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Abstract: Use of glyphosate and glyphosate-based herbicides is ubiquitous in US agriculture and
widespread around the world. Despite marketing efforts to the contrary, numerous studies demon-
strate glyphosate toxicity to non-target organisms including animals, primarily focusing on mortality,
carcinogenicity, renal toxicity, reproductive, and neurological toxicity, and the biochemical mecha-
nisms underlying these physiological outcomes. Glyphosate toxicity also impacts animal behavior,
both in model systems and in agricultural and environmentally relevant contexts. In this review, we
examine the effects of glyphosate and glyphosate-based herbicides on animal behaviors, particularly
activity, foraging and feeding, anti-predator behavior, reproductive behaviors, learning and memory,
and social behaviors. Glyphosate can be detected both in food and in the environment, and avoided
through activity and feeding strategies. However, exposure also reduces activity, depresses foraging
and feeding, increases susceptibility to predation, interferes with courtship, mating, fertility and ma-
ternal behaviors, decreases learning and memory capabilities, and disrupts social behaviors. Changes
in animal behavior as a result of glyphosate toxicity are important because of their sometimes severe
effects on individual fitness, as well as ecosystem health. Implications for human behavior are also
considered.

Keywords: glyphosate; Roundup®; activity; feeding; anti-predator; reproductive behavior; maternal
behavior; learning; memory; social behavior

1. Introduction

Glyphosate-based herbicides (GBHs), including brands such as Roundup®, are the
most used pesticides in the United States and for the world as a whole [1]. Commercial
farmers spray GBHs in three main application contexts: (1) as a pre-planting herbicide,
reducing competition for seedlings and young plants; (2) to reduce competition throughout
the growing season on Roundup® Ready crops, including most of the corn, sugar beets,
soy, and canola, and smaller portions of zucchini, alfalfa, and other crops, grown in the
US; and (3) to kill leafy vegetation before harvest and ease separation of non-vegetative,
commercially important parts of crop plants, used extensively for sugar cane, wheat, oats,
and legumes. Perhaps because of the timing of application, this last type of use seems to
impact food supplies most greatly, since glyphosate residue concentrations measured in
oat- and wheat-based foods are the highest among all the foods tested [2,3]. Yet these crops
are not genetically modified to be herbicide-tolerant; though herbicide tolerant soybeans
also contain high concentrations of glyphosate residue [4]. This results in continuous,
low-concentration human exposure to residues through food [5] and, because of runoff,
drift, and overspray, in drinking water and the environment for both humans and other
animals that live in or near agricultural areas. In addition, GBHs are used extensively
by homeowners to suppress vegetation around driveways, walkways and fence lines,
and by public employees to suppress weeds in public spaces like sidewalks, parking lots,
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playgrounds, and schools. Therefore, during application and subsequent exposure, humans
and other animals living in urban, suburban and rural environments can all be exposed
sporadically to higher doses of GBHs (e.g., [6]; Table 1). This supposition is borne out by
examining glyphosate concentration in tissues (personal observation; [7–10]), including its
prevalence in human urine (reviewed in [11]), related to type of exposure (occupational vs.
dietary; [12]) and type of diet (organic vs. conventional; [13]).

Table 1. Selected types of GBH exposure from application, national standards, water, and food; and
the range of concentrations at which they occur.

Exposure Type Concentration Source

Homeowner-grade Roundup® application recommended
concentration 2% or 20 g glyphosate/L herbicide MSDS, Roundup Ready to Use®

Agricultural-grade Roundup® application recommended
concentration

up to 6.2% or 62 g glyphosate/L herbicide; or 20.5 oz
glyphosate/acre Roundup Powermax 3® label

US: acceptable daily intake 1.75 mg/kg/day [14]
EU: acceptable daily intake 0.5 mg/kg/day [15]

EU: acceptable operator exposure level 0.1 mg/kg/day [15]
Australia: acceptable daily intake 0.3 mg/kg/day [14]

Canada: safe for aquatic life 800 µg/L [16]

Agricultural topsoils, Europe up to 2.05 mg/kg glyphosate
up to 1.95 mg/kg AMPA, its major metabolite [17]

Surface water 34–430 µg/L [18]
Surface water runoff up to 5200 µg/L [19]

Oversprayed wetlands 0.33 +/− 0.11 mg/L [20]
Groundwater, Hopelchén, Campeche, Mexico 0.44–1.41 µg/L [21]
Companion animal feeds (dog and cat food) 78.3–2140 µg/kg [22]

Bee bread 0–700 ng/g [23]
Honey up to 163 µg/kg [14]

Honey, Kaua’i Hawaii average 118.3 µg/L [14]
Beer, Germany 0.46–29.74 µg/L [14]
Beer, California 9.1–49.7 µg/L [14]
Wine, California 36.3–51.4 µg/L [14]

Soybeans, genetically modified 9 mg/kg [4]
Soybean grains (US; USDA) 0.265–18.53 mg/kg [14]
Soybean grains (US; FDA) 0.003–10 mg/kg [14]

Soy sauce up to 564 µg/L [14]
Chick peas up to 11 mg/kg [24]

