPA and LPA receptors are integral components of
signaling pathways involved in cell proliferation, migration, survival, vascular homeostasis,
stromal remodeling, lymphocyte trafficking and immune regulation [151,152]. In accor-
dance, LPAR1 has been shown to promote metastasis and tumor motility and abnormal
LPAR1 expression has been observed in various cancers [151,153]. In B cells, LPA acts as
a growth factor that promotes cell proliferation and inhibits apoptosis by triggering PLC
(phospholipase C), RAS/MAPK and PI3K/AKT signaling [152,154]. In contrast, knock-
down of LPAR1 reduced the expression levels of phosphorylated ERK, JNK (Jun N-terminal
kinase) and AKT [155].
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F3 (TF/CD142): F3/Tissue factor is a cell-associated receptor that initiates the blood
coagulation cascade by forming a complex with circulating factor VII or VIIa. The [F3:VIIa]
complex activates factors IX or X through specific, limited proteolysis. At the same time, F3
is also known as a mediator of intracellular signaling events that, as a cytokine-like receptor,
can alter gene expression patterns and cell behavior. It regulates coagulation-independent
processes such as tumor growth, angiogenesis and inflammatory regulation [156]. F3
upregulation is frequently observed on cancer cells as well as on tumor-associated en-
dothelial cells or inflammatory cells [157,158]. In different cell types F3 can stimulate the
transcription of VEGF (vascular endothelial growth factor A). Conversely, VEGF, a key
factor in angiogenesis, can induce F3 expression in endothelial cells and further promote
angiogenesis [159]. F3 regulates the RAS/MAPK and PI3K/AKT signaling pathways, as F3
knockdown reduced protein levels of phosphorylated ERK and AKT [160]. Tisotumab ve-
dotin (Tivdak) is an approved antibody–drug conjugate for the treatment of adult patients
with recurrent or metastatic cervical cancer whose disease progression occurs during or
after chemotherapy. It consists of a fully human monoclonal antibody specific for F3 that is
conjugated to monomethyl auristatin E (MMAE) [110]. Recent studies suggest that F3 is a
useful surface target for the treatment of patients with triple-negative breast cancer [161].

5.4. Hyperdiploid (EFNB1, IL3RA, IL13RA)

EFNB1 (Ephrin-B1): EFNB1 represents a cell-surface transmembrane ligand for Eph
receptors. Eph receptors constitute the largest known subfamily of receptor protein tyrosine
kinases and are critical for migration and adhesion during neuronal, vascular and epithelial
development [162]. Since both ephrin ligands and Eph receptors are membrane-bound pro-
teins, binding and activation of intracellular Eph/ephrin signaling pathways can only occur
via direct cell–cell interaction. EFNB1 has been reported to contribute to tumor progres-
sion in various cancers and high EFNB1 expression is significantly associated with a poor
prognosis in human DLBCL (diffuse large B-cell lymphoma) and gliomas [163,164]. EFNB1
levels were significantly associated with the cell of origin in B cell neoplasms [163]. EFNB1
can activate mTOR, p38 MAPK and ERK signaling pathways in medulloblastoma [165].

IL3RA (CD123): The interleukin-3 receptor subunit alpha is a cytokine receptor that is
overexpressed in various hematological malignancies, including AML and ALL. In detail,
IL3RA is overexpressed in approximately 97% of Ph-positive and 86% of Ph-negative
B-ALL cases. Within the Ph-negative cohort, IL3RA was frequently expressed in cases with
Ph-like signature [166]. Furthermore, IL3RA expression in B-ALL correlated with poor
overall survival and is associated with a high risk of relapse [167,168]. The high expression
of IL3RA on leukemia cells and its low expression on normal hematopoietic stem cells
make IL3RA an attractive target for therapy [169]. After IL-3 binding to IL3RA, IL-3R
heterodimerization promotes the stable formation of the IL-3/IL-3R complex, leading to the
activation of JAK (janus kinase)/STAT, RAS/MAPK and PI3K/AKT signaling [170–172].
IMGN632 is an IL3RA-targeting antibody–drug conjugate consisting of a humanized
anti-IL3RA antibody coupled to a DNA-monoalkylating cytotoxic payload with limited
toxicity in normal myeloid progenitor cells [173]. In addition, the ADC BAY-943 consists of
a humanized anti-IL3RA antibody conjugated to a kinesin spindle protein inhibitor and
demonstrates efficacy in preclinical models of hematological malignancies (e.g., AML) [111].

IL13RA1 (CD213a1): The interleukin-13 receptor subunit alpha-1 is a glycosylated
protein that binds IL-13 with low affinity. However, in combination with IL4RA, it forms
a functional IL-13 receptor for high-affinity binding of IL-13. On human B cells, IL13RA1
expression is modulated by CD40 ligands or surface immunoglobulins [174]. IL-13RA1
contains a proline-rich box-1 region that binds JAK1, JAK3 and TYK2 (tyrosine kinase 2)
and in response to IL-13, receptor heterodimers induce phosphorylation of Janus tyro-
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sine kinases [175,176]. IL-4, another cytokine that binds to the IL-13 receptor, has been
shown to induce strong tyrosine phosphorylation of IRS-1/2 and increase RAS/MAPK and
PI3K/AKT activity [177,178].

5.5. IKZF1-N159Y (TRPC4, ATP1A2, CACNG4)

TRPC4: The short transient receptor potential channel 4 forms a receptor-activated,
non-selective, calcium-permeant cation channel and thus functions as a cell–cell contact-
dependent endothelial calcium entry channel. The TRPC subfamily comprises seven
members, TRPC1 to TRPC7. Heteromultimers can be formed between TRPC1, 4 and
5 on the one hand, and between TRPC3, 6 and 7 on the other [179]. After stimulation
of G protein-coupled receptors or receptor tyrosine kinases, the PLC signaling pathway
regulates the formation of TRPC4 and TRPC5 cation channels [180]. Knockdown of TRPC4
suppressed the activation of ERK and AKT signaling in endothelial cells [181].

ATP1A2: The sodium/potassium-transporting ATPase subunit alpha-2 belongs to
the family of P-type cation-transporting ATPases and the subfamily of Na+/K+ ATPases.
ATP1A2 is an integral membrane protein that catalyzes the hydrolysis of ATP and simulta-
neously facilitates the exchange of sodium and potassium ions across the plasma membrane.
This creates the electrochemical gradient of sodium and potassium, which provides the
energy for the active transport of various nutrients. Together with the small glycoprotein
subunit beta, the large catalytic alpha-ATP1A2 subunit forms the enzyme. Mutations in this
gene can lead to familial basilar or hemiplegic migraine, as well as to alternating hemiplegia
of childhood [182].

CACNG4 (TARP gamma-4): The voltage-dependent calcium channel gamma-4 sub-
unit regulates the activity of L-type calcium channels that contain CACNA1C as a pore-
forming subunit. Downregulation of CACNG4 modulates the channels to maintain their
active/open state, leading to higher intracellular calcium levels. CACNG4 thus acts by
closing the channel pore and inhibiting calcium influx. Subsequently, CACNG4 alters cal-
cium signaling and influences AKT signaling. CACNG4 expression is elevated in patients
with breast cancer associated with poor prognosis [183]. CACNG4 was one of ten genes
significantly overexpressed in erlotinib-resistant glioblastoma cells [184].

5.6. Low Hyperdiploid (PDGFRB, SLC6A9, DDR2)

PDGFRB (CD140B): Platelet-derived growth factor receptor beta is a tyrosine-protein
kinase that acts as a cell-surface receptor for homodimeric PDGFB and PDGFD, as well as for
heterodimers of PDGFA and PDGFB. PDGFRB possesses five extracellular immunoglobulin-
like domains, a single membrane-spanning helix domain, an intracellular juxtamembrane
domain, a tyrosine kinase domain and a carboxyl tail. Upon binding to the PDGF ligand,
dimerization of the receptor releases inhibitory conformations through autophosphory-
lation of regulatory tyrosine residues. Activated PDGFRB regulates the PI3K/AKT and
RAS/MAPK signaling pathways, including a negative feedback loop to PDGFRB, particu-
larly in mTOR-activated cells [185,186]. PDGFRB plays an essential role in the regulation of
embryonic development, cell proliferation, cell survival, cell differentiation and migration.
PDGFRB gene fusions (e.g., with EBF1; early B cell factor 1) are frequently found in B-ALL
cases with Ph-like subtype. PDGFRB fusion partners often contain dimerization domains
to enhance the kinase activity of PDGFRB [187].

SLC6A9 (GlyT-1): The sodium- and chloride-dependent glycine transporter 1 inhibits
glycine signaling by rapidly removing glycine from the synaptic cleft, as glycine acts as an
inhibitory neurotransmitter in the central nervous system [188]. The SLC6A transporter
has been reported to associate with the NMDA receptor [189]. To date, no specific role
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for SLC6A9 in hematological malignancies has been described. Therefore, further efforts
should be made to further characterize this protein in the disease of ALL.

DDR2 (CD167b): Discoidin domain-containing receptors, including DDR1 and DDR2,
form a unique class of receptor tyrosine kinases. They are activated by fibrillar collagens
at the cell–matrix interface and are involved in the regulation of tissue remodeling and
bone development [190,191]. Furthermore, DDR2 regulates extracellular matrix remodeling
through upregulation of collagenases, cell differentiation, migration and proliferation. Inhi-
bition of DDR2 (e.g., by dasatinib) has been shown to enhance tumor responses to anti-PD-1
immunotherapy [192]. Binding of collagen to DDR2 activates RAS/MAPK and PI3K/AKT
signaling pathways as well as the transcription factor RUNX2 [193,194]. Furthermore,
knockdown of AKT3 activates DDR kinases in bone-seeking breast cancer cells [195].