Great Value chickpeas 889 ppb [2]
Lentils up to 9 mg/kg [24]

Lentils, Europe 0.01–11 mg/kg [14]
Lentils, HyVee 535 ppb [2]

Green split peas, Good & Gather 168 ppb [2]
Buckwheat, Europe 0.02–12.7 mg/kg [14]

Barley, Europe 0.02–8.9 mg/kg [14]
Barley up to 1.7 mg/kg [24]

Corn (FDA) 0.002–4.5 mg/kg [14]
Wheat, Europe 0.01–2.9 mg/kg [14]
Wheat kernels up to 1.1 mg/kg [24]
Rye, Europe 0.01–1.8 mg/kg [14]
Oat, Europe 0.68–0.82 mg/kg [14]

100% whole wheat bread, Village Hearth 1150 ppb [2]
Oats, Quaker 535 ppb [2]

Cheerios 1125.3 ppb glyphosate
26.4 ppb AMPA [2]

Pita Chips, Stacy’s Simply Naked by Frito-Lay, Pepsi-Co 812.5 ppb [2]
Crackers, Ritz 270.2 ppb [2]

Plant-based protein bar, chocolate, Onnit 134 ppb [2]

The marketing of Roundup® focuses on its safety for animals based on two incorrect
assumptions. Several different formulations are sold commercially, different formulations
are sold in different countries, and those available to the public are slightly different from
the formulations marketed for agriculture. To date, the active ingredient of all formulations
is glyphosate, though secondary herbicides may also be included. The first argument for
the safety of Roundup® for animals is that glyphosate targets the shikimate pathway of
amino acid synthesis, which is present in plants and microbes, but not in animals. Of course
this does not preclude the possibility that glyphosate also interacts with other molecules
to create toxic secondary effects. The second argument depends on experimental results
showing that, when tested alone by Roundup® manufacturers or scientists funded by them,
glyphosate exhibited low toxicity to mammals. Regulatory agencies have never required
testing of so-called inert ingredients within the various formulations, and tests with the
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whole GBH formulations are not required to get approval for marketing. Other ingredients
within the various formulations, particularly the secondary herbicides and surfactants,
have proven either to act synergistically, increasing the toxicity of glyphosate, or to be
more toxic than glyphosate, e.g., [25–28]. These effects are difficult to explore fully because
the composition of each formulation is considered proprietary and therefore, herbicide
manufacturers do not have to disclose the ingredients; and the composition of formulations
can differ from country to country. Given the wide variety of animal species and biological
systems known to be disrupted by GBH exposure, one or both of these arguments must be
incorrect.

Thousands of peer-reviewed articles have been published that demonstrate toxic ef-
fects of glyphosate and/or GBH formulations on animals (Table 2). A thorough review of
all the toxic effects reported across all animal taxa studied is beyond the scope of any single
review article, but particular types of GBH toxicity have been reviewed. Some particularly
thorough reviews discuss health risks [29–32] and ecotoxicology [33], while more focused
reviews elaborate on the effects on water fleas [34], on bees [35] and honeybees [36,37], on
fish [38], on amphibians [39], in South American agriculture [40], as studied in Brazil [41],
in aquatic systems [42,43], and to offspring of exposed mothers [44]. Other reviews focus on
particular outcomes of toxicity, including cancer and genotoxicity [45–47], pregnancy out-
comes [48–50], mammalian nervous systems [51], and autism spectrum disorders [52–55].
Since it is apparent that the effects of glyphosate and of GBH formulations often differ
(reviewed in [28,56]), this distinction must be considered when possible.

Table 2. Acute mortality induced by glyphosate or GBH from selected studies. Lower LD50/EC50

indicates higher sensitivity to exposure.

Toxicity Measure LD50/EC50 Source

Acute oral toxicity, Rat 5000 mg/kg (no deaths) MSDS for Roundup Powermax 3®

Wistar rats, 60 ± 10 days old, 24–28 h exposure, acute oral toxicity males 7203.58–7397.25 mg/kg
females 7444.26–7878.50 mg/kg [57]

Acute inhalation toxicity, Rat 2.23 mg/L MSDS for Roundup Powermax 3®

Acute dermal toxicity, Rat 5000 mg/kg (no deaths) MSDS for Roundup Powermax 3®

Anurans, Rana catesbeiana and R. clamitans, larval (Gosner stage 25),
96 h static renewal and non-renewal exposure 0.8–4.6 mg/L [42]

Anurans, larval, North America, 96 h static, nonrenewed aqueous
exposure 1.80–4.22 mg/L [58]

Onchorynchus mykiss, 96 h swim ups 1.8 mg/L
adults 6.1 mg/L [42]

Pimephales promelas, adult, 24 h static aqueous exposure 1.7 mg/L [42,59]

Eisenia fetida, acute (14 days) glyphosate acid 5600 mg/kg dry soil
MON 52276 > 388 mg/kg dry soil [15]

Apis mellifera (methodology not specified) 10 mg/L [60]

Drosophila melanogaster, depending on formulation and sex 48 h 6.02–199 g/L
7 days 2.67–8.97 g/L [61]

Acartia tonsa (crustacean), 48 h exposure 1.77 mg/L [42,43]
Marine crustaceans, depending on species, temperature and

formulation, 48 or 96 h exposure 6.57 to >500 mg/L [62]

Artemia salina (microcrustacean), early life stage, 48 h exposure in
artificial seawater

Roundup Original® 14.19 mg/L
Glyphosate AKB 480 37.53 mg/L [33]

Aquatic algae, 72 or 96 h exposure 3.5–55.9 mg/L [42]

Agricultural workers and others living in agricultural areas likely experience particu-
larly high GBH exposure, e.g., [6,12,63]. While it is extremely difficult to study in detail, in
human agricultural workers, herbicide exposure is implicated in cases of impaired kidney
function [64], altered thyroid and reproductive hormone levels [65], and reduced sperm
count [66,67], and increases time to pregnancy [68], chance of short gestation [69], preterm
birth [70], and neurobehavioral birth defects in their children [71], perhaps partially by
increasing the permeability of the blood–brain barrier and changing the metabolic activity
of epithelial cells in the brain [72]. Workers in GBH factories experience increased like-
lihood of coronary artery disease [73]. Probability of advanced liver fibrosis in patients
with fatty liver disease [74] is associated with GBH exposure, as are Parkinson’s Disease
and parkinsonism [75–77], and autism spectrum disorders [78,79]. Experimentally, GBH
exposure decreases human sperm motility [80]; transiently increases genotoxicity [81]
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via DNA lesions [82] and increases formation of micronuclei in peripheral white blood
cells [83]; mimics estradiol in inducing the growth of cholangiocarcinoma cells [84]; induces
genomic damage on human lymphocytes [85]; induces breast cancer cell growth through
an estrogen receptor pathway [86]; and, at low doses, dysregulates gene expression in
breast cancer cell lines, particularly in pathways related to cell cycle and DNA damage
repair [87]. Consistent with cancer cell line studies, the development of non-Hodgkin lym-
phoma [47,88,89] and other cancers [90] have been correlated with GBH exposure. Human
suicide attempts using GBH impair cardiac function [91], require attention to airways and
cause renal damage [92], and may induce gastrointestinal symptoms and central nervous
system complications [93,94] including hippocampal infarction [95].

Following the suggestion of Clotfelter et al. [96] and Zala and Penn [97], who point
out the importance of exploring the role of animal behavior when studying toxic chemical
pollutants and endocrine disruptors, this review explores the toxic effects of GBHs on
the behavior of animals. Based on the research articles available, we focus on the toxic
effects of glyphosate and glyphosate-based herbicides across animal taxa on activity level,
feeding behavior, anti-predator behavior, reproductive and maternal behavior, learning
and memory, and anxiety-like and social behavior.

2. Materials and Methods

The research reviewed in this article was collected in two ways. First, we conducted
exhaustive searches using Google Scholar, Science Direct, and Wiley Online Library, using
Biological Abstracts and GreenFile for verification in a few searches wherein all articles were
identified with the initial three databases. Likewise, we combined each behavior-related
search term with “glyphosate”, and for some of these, separately searched “Roundup®” to
verify that the same relevant articles were identified. Each of these databases was searched
between October 2022 and March 2023 using the search terms listed in Table 3, with the
number of hits indicated. From each search, we identified articles based on their title that
were about how glyphosate or glyphosate-based herbicides like Roundup® affect behavior.
If the title was not sufficient to determine whether each paper focused on an appropriate
topic, the abstract was read as well. For each search, once we encountered between five and
ten articles in a row that were not relevant to our topic, we stopped reading titles from that
search. Only peer-reviewed research articles were included, not review articles, abstracts,
conference proceedings, or theses. The resulting set of articles was then sorted into these
behavioral categories: activity, feeding behavior, anti-predatory behavior, reproductive and
maternal behavior, learning and memory, and anxiety and social behavior.

Table 3. Number of matches from each search term in each database. The first number is the number
of “hits” using each set of search terms, the second is the number the authors examined and assessed
for appropriateness, and the third is the number of articles included in the review that were identified
via that search. These do not add up to the total number of articles used because of extensive overlap
between searches.

Google Scholar Science Direct Wiley Online Library

Glyphosate behavior 51,100/130/20 5613/100/11 2752/80/1
Roundup® behavior 58,800/130/7 1780/125/5 1968/20/0

Glyphosate anti-predator behavior 328/110/14 168/29/12 101/2/0
Roundup® anti-predator behavior 373/90/16 67/19/9 93/20/0

Glyphosate feeding behavior 23,000/140/17 2119/142/7 1379/54/5
Glyphosate sexual behavior 13,600/80/13 530/50/13 612/60/1

Glyphosate courtship 593/80/7 37/37/2 18/18/0
Glyphosate mating behavior 5540/80/10 658/50/2 428/60/1

Glyphosate maternal behavior 4930/70/10 446/50/5 257/60/3
Glyphosate animal activity 47,700/90/4 5637/150/5 3529/40/0
Roundup® animal activity 40,900/70/2 1762/75/2 1629/40/0

Glyphosate learning behavior 18,500/60/32 545/50/11 512/20/5
Glyphosate memory 9360/60/28 607/50/10 343/20/3
Glyphosate anxiety 5900/60/28 326/50/13 167/20/7
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The second method we used to identify articles to include in this review was using
the bibliographies of the articles identified using the first method, particularly the review
articles cited in the introduction. These were sorted into the same behavioral categories.