5.7. MEF2D (PTPRZ1, TNFRSF13B, DCHS2)

PTPRZ1 (R-PTP-zeta): Receptor-type tyrosine-protein phosphatase zeta belongs to
the R5 receptor tyrosine phosphatase subfamily and negatively regulates the proliferation
of oligodendrocyte precursor cells in the embryonic spinal cord. It is therefore required
for the differentiation of precursor cells into mature, fully myelinating oligodendrocytes
and PTPRZ1 expression is associated with cancer stem cell development in glioblastoma.
In consequence, knockdown of PTPRZ altered the expression levels of the transcription
factors SOX2 (SRY-box transcription factor 2) and POU3F2 (POU class 3 homeobox 2),
which are responsible for stem cell development [196]. Previous studies showed that
several members of the protein tyrosine phosphatase family, including PTPRZ1, were
methylated and silenced in CLL (chronic lymphocytic leukemia) [197,198]. PTPRZ1 has
been shown to negatively regulate AKT kinase activity in ovarian cells [199].

TNFRSF13B (TACI/CD267): TNFRSF13B encodes the tumor necrosis factor super-
family member 13B, a transmembrane receptor of lymphocytes that binds members of the
tumor necrosis ligand family (APRIL/TNFSF13 and BAFF) and heparan sulfate chains [200].
Binding of BAFF and APRIL to the receptor activates TNFR-associated factors (TRAF 2,
5 and 6), which in turn activate NF-kB (nuclear factor kappa-light-chain-enhancer of acti-
vated B-cells), c-Jun and AP-1 (activator protein 1) [201,202]. On B cells, APRIL can bind
to the receptors TNFRSF17 (BCMA) and TNFRSF13B, leading to the survival of plasma
cells in the bone marrow. Moreover, CLL cells with high TNFRSF13B expression showed
improved survival when cultured with BAFF and/or APRIL [203]. APRIL signaling via
TNFRSF13B has also been shown to mediate immunosuppression by regulatory T cells in
multiple myeloma [204]. Anti-TNFRSF13B (tabalumab)-MC-Vc-PAB-MMAE is a mono-
clonal anti-TNFRSF13B antibody conjugated to MMAE via an MC-Vc linker [205].

DCHS2 (CDH27/PCDH23): Protein dachsous homolog 2 is a large protein encoded in
humans by the DCHS2 gene. It belongs to the calcium-dependent cell adhesion proteins
and contains multiple cadherin domains. FAT4 (FAT atypical cadherin 4) in the stroma
binds to DCHS1/2 to inhibit the self-renewal of nephron progenitor cells. DCHS2 and
its paralog DCHS1 function partially redundantly to regulate the number of nephron
progenitor cells [206]. Nothing is known about its role in leukemia, so far.

5.8. PAX5alt (ERBB2, VIPR2, MS4A1)

ERBB2 (HER2/CD340): The ErbB/HER family of receptor tyrosine kinases consists of
four cell surface glycoproteins: ERBB1 (EGFR), ERBB2, ERBB3 and ERBB4 [207]. Ligands
for HER2 have not yet been identified. ERBB2 is part of several cell surface receptor
complexes and requires a coreceptor for ligand binding. HER2 can heterodimerize with any
of the other three family members [208]. Dimerization leads to the autophosphorylation
of tyrosine residues within the cytoplasmic domain of the receptors and initiates various
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signaling pathways, such as the RAS/MAPK and PI3K/AKT pathway. Signaling via the
ERBB receptor family promotes cell proliferation and counteracts apoptosis. ERBB2 is
expressed in approximately 30% of B-ALL cases and 56% of Ph (philadelphia)-positive ALL
cases show elevated HER2 activity [209]. Furthermore, HER2 is one of the most highly
phosphorylated tyrosine kinase receptors in AKT-knockdown cells [27]. Accordingly,
ERBB2 overexpression leads to the activation of multiple signaling pathways, such as the
PI3K/AKT and RAS/MAPK pathways [210,211]. Two HER2-targeting ADCs, trastuzumab
emtansine (Kadcyla) and trastuzumab deruxtecan (Enhertu), are approved as second-
line treatment after trastuzumab taxane-based therapy in patients with HER2-positive
breast cancer [112,113].

VIPR2: Vasoactive intestinal peptide (VIP) receptor 2 is a G protein-coupled receptor
linked to adenylyl cyclase via the Gαs protein. VIP stimulation leads to cAMP (cyclic
adenosine monophosphate) production, activation of protein kinase A and ERK signal-
ing [212]. VIPR2 also interacts with the Gαi and Gαq proteins to regulate PI3K/AKT
and PKC signaling and VIPR2 signaling via the RAS/MAPK and PI3K/AKT pathways,
regulates cyclin D1 levels to control cell proliferation and migration [213,214].

MS4A1 (CD20): The B lymphocyte antigen MS4A1 is a B lymphocyte-specific mem-
brane protein involved in the regulation of cellular calcium influx, which is necessary
for the development, differentiation and activation of B lymphocytes. It represents a
storage-gated calcium channel component that promotes calcium influx after activation
by the B cell receptor. MS4A1 is induced by CXCR4/SDF1 (C-X-C chemokine receptor
type 4/stromal cell-derived factor 1) chemokine signaling. It consists of four hydrophobic
transmembrane domains [215]. MS4A1 is expressed by the majority of B cells, starting with
late pre-B lymphocytes, and is lost in terminally differentiated plasmablasts and plasma
cells [216]. Thus, anti-CD20 monoclonal antibodies have revolutionized the treatment of
lymphomas [217]. MS4A1 upregulation has been frequently observed in high-risk patients,
patients with high minimal residual disease (MRD) at the end of the induction phase
and in relapsed patients [218]. Immunotherapy with rituximab inhibits the constitutively
activated survival signaling pathways ERK1/2, p38 MAPK, NF-kappaB and AKT [219].
MRG001 is an anti-MS4A1 antibody–drug conjugate for patients with r/r advanced non-
Hodgkin lymphoma. It consists of a chimeric monoclonal anti-MS4A1 antibody conjugated
to monomethyl auristatin E (MMAE) via a valine-citrulline linker. In preclinical studies, the
ADC showed significant inhibition of tumor growth in rituximab-resistant non-Hodgkin
lymphoma models [114].