Some articles included experiments relevant to more than one category, and these were
included in both or all, and the resulting number of articles in each behavioral category
are distributed by taxa in Table 4. The 128 articles included in our results are distributed
by taxa as shown in Figure 1. Each behavioral category was then assigned to one of the
authors, who read the articles, compiled the information, and wrote the first draft of the
relevant section. Frequent discussions among the authors identified focal topics within and
among behavioral categories and key themes for discussion, and every author commented
on each section.

Table 4. Number of research articles used for each section of this review by taxa.

Taxa Activity Feeding Predator Avoidance Reproductive Behavior Learning and Memory Social Behaviors

Bees 9 7 0 0 8 4
Aquatic invertebrates 0 3 2 0 0 0

Other terrestrial invertebrates 14 9 3 11 1 0
Fish 16 2 6 7 2 5

Amphibians and Reptiles 3 1 5 0 1 0
Birds 0 1 0 0 0 0

Rodents 5 0 0 9 5 15
Humans 0 0 0 0 6 5

Total 38 23 14 27 23 29
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Figure 1. Number of papers by taxa. This indicates the animal group studied and the number of
papers about that group for all research articles which met inclusion criteria and are cited herein.

3. Results
3.1. Activity

Glyphosate affects the way many animals go about their day to day lives. Across
studies about animal activity in a wide range of taxa, glyphosate affects activity levels,
whether walking, crawling, swimming, or flying. When exposed to glyphosate, animals
tend to be less active and do not move as far as unexposed animals (summarized in Table 5).
In the honeybee, Apis mellifera, an experiment conducted using 7 µg glyphosate/bee,
14 µg/bee, and 28 µg/bee found that exposure to higher concentrations caused the bees
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to have trouble reaching their hive [98]. Bees returning to the hive in a straight line or
with five right-angle turns, 2 h after being fed sucrose solution containing 5 mg/L or
10 mg/L glyphosate, took more time to reach the hive in both sets of mazes [60]. A similar
method was used by Balbuena et al. [99] to examine flight paths of bees after food-based
glyphosate exposure at 2.5 mg/L, 5 mg/L, or 10 mg/L. Although they performed this
study outside and not under laboratory conditions, bees given herbicide took longer and
took fewer direct flights. Similarly, 2.5 mg/L glyphosate exposure strongly impacted
how long it took bees to return home [36]. A different method was used to record total
activity level over a 24 h period. Bees were more active than controls when exposed to
Roundup® at 1.2 mg/L or 6 mg/L, whereas exposure at 0.12 mg/L and 12 mg/L did
not affect their activity levels, and exposure to 24 mg/L of Roundup® decreased their
activity [100]. While this is an unusual response pattern, the mechanism leading to this
change in behavior is not known. If the change in activity results from the endocrine-
disruptive properties of GBHs, which are known to be non-monotonic, this may not be
surprising (e.g., [101]). Conversely, feeding 50- or 100-ng doses of glyphosate per bee,
caused bees to sleep more [102]. Other studies did not identify changes in activity level
after Roundup® or glyphosate exposure. At concentrations of 0.5 mL/50 mL, 1 mL/50 mL,
and 1.5 mL/50 mL, bees successfully returned to the hive [103]. However, these authors
only considered whether the bees returned to the hive and not activity level or speed of
return. Another study tested locomotion using a square box with four lights. One light
was turned on at a time and when the bee was at the light it would turn off and the next
light would turn on. This is an effective way to collect activity data because bees go toward
lights. The data collected then were the duration of time it took for the bees to get to all
the lights twice. When conducting this experiment with bees exposed to glyphosate at a
concentration of 2.5 mg/L or 5 mg/L, they did not find a significant difference among the
groups [104].

Walking animals also exhibit lower activity levels after exposure to glyphosate. In
Swiss mice, the total distance traveled and velocity decrease when exposed to higher
concentrations of GBHs given in oral gavages [105,106]. Exposure of mice to 50 mg/kg/day
of a GBH had a large effect on their activity. The mice were less active and traveled a
shorter distance than unexposed controls [107]. The Sprague Dawley rat also exhibited
less locomotor activity when first injected with glyphosate at concentrations of 50, 100, or
150 mg glyphosate/kg. The rats traveled shorter distances, had less activity, and showed
less stereotyped behavior in a dose-dependent pattern [108]. Another study showed less
locomotor activity of Wistar rats injected with glyphosate at the lower concentration of
35 mg glyphosate/kg [109].

Similarly, arthropods also showed lower locomotor activity after GBH exposure.
Arthropods tested include the small wolf spider, Pardosa milvina; the large wolf spider,
Hogna helluo; and the ground beetle, Scarites quadriceps. All three arthropods showed a
decrease in activity when they came in contact by touch with the herbicide [110]. The
Madagascar hissing cockroach, Gromphadorhina portentosa, consumed up to 13.2 mg of
glyphosate. Then, they were placed on a hamster wheel to see how long they could
run for a maximum of 3 min. The results showed a significant decrease in time spent
running on the wheel for cockroaches exposed to glyphosate compared to their unexposed
conspecifics [111]. The fruit fly, Drosophila melanogaster, was also studied to see how different
methods of feeding could affect their locomotor activity. The methods they used were
putting the pesticide into agar-gelled feed (AM) and continuous liquid feeding (CLF), where
flies ingested the pesticide in liquid, and how much they ingested could be quantified. Both
methods decreased locomotor activity, though CLF yielded lower locomotor levels than
when using the AM method [112].

The earthworm, Lumbricus terrestris, is also impacted when exposed to glyphosate. The
GBH induced lower levels of activity when present throughout the soil [113]. In another
earthworm, Octolasion cyaneum, there was very slight avoidance behavior towards the
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contaminated soil at the concentration of 249 µg, though this slight avoidance was not
statistically significant [114].

Many aquatic organisms, including several types of fish, decrease activity and behave
abnormally when exposed to GBH. Many studies using the zebrafish, Danio rerio, show that
GBHs lower activity level at all stages, from larvae to adult fish. In a study that used both
larvae and adults, glyphosate and Roundup® at 0.01, 0.065, or 0.5 mg/L reduced swimming
distance [115]. Glyphosate concentrations of 0.01, 0.5, or 5 mg/L also increased swimming
activity levels in exposed larval and adult zebrafish during the day [116]. When exposed
to glyphosate at 1000 µg/L, zebrafish larvae decreased swimming distance, number of
rotations, mean velocity, and body mobility [117].

One study of larval zebrafish showed an increase in activity when exposed to GBH at
the concentrations of 0.1 and 10 µM for a 7-day exposure period [118]. However, another
study done on larval zebrafish showed an increase in activity levels when exposed to
Roundup® at 106 to 104 dilution but a decrease when exposed to GBH at 0.01 and 0.1 µM.
Both exposure periods were 48 h at 5 days after fertilization [119]. The common carp,
Cyprinus carpio, showed a decrease in activity level when exposed for 60 days versus
an increase in activity level when exposed for only 12 h to GBH [120,121]. Collectively,
these results show that in zebrafish and carp, the effect of GBH on activity depends on
both concentration and duration of exposure. One clue to the variation might be that
when glyphosate circulates in the water in the tanks, carp moved away from the part
of the tank with contaminated water [121]. Under some conditions, changes in activity
might reflect avoidance of contaminated water, while under other conditions might reflect
an impairment in ability to behave normally. For example, when exposed to higher
concentrations of glyphosate, the African catfish, Clarias gariepinus, showed loss of reflex, air
gulping, and erratic swimming [122]. Two other studies that exposed catfish to glyphosate
documented loss of equilibrium, increased startle responses, abnormal swimming, and
restlessness [123,124]. When treated with glyphosate, the redbelly tilapia, Tilapia zilli,
swam erratically and irregularly. After bursts of swimming, they became exhausted,
more so at higher concentrations [125]. An additional study using the livebearer, Jenynsia
multidentata, showed lower swimming activity levels when exposed to GBH [126]. The
blue ridge two-lined salamander, Eurycea wildrae, exhibited lower burst distance swimming
activity when exposed to GBH, and lower movement distance at higher temperatures [127].
Conversely, in a study using the hybrid fish surubim, a cross-breed of Pseudoplatystoma
corruscans and Pseudoplatystoma reticulatum, fish showed higher swimming activity levels
and increased ventilatory frequency when exposed to GBH [128]. Furthermore, the rainbow
trout, Oncorhynchus mykiss, was moved from dark to light and back to dark conditions
while exposed to different concentrations and formulations of GBH, including glyphosate
alone. During the light period, fish have significantly lower activity levels compared to the
dark periods, though during the dark periods, the fish swam a longer distance [129].

Other aquatic animals affected by glyphosate include the marsh frog, Pelophylax ridi-
bundus. Marsh frog tadpoles exposed to water contaminated with 7.6 mg/L, 3.1 mg/L, and
0.7 mg/L glyphosate showed a decrease in activity level during the Gosner stage 25 [130].
In two different species of South American frogs, Boana faber and Leptodactylus latrans,
tadpoles showed lethargy, convulsions, and rapid bursts of swimming when exposed to
glyphosate at concentrations of 69, 161, 310, 550, and 1074.5 µg/L [131]. However, in
the leopard treefrog, Boana pardalis, there was an insignificant decrease in activity levels
when frogs were exposed to glyphosate [132]. The water flea, Daphnia magna, showed less
swimming activity when exposed to GBH [133].
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Table 5. Effects of GBH on activity level.