5.9. Ph-like (CRLF2, TTYH2, CHRNA1)

CRLF2: Cytokine receptor-like factor 2 belongs to the type I cytokine receptor family
and forms a functional complex with TSLP (thymic stromal lymphopoietin) and IL7R
(interleukin 7 receptor), which can stimulate cell proliferation by activating the JAK/STAT
signaling pathway. Thus, CRLF2 (cytokine receptor-like factor 2) is involved in the develop-
ment of the hematopoietic system. In the Ph-like B-ALL subtype, CRLF2 was overexpressed
in 75% of cases [220]. Patients with high-risk ALL with CRLF2 overexpression show high
relapse rates and poor overall survival. Furthermore, chromosomal breaks and fusion of
CRLF2 with IGH@ (immunoglobulin heavy locus) or the G protein-coupled purinergic
receptor gene P2Y8 (P2Y receptor family member 8) have been demonstrated [221]. The
fusion to both genes place CRLF2 under alternative transcriptional control, leading to
CRLF2 overexpression [221]. Furthermore, CRLF2 alterations are strongly associated with
JAK mutations [222]. In addition, increased activation of the AKT/mTOR/S6 axis can be
observed in a large number of primary CRLF2-altered ALL samples [223].
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TTYH2 (hTTY2): Tweety family member 2 is a cell surface protein with five transmem-
brane regions and represents a Ca2+-activated chloride channel. TTYH2 gene expression is
significantly upregulated in colon carcinomas and renal cell carcinomas [224]. The TTYH2
gene is thought to regulate both the proliferative and metastatic potential of colon carcino-
mas [225]. Furthermore, TTYH2 is among the genes whose gene expression profile was
elevated in high-risk ALL cases and associated with poor outcome [226].

CHRNA1: Upon binding to acetylcholine, the acetylcholine receptor subunit alpha
undergoes a comprehensive conformational change affecting all subunits and leading to
the opening of an ion-conducting channel across the plasma membrane. In melanoma,
CHRNA1 is highly expressed in metastatic samples compared to their primary tumor
samples. CHRNA1 is strongly associated with CHRNB1 and CHRNG and together these
genes are negatively involved in the survival of melanoma patients [227].

5.10. PAX5-P80R (MEGF10, PDGFRB, TNFRSF13B)

MEGF10: Multiple epidermal growth factor-like domain protein 10 is a membrane
receptor involved in the phagocytosis of apoptotic cells by macrophages and astrocytes.
MEGF10 recognizes C1q, an “eat-me” signal, on the surface of apoptotic cells [228]. MEGF10
interacts with ABCA1 (ATP-binding cassette transporter A1) in the process of phagocytosis.
Moreover, MEGF10 belongs to a group of hypermethylated genes that were epigenetically
repressed and showed significantly reduced expression in neuroblastoma cells. Low
MEGF10 expression also correlates with reduced relapse-free survival. Knockdown of
MEGF10 expression in neuroblastoma cells led to increased cell growth [229].

Information on PDGFRB and TNFRSF13B can be found in Section 5.6 or Section 5.7,
respectively.

5.11. TCF-PBX1 (LRRC15, ITGA8, SLAMF1)

LRRC15: Leucine-rich repeat-containing protein 15 is involved in cell–cell and cell–
matrix interactions and adheres to extracellular matrix components such as fibronectin and
collagen [230]. LRRC15 exhibits high expression levels in solid tumors compared to normal
tissue. High LRRC15 expression correlates with metastasis, poor response to chemotherapy
and shortened overall survival in patients with osteosarcoma [231]. Furthermore, LRRC15
has been reported to be regulated by TGFB (transforming growth factor beta) [232]. ABBV-
085 is a humanized anti-LRRC15 IgG1 antibody conjugated to the antimitotic MMAE
payload via a protease-cleavable valine-citrulline linker [233]. In preclinical experiments it
demonstrated efficacy in sarcomas and other advanced solid tumors [115].

ITGA8: The integrin family consists of cell adhesion receptors that are widely ex-
pressed in various cancer types. Integrins mediate tumor cell proliferation, migration
and invasion [234]. Integrin alpha-8 interacts with FAK to activate the downstream
PI3K/AKT/mTOR signaling pathway [235]. Recently, ITGA8 was observed to be highly
expressed in multiple myeloma patients with early relapse [236].