Species Herbicide/Ingredient Used Exposure Concentration Results Source

Honeybee
(A. mellifera) Herbazed 48% Sucrose solutions

0.5 mL/50 mL
1 mL/50 mL

1.5 mL/50 mL
No effect on navigation [103]

Honeybee
(A. mellifera) Glyphosate

Distilled water
solutions containing

glyphosate

2.5 mg/L
5 mg/L

10 mg/L
Longer to get to the hive [99]

Honeybee
(A. mellifera) Glyphosate

Water and sucrose
solutions containing

glyphosate

1.2 mg/L
6 mg/L

0.12 mg/L
12 mg/L
24 mg/L

Decrease activity [100]

Honeybee
(A. mellifera) Glyphosate Sucrose solutions

containing glyphosate 2.5 mg/L Longer time to return to hive [36]

Honeybee
(A. mellifera) Glyphosate

Water and sucrose
solutions containing

glyphosate
2.5 mg/L, 5 mg/L No significant difference in

activity [104]

Honeybee
(A. mellifera)

Glyphosate isopropylamine
salt (Monsanto Roundup®

Original)

Sucrose solutions
containing herbicide

7 µg/bee, 14 µg/bee,
28 µg/bee. Harder time reaching hive [98]

Honeybee
(A. mellifera) Glyphosate Sucrose solutions

containing glyphosate 50, 100 ng doses Cause bees to sleep more [102]

Honeybee
(A. mellifera)

Glyphosate, in the
Roundup®

Sucrose solutions
containing glyphosate 5 mg/L, 10 mg/L Less time to reach the hive [60]

Fruit fly
(D. melanogaster) Glyphosate Continuous Liquid

Feeding (CLF). 10 mM, 30 mM, 50 mM Decreased locomotor activity [112]

Swiss mice Roundup® Oral gavages 250 and
500 mg/kg/day

Total distance traveled and
velocity decrease [105,106]

CF-1 mice Glyphosate isopropylamine
salt

Saline solutions with
glyphosate 50 mg/kg/day Less active and traveled a

shorter distance [107]

Wistar rat Glyphosate Water solutions
containing glyphosate

24 and 35 mg
glyphosate/kg Less locomotor activity [109]

Sprague Dawley rat Glyphosate Saline solutions with
glyphosate

50, 100, or 150 mg
glyphosate/kg Lower locomotor activity [108]

Wolf spider
(P. milvina; H. helluo)

Ground beetle
(S. quadriceps)

Glyphosate Saline solutions with
glyphosate 12 g/L Lower locomotor activity [110]

Madagascar hissing
cockroach

(G. portentosa)
Roundup® Ready-to-Use III Food consumption 13.2 mg of glyphosate Decrease in activity level [111]

Earthworm
(O. cyaneum) Glyphosate

Distilled water
solutions containing

glyphosate

166, 332, 498, 664 and
830 g GLY/kg

Very slight avoidance of soil
that contained glyphosate [114]

Earthworm
(L. terrestris) Glyphosate based Herbicide Food consumption 243, 221, 218 mg Lower levels of activity [113]

Salamander
(E. wildrae)

Commercially sold
Roundup®.

In water 0.0 mL/L, 0.5 mL/L,
1.0 mL/L, and 2.0 mL/L

Lower burst distance
swimming activity and

lower movement distance in
higher temperatures

[127]

Rainbow trout larvae
(O. mykiss) Glyphosate based Herbicide In water 1.18 ± 0.036 and

1.95 ± 0.086 µg/L

Increased swimming activity
and distance traveled during

dark periods
[129]

Redbelly tilapia
(T. zillii) Glyphosate based Herbicide In water 108, 216, 324, 432 and

540 mg/L
Swam erratically and

irregularly [125]

Livebearer
(J. multidentata) Glyphosate based Herbicide In water 0.59 ± 0.07, 0.58 ± 0.14

and 0.56 ± 0.16 mg/L
Lower swimming activity

levels [126]

Surubim(P. corruscans and
P. reticulatum cross-breed) Roundup® Original In water 2.25, 4.5, 7.5, and

15 mg/L

Increase swimming activity
levels and ventilatory

frequency
[128]
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Table 5. Cont.

Species Herbicide/Ingredient Used Exposure Concentration Results Source

Carp
(C. carpio) Glyphosate In water 5 and 15 mg/L Decreased activity levels [120]

Carp
(C. carpio) Glyphosate In water 0, 50, 100 and 150 mL/L Increased activity levels [121]

African catfish
(C. gariepinus)

Dizensate (Glyphosate
Herbicide) In water

9.6 mg/L, 14.4 mg/L,
19.2 mg/L, 21.6 mg/L

and 24 mg/L

Loss of reflex, air gulping,
and erratic swimming [122]

African catfish
(C. gariepinus) Glyphosate In water 0.36, 0.48, 0.60, 0.72 and

0.84 mg/L

Loss of equilibrium,
increased startle responses,
abnormal swimming, and

restlessness

[123]

African catfish
(C. gariepinus)

Glyphosate, in the
Roundup® In water

0.00 mg/L 0.30 mg/L
0.50 mg/L 0.70 mg/L

1.40 mg/L

Loss of equilibrium,
increased startle responses,
abnormal swimming, and

restlessness

[124]

Zebrafish
(D. rerio) Glyphosate and Roundup® In water 0.01 mg/L, 0.065 mg/L,

and 0.5 mg/L
Reduced swimming distance

at both stages [115]

Zebrafish larvae
(D. rerio) Glyphosate In water 0.05, 0.1, 0.5, 1, 10, 100,

1000, 10,000 mg/L

Decreased distance swam,
number of rotations, mean
velocity, and body mobility

[117]

Zebrafish larvae
(D. rerio) Glyphosate and Roundup® In water

0.1, 1, and 10 µM GLY
106- to 104-fold dilution

Roundup®

Increase activity levels with
Roundup® exposure and
decrease with glyphosate

exposure

[119]

Zebrafish larvae
(D. rerio) Glyphosate In water 0.01 and 10 µM Increased in activity level [118]

Zebrafish larvae
(D. rerio) Glyphosate In water 0.01, 0.1, 0.5, 1, 5, and

10 mg/L
Increased swimming activity

levels [116]

Marsh frog tadpoles
(P. ridibundus) Roundup® Power 2.0 In water 7.6 mg/L, 3.1 mg/L,

and 0.7 mg/L
Decrease in activity level at

Gosner stage 25 [130]

Water flea
(D. magna) Glyphosate In water 0, 0.875, 1.75, 3.5, 7, 14,

28, and 56 mg/L);
Lower swimming activity

levels [133]

Treefrog larvae
(B. pardalis)

Glyphosate based
Herbicides Food exposure

2.40 mg/L, 4.00 mg/L,
1.21 mg/L,1.92 mg/L,

3.34 mg/L

Only ametryn had adverse
side effects on the tadpole’s

activity
[132]

South American frog
tadpoles

(B. faber and L. latrans)

Glyphosate (Roundup
Original DI®) +

2,4–D(NORTOX®)
In water 69, 161, 310, 550, and

1074.5 µg/L
lethargy, convulsions, and
rapid bursts of swimming [131]

3.2. Foraging and Feeding Behavior

Exposure to glyphosate-based herbicides alters the feeding behavior of some organ-
isms, while in other studies it has no effect. In many cases, GBH-laden food is avoided
(summarized in Table 6), while organisms pre-exposed to varying concentrations of GBHs
for several hours or a few days before experimental trials only sometimes alter feeding
behavior (summarized in Table 7). Zebrafish larvae exposed throughout their first stage
and tested 7 days after hatching exhibit altered feeding behavior. When zebrafish and
their food, the rotifers, Brachionus calyciflorus and Lecane papuana, were exposed to GBH
at concentrations of 0.8 mg/L, zebrafish decreased their food consumption. However,
zebrafish pre-exposed to GBH consumed non-GBH food at normal rates. Since zebrafish
rely on olfactory cues to find food, the authors suggest that changes in tastes or smells
caused differential feeding on exposed rotifers [134]. Fruit flies consume less medium
containing Roundup® in a dose-dependent pattern [135]. Similarly, flies preferred an
organic sucrose solution to a solution that contained Roundup® Ready to Use, a GBH
formulation with the active ingredients glyphosate and pelargonic acid. However, they
did not show a preference for the solution with Roundup® Super Concentrate, another
GBH formulation containing the surfactant POEA and the active ingredient glyphosate,
despite exposure to equal concentrations of glyphosate from both formulations. In the
same study, flies given organic corn medium containing either Roundup® Ready to Use or
Roundup® Super Concentrate at various concentrations later consumed more sucrose than
those pre-fed with non-GBH medium. The authors attribute this to the flies consuming less
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of the GBH-contaminated medium, which prompted them to later consume more sucrose
solution [136]. The spider, Alpaida veniliae, showed lower consumption rates when prey
were exposed to GBH [137]. Effects of GBH exposure on honeybees are mixed. Newly
emerged adult honeybees given food infused with glyphosate showed a decrease in food
intake compared to the control [138,139]. However, a study conducted in the winter found
honeybees consumed more food when it contained GBH at concentrations of 0.1, 1, and
10 µg/L. This study also combined other reagents with glyphosate such as glyphosate +
insecticide Imidacloprid, glyphosate + fungicide difenoconazole, and glyphosate + imida-
cloprid + difenoconazole. The mixtures and individual reagents caused the honeybees to
consume more food than the control [140]. Honeybees required higher concentrations of
sucrose solution to elicit proboscis extension after GBH exposure [35,96,103,113]. Similarly,
honeybees feeding on sucrose solution displayed no difference in food intake regardless of
exposure [104,141–143] and broiler hens showed no preference between feed containing or
without GBH [144].