SLAMF1 (IPO-3/CD150): The signaling lymphocytic activation molecule 1 belongs to
the signaling lymphocytic activation molecule family. Like other receptors in this family,
SLAMF1 is expressed in various hematopoietic cells and plays a role in the regulation
and differentiation of immune cells. SLAM receptors are self-ligand receptors that are
activated by homo- or heterotypic cell–cell interactions. SLAMF1 signaling leads to the
activation of RAS/MAPK and PI3K/AKT signaling, thus influencing cytotoxicity, humoral
immune responses, lymphocyte development, cell survival, cell growth and cell adhe-
sion [237–239]. SLAMF receptors negatively regulate B cell receptor (BCR) signaling in
CLL. Consequently, SLAMF1 was shown to be downregulated on CLL cells compared to
their healthy counterparts [240].
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5.12. Ph-pos (IL2RA, TSPAN15, OSMR)

IL2RA (CD25): The interleukin-2 receptor alpha subunit is one of three chains of
the IL2 receptor and is involved in the regulation of immune tolerance by controlling the
activity of regulatory T cells (TREGs). Accordingly, it is primarily expressed on T and NK
cells and only the binding of IL-2 to the dimeric and trimeric IL-2Rs leads to downstream
signaling via three main pathways: PI3K/AKT, JAK/STAT5 and RAS/MAPK [241,242].
However, IL2RA has also been found to be overexpressed in AML cells and has been
associated with chemotherapy resistance and poor outcome [243]. ALL cells, particularly
Ph-positive ALL cells, have been shown to aberrantly express IL2RA. While normal B cells
have low levels of IL2RA, primary ALL cells and ALL cell lines highly overexpress IL2RA.
High IL2RA expression levels were associated with poor clinical outcomes for patients with
B-ALL, in contrast to favorable outcomes for lymphoma patients [244]. On B cells, IL2RA
formed an inhibitory complex involving PKCδ as well as SHIP1 and SHP1 phosphatases
for feedback control of oncogenic BCR signaling or its oncogenic mimics [245]. Silencing of
IL2RA in primary ALL cells induces cell cycle arrest and apoptosis [246]. Furthermore, in
Ph-positive ALL cells, aberrant DNA methylation patterns and gene expression profiles
were shown to be centered around a cytokine network defined by high hypomethylation
and strong overexpression of IL2RA [244]. Camidanlumab tesirine (ADCT-301) is an ADC
consisting of a human anti-CD25 antibody conjugated to SG3199 via a cathepsin-cleavable
valine-alanine linker and is used to treat AML and ALL cells [116].

TSPAN15: The tetraspanin family comprises 33 family members that interact with
integrins, adhesion molecules and T cell receptors, forming dimers or heterodimers.
Tetraspanin-15 regulates the maturation and transport of the transmembrane metallo-
protease ADAM10 (ADAM metallopeptidase domain 10). Tspan15 is a marker for poor
prognosis and is upregulated in certain cancers [247,248]. In a mouse model TSPAN15
promotes cancer progression [248]. Overexpression of TSPAN15 activates the PI3K/AKT
and EGFR/MAPK signaling pathways, promoting tumor cell proliferation in hepatocellu-
lar carcinoma [247,249].

OSMR (IL31RB): The oncostatin M receptor belongs to the family of type I cytokine
receptors and forms the IL31 receptor with IL31RA. Upon binding of IL31, the IL31 receptor
complex activates STAT proteins. Oncostatin M (OSM) is an inflammatory cytokine of the
interleukin-6 family produced by osteoblasts, bone marrow macrophages and neutrophils.
OSM acts via a heterodimeric receptor, consisting of CD130 and the OSM receptor and
induces the proliferation of hematopoietic stem and progenitor cells [250]. Thus, OSMR
signaling can regulate tumor growth and metastasis and provide an advantage to cancer
cells [107]. OSMR, as a member of the cytokine receptor family, is capable of activating
signaling pathways such as JAK/STAT, RAS/MAPK and PI3K/AKT upon OSM ligand
binding [106,251,252]. OSMR has been shown to be overexpressed in various cancer types
and is associated with poor outcomes [106,107].

5.13. ZNF384 (XKR3, SLC2A3, CD226)

XKR3: XK-related protein 3 belongs to the XK family. XKR3 is a membrane transporter
in the XK/Kell complex of the Kell blood group system. A NUP214-XKR3 fusion has been
detected in a case of T-ALL [253]. But overall, not much is known about the functions of
XKR33 in cancer.

SLC2A3 (GLUT3): Solute carrier family 2 member 3 represents a glucose transporter
that mediates the uptake of various monosaccharides across the cell membrane. SLC2A3 is
highly expressed in colorectal cancer (CRC) and negatively associated with disease pro-
gression in CRC patients. Mechanistically, low glucose status led to dramatic upregulation
of SLC2A3 via the AMPK signaling pathway. Under glucose-limiting conditions, SLC2A3
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accelerated CRC cell growth by upregulating glucose supply and promoting nucleotide
synthesis. SLC2A3 has the highest affinity for glucose among all GLUT (glucose trans-
porter) transporters and demonstrated a greater impact on cell growth than GLUT1 under
glucose-limiting stress [254]. Following SLC2A3 silencing, the RAS/MAPK and PI3K/AKT
signaling pathways were inactivated [255]. 19G4-MMAE is a SLC3A2-targeting antibody–
drug conjugate that exhibits potent antitumor activity in head and neck squamous cell
carcinoma with a favorable safety profile [117].

CD226 (DNAM-1): CD226 belongs to the immunoglobulin superfamily and functions
as an adhesion molecule. It is involved in intercellular adhesion, lymphocyte signaling,
cytotoxicity and lymphokine secretion mediated by cytotoxic T lymphocytes and NK cells.
Upon binding to the NECTIN2 ligand, CD226 stimulates the activation and proliferation of
CD8 T cells [256]. Another ligand of human CD226 is CD155, which is expressed at high
levels in solid cancers and hematological malignancies [257]. CD226 influences intracellular
metabolism and enhances the PI3K/AKT and RAS/MAPK signaling pathways [258].

5.14. DUX4 (PTPRM, MCAM, CLEC12B)

PTPRM (R-PTP-mu): Receptor-type tyrosine-protein phosphatase mu belongs to the
R2B family (PTPRT, PTPRM, PTPRK and PTPRU). PTPRM is involved in cell–cell adhesion
through homophilic interactions. PTPRM was found methylated in 36 of 57 (64%) primary
ALL samples [147]. PTPRM expression positively correlates with the survival of breast
cancer patients with BRCA mutation [144]. Knockdown of PTPRM in breast cancer cells
also led to increased cell migration and invasion through regulation of the RAS/MAPK
signaling pathway [145,259]. Furthermore, overexpression of PTPRM in cervical cancer has
been shown to affect the SRC-AKT axis [144].

MCAM (MUC18/CD146): The melanoma cell adhesion molecule is a cell surface
glycoprotein that plays a role in cell adhesion and the cohesion of the endothelial monolayer
at intercellular junctions in vascular tissue. MCAM enables melanoma cells to interact
with cellular elements of the vasculature, thus promoting hematogenous tumor spread.
However, it has been found to be highly expressed in many tumors at every stage of
cancer development and progression, particularly during metastasis. It serves as a receptor
for various ligands, including growth factors and extracellular matrices such as galectins
and laminins. As a coreceptor of VEGFR2 and PDGFRB, CD146 activates PI3K/AKT,
RAS/MAPK and PLC to enhance pro-angiogenesis signaling, which promotes cell growth,
proliferation, differentiation and survival [260,261]. The ADC AMT-253 consists of a
humanized IgG1 antibody directed against MCAM conjugated to exatecan, a topoisomerase
I inhibitor. AMT-253 was developed for the treatment of MCAM-positive solid tumors and
was evaluated in a Phase I clinical trial [118].

CLEC12B: CLEC12B represents the C-Type lectin domain family 12 member B. It is
an inhibitory cell surface receptor that protects target cells against lysis by natural killer
cells. Thus, high expression of CLEC12B represents an important selective advantage
for tumor cells. The extracellular domain of CLEC12B shows homology to the activating
natural killer cell receptor NKG2D (natural killer group 2D). However, CLEC12B contains
an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its intracellular domain and
can counteract NKG2D-mediated signals [262]. CLEC12B negatively regulates PI3K/AKT
and RAS/MAPK signaling by recruiting SHP1/2 phosphatases to its ITIM.

5.15. BCL2-MYC (CNR1, CD70, BEST3)

CNR1 (CB-1): Cannabinoid receptor 1 belongs to the group of G protein-coupled re-
ceptors and is part of the endocannabinoid system. Cannabinoid receptors 1 and 2 are over-
expressed in various malignancies and cannabinoids have an important influence on the vi-
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ability and growth of tumor cells. In particular, overexpression of CNR1 and 2 (cannabinoid
receptor 1/2) has been observed in CLL compared to healthy B cells [263]. CNR1 promotes
embryonic development via PI3K/AKT and RAS/MAPK signaling pathways [264].

CD70: CD70 is a type 2 transmembrane glycoprotein and belongs to the tumor necro-
sis factor (TNF) ligand family. CD70 is expressed on activated antigen-presenting cells,
including B cells, and binds to CD27 on T lymphocytes to induce T cell activation and
proliferation. Binding of CD27 to CD70 activates PI3K/AKT and RAS/MAPK signaling
pathways in lymphocytes [265]. CD70 has been shown to be a promising target in AML
due to its expression on AML blasts and leukemia stem cells and its lack of expression
on normal hematopoietic stem cells [266]. Increased CD70 expression was observed in
relapsed acute myeloid leukemia cells after treatment with hypomethylating agents [267].
Furthermore, high CD70 surface expression has been observed on ALL cells compared
to healthy controls [268]. PRO1160 is a human monoclonal antibody specific for CD70
and conjugated to exatecan via a protease-cleavable linker. This ADC is highly effec-
tive in cell-based xenograft models of renal cell carcinoma, non-Hodgkin lymphoma and
nasopharyngeal carcinoma [119].

BEST3 (Bestrophin-3): Bestrophin-3 belongs to the bestrophin family and forms
calcium-sensitive chloride channels. Bestrophins are transmembrane proteins and have
a homology region with a high content of aromatic residues. BEST3 is predominantly
expressed in the brain and gastrointestinal tract [97,269]. ERK-dependent upregulation of
bestrophin-3 in renal epithelial cells has been shown to be part of an adaptive response to
counteract endoplasmic reticulum stress-induced cell death [270].

5.16. T-ALL (CD1B, NOTCH3, CCR9)

CD1B: The T cell surface glycoprotein CD1B is an antigen-presenting protein that
binds self and exogenous lipid and glycolipid antigens and presents them to T cell receptors
on natural killer T cells [271]. Accordingly, CD1 is expressed on the surface of numerous
different human antigen-presenting cells. Human CD1 molecules are divided into group 1
(CD1A and CD1C) and group 2 (CD1D). CD1B belongs to group 1 of the CD1 family of
transmembrane glycoproteins. CD1B-autoreactive T cells recognize phospholipid antigens
and contribute to antitumor immunity against CD1B-positive T cell lymphoma [272].

NOTCH3: The neurogenic locus notch homolog protein 3 acts as a receptor for the
membrane-bound ligands Jagged1, Jagged2 and Delta1 on juxtaposing cells to regulate
cell fate determination following conformational changes. Upon ligand binding, protease-
mediated cleavage of the NOTCH receptor by the gamma-secretase complex and ADAM
metalloproteases leads to release of the intracellular Notch domain (NICD) that translocates
to the nucleus. NICD forms a transcriptional activator complex with RBPJ/RBPSUH and
activates genes for differentiation, proliferation and apoptosis [273,274]. Furthermore,
NOTCH3 has been shown to contribute to the growth of T-cell leukemia by regulating the
unfolded protein response [275]. Activating NOTCH3 mutations were recently identified
in T-ALL and are detectable even in the absence of activated NOTCH1 [276]. NOTCH3
activates downstream RAS/MAPK and AKT/mTOR signaling [277,278]. PF-06650808
is an anti-NOTCH3 antibody–drug conjugate that delivers an auristatin-based cytotoxic
payload to target cells. In a phase I trial for treatment of patients with breast cancer and
other advanced solid tumors, PF-06650808 demonstrated a manageable safety profile and
antitumor activity [120].

CCR9 (CD199): The C-C chemokine receptor type 9 is a 7-pass transmembrane G-
coupled receptor for the ligand CCL25 [279]. CCR9 is expressed in more than 70% of T-ALL
cases, including more than 85% of cases of r/r disease and only on a small proportion
(<5%) of normal T cells [280]. In cancer cells, CCR9/CCL25 upregulates AKT and ERK1/2
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levels to exert antiapoptotic effects and chemoresistance [281–283]. CCL25/CCR9, as a
member of CC chemokines and their receptors, is known to be involved in chemotactic
cells, lymphocyte development, survival, proliferation and migration [284].

6. Discussion
The biological importance of an antibody target is underscored by its overexpression

in cancer cells, its restricted expression in healthy and normal tissues and its key role in
disease development. In particular, increased expression of the target on various other
blood cell types can limit ADC accumulation at target tumor sites [285]. The results in this
review are intended to guide the development of novel ADCs against surface targets, which,
based on these data, appear to be of utmost importance for each individual ALL subgroup.

Of the novel targets described here, 12 ADC targets have already been evaluated in
clinical trials (e.g., ERBB2 and F3) or are in preclinical testing, including NOTCH3 and
IL3RA antibodies, demonstrating the validity of this approach. Nevertheless, further
investigations are necessary to evaluate the internalization potential of these novel targets.
For this purpose, a high-affinity monoclonal antibody must be developed, if none already
exists. Furthermore, the choice of the highly potent payload (e.g., microtubule inhibitors,
DNA-damaging agents or topoisomerase inhibitors), the drug-to-antibody ratio (DAR),
and the design of the linker for effective drug delivery (cleavable or non-cleavable) must be
carefully considered. In particular, the intracellular transport of an ADC plays an important
role in drug discovery. Acid-soluble linkers are released in the early endosomes, while
proteolytic linkers rely on the presence of proteases (e.g., cathepsin B) in the late endosomes
or lysosomes [286].

However, resistance to various chemotherapeutic agents has been shown to be medi-
ated by mutation or altered expression of the drug target topoisomerase, overexpression of
drug transporter (ATP-binding cassette transporter such as MDR1 or MRP1), altered apop-
totic mechanisms or signaling pathways as well as defects in ADC trafficking pathways
(e.g., clathrin- or caveolin-dependent endocytosis) [287]. In particular, ATP-binding cassette
(ABC) transporters can export the common payloads used in ADCs (MMAE, MMAF or
calicheamicin) from the cell and mediate resistance.

ALL subgroups such as KMT2A-r, TCF3-HLF and hypodiploid karyotypes define
rare subgroups with highly drug-resistant disease [288]. Heterogeneity within the tu-
mor and the adaptive mechanisms that help cells survive under changing physiological
conditions complicate the effective treatment of cancer with targeted therapies. Often,
drug tolerance in these cells is driven by overexpression and increased receptor activity of
redundant receptors.

However, protein degradation and methylation can influence transcriptomic results
and can lead to reduced protein expression of these targets. One subgroup known for
extensive methylation is the KMT2A-r subgroup. In these cases, a combinatorial therapy
approach including DNA methyltransferase inhibitors (e.g., decitabine) along with ADCs
may improve treatment. For example, it has already been shown that the expression of
the established melanoma antigen CSPG4 can be induced in ovarian cancer cells by the
hypomethylating activity of the FDA-approved drug decitabine. Treatment of CSPG4-
negative SKOV-3 ovarian cancer cells with decitabine resulted in upregulation of CSPG4 in
the majority of decitabine-treated SKOV-3 cells [289].

Of the genes discussed in this work, 12/46 (~26%) genes are known to be aberrantly
methylated (CSPG4, PSD2, PCDHGC3, DSC3, PTPRK, CLSTN2, ERBB2, PTPRZ1, MEGF10,
IL2RA, PTPRM and CD70), 33/46 (~72%) genes play a role in at least one pathway of
the PI3K/AKT and RAS/MAPK signaling pathways (see Table 1), 3/46 (~7%) genes are
RTKs (DDR2, PDGFRB and ERBB2), 43/46 (~93%) genes are non-RTK cell surface markers
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and 13/46 (~28%) genes are regulated by at least one member of the FOXO, HIF or MYC
family (CSPG4, CD1B, CD70, NOTCH3, CD20, CD226, PTPRZ1, CNR1, GLUT3, CD146,
F3, DSC3 and VIPR2). For 12 of the 46 targets on our list, ADCs have already been tested
preclinically or clinically (Table 2: CSPG4, F3/TF, IL3RA, TNFRSF13B, ERBB2/HER2,
MS4A1/CD20, LRRC15, IL2RA/CD25, SLC2A3, MCAM, CD70 and NOTCH3). In addition,
13 of the 46 cell surface proteins are clinically relevant as they are already being investi-
gated in clinical trials for the treatment of cancer (Table S4: CSPG4, PDGFRB, PTPRZ1,
ERBB2/HER2, CRLF2, LRRC15, IL2RA/CD25, IL3RA, CD70, NOTCH3, F3/TF, DDR2 and
MS4A1/CD20) [ClinicalTrials.gov; accessed on 27 September 2025]. In consequence, we
are introducing 30 new targets that, to our knowledge, have not previously been used for
ADC development or investigated in clinical trials for cancer treatment.

The identification of new cell surface markers that could serve as specific targets for
targeted immunotherapy represents a further step in the development of new therapeutics
for the treatment of leukemia. Testing the antileukemic efficacy of novel or approved ADCs
in primary ALL samples to anticipate direct effects of antibody-based immunotherapy
in a preclinically relevant manner can be performed by ex vivo drug response profiling
(DRP). To examine if treatment with ADCs is effective in ALL patient samples or in cell
lines, samples can be measured in high throughput in a 384-well format, as illustrated in
Figure 5. For DRP, primary human leukemic cells can be co-cultured on hTERT (human
telomerase catalytic subunit gene)-immortalized bone marrow stroma cells under serum-
free conditions. After 72 h of incubation with the ADC, cellular viability can be measured by
automated microscopy-based image analysis (live-cell imaging). The use of the antibody–
drug conjugate inotuzumab ozogamicin for DRP screening of patient samples has been
shown before [290], but DRP data for other promising ADCs for ALL treatment is missing
so far. However, the development and establishment of an ADC involves several steps
beyond design, internalization and high-throughput DRP. Nonspecific cytotoxicity must
also be evaluated, for example, by additionally saturating the antigen binding site with an
uncoupled antibody prior to ADC application. The ADC should then be tested in vivo for
antitumor activity, distribution, half-life and stability in the organism as well as for toxicity.

 

Figure 5. Setup of the drug response profiling platform. Drug profiling can be performed on ALL cells
(patient material or cell lines) in co-culture with human bone marrow–derived stroma cells. Viability
(based on intact DNA content) can be analyzed after 72 h of treatment with ADC compounds by
quantifying viable ALL cells and furthermore to generate dose–response curves (IC50). This platform
enables the identification of drug-response phenotypes in individual ALL patients, providing an
additional layer of information to facilitate individual treatment approaches.

The expression of target antigens is often modulated according to the mutational
profile of the tumor cells [291]. RAS mutations have a major impact on key cellular
signaling pathways, which in turn can affect the protein expression of important surface
markers. For example, it has already been shown that BRAF mutations lead to altered

ClinicalTrials.gov
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expression levels of NECTIN4, a target molecule used to treat thyroid cancer with the
approved antibody enfortumab vedotin [19].

In this study, we suggest clinically validated and novel immunotherapy targets against
malignant cells of the different ALL subgroups. In addition, we describe a new strategy to
overcome resistance of non-responsive ALL cells by combining RAS/MAPK or PI3K/AKT
pathway inhibitors with ALL subgroup-specific ADCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/lymphatics3040033/s1, Table S1: Gene expression of novel cell
surface structures in ALL subgroups; Table S2: Annotation of genes depending on their location
according to occurrence in specified datasets; Table S3: Protein expression of novel cell surface
structures in ALL subgroups; Table S4: Targets in clinical trials.
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