Species pre-exposed to glyphosate demonstrated varying effects. The pacu fish, Pi-
aractus mesopotamicus, displayed decreased food consumption after they were exposed
to glyphosate. Pacu were exposed chronically (10–15 days) to glyphosate at 0.2, 0.6 and
1.8 ppm. While the details differed among days, fish exposed to all concentrations exhibited
decreased feeding on at least some days. Those exposed to 1.8 ppm also exhibited such
a decrease [145]. Pre-exposed freshwater planarian, Girardia tigrina, exhibited decreased
food consumption as the concentration of Roundup® increased [146]. Another study tested
how glyphosate and Roundup® exposure influenced larvae of the damselfly, Coenagrion
pulchellum. The larvae were exposed to 1 mg/L or 2 mg/L, both of which led to an increase
in consumption of food compared to the control [147]. Predator cues did not affect food
consumption when larvae of the damselfly, Enallagma cyathigerum, were pre-exposed to
2 mg/L of glyphosate for seven days [148]. Adult and spiderling Pardosa milvina environ-
mentally exposed to GBH Buccaneer Plus ate more crickets than unexposed controls. The
authors attribute this behavior to hyperactivity from exposure to Buccaneer Plus [149]. A
similar study involving both P. milvina and another wolf spider, Tigrosa helluo, also showed
that Buccaneer Plus altered predator efficiency. Environmental exposure via paper discs
saturated with 12 mL/m2 GBH placed in random locations around the testing apparatus
mimicked fields exposed to GBH. T. helluo were allowed to prey on crickets, Acheta domesti-
cus, and on P. milvina; P. milvina were observed preying on crickets. In the presence of the
herbicide, T. helluo were able to capture prey faster than the control for both prey types.
While exposed and unexposed P. milvina did not differ in timing of predation, they required
more lunges to capture their prey [150]. Another wolf spider, Hogna cf. bivittata, displayed
pest-specific effects from GBH exposure, as they captured caterpillars and ants with lower
efficiency than the control, but not when preying on crickets [151], while a different spider,
Pardosa agricola, and the ground beetle, Poecilus cupreus, showed no significant difference
in prey capture rates [152]. The water flea, Daphnia pulex, reduced grazing by 40% after
pre-exposure at glyphosate concentrations of 50 mg/L [153]. Three-keeled pond turtle,
Mauremys reevesii, eggs were exposed to glyphosate concentrations of 0, 2, 20, 200, and
2000 mg/L, which led to an increase in foraging time in the hatchlings at the two highest
concentrations [154]. While some studies indicate that GBH exposure alters feeding behav-
ior, others do not. For instance, in a study involving two predators, the southern hawker
dragonfly, Aeshna cyanae and smooth newt, Lissotriton vulgaris, the predatory activity of
organisms exposed to GBH, chronically or acutely, was no different from those unexposed,
suggesting that GBH had no effect on the foraging of the predators [155,156].
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Table 6. Effects of GBH in Food on Feeding Behavior.

Species Herbicide/Ingredient Used Concentration Results Source

Zebrafish
(D. rerio) Glyphosate 0.8 mg/L Decrease in food consumption [134]

Fruit fly
(D. melanogaster) Roundup® 1, 3.3, 10, 33 g/L Decrease in food consumption [135]

Fruit fly
(D. melanogaster)

Roundup® Super Concentrate,
Roundup® Ready to Use

0, 0.5, 1.0, 2.0 g/L, 10 g/L Flies consumed less of the exposed food, consumed
more food after exposed to GBH [136]

Spider
(A. veniliae) Glifoglex® 48 192 mg/L a.i. Lower consumption rates for prey exposed to GBH [137]

Honeybee
(A. mellifera)

Glyphosate formulation not
listed 0, 2.5, 5 mg/L No difference in food intake [104]

Honeybee
(A. mellifera) Glyphosate 10 ppb, 100 ppb, 1 ppm,

10 ppm
No difference in consumption ratios except for the

10-ppb solution showing they consumed more [142]

Honeybee
(A. mellifera) Glyphosate 2.5 mg/L Honeybees showed decrease in food consumption [138]

Honeybee
(A. mellifera) Glyphosate 0.1, 1, 10 µg/L Food consumption increased in the presence of

glyphosate [140]

Honeybee
(A. mellifera) Credit Extreme® 240 1.25, 2.5, 5 ng/bee

Food consumption decreased over a 10-day period
for food exposed to differing concentrations of

glyphosate
[139]

Honeybee
(A. mellifera) Glyphosate 1.5, 7.5 mM Food consumption did not vary for glyphosate in its

isolated form or combined form with AMPA or Ncer [143]

Honeybee
(A. mellifera) Glyphosate 75, 150, 301 a.e. mg/L Glyphosate exposure did not alter food consumption [141]

Broiler hen Gallup super 360 47 mg Gly equivalent/kg
body weight/day

No difference between exposure and post exposure
to GBH [144]

Table 7. Effects of Pre-Exposure to GBH on Feeding Behavior.

Species Herbicide/Ingredient Used Exposure Concentration Results Source

Damselfly larvae
(C. pulchellum)

Glyphosate
and Roundup® Individuals 1, 2 mg/L Increase in food consumption [147]

Damselfy larvae
(E. cyathigerum) Glyphosate 7 days 2 mg/L Increase in food consumption [148]

Southern hawker
dragonfly

(A. cyanea) Smooth newt
(L. vulgari)

Glyphogan Classic Mesocosm exposed 6.5 mg/L No visible effect [155,156]

Wolf spider
(P. milvina) Buccaneer Plus Testing apparatus

exposed 9 a.e. g/L Captured more prey than
control [149]

Pacu
(P. mesopotamicus)

Unspecified glyphosate
formulation Fish exposed 0.2, 0.6, 1.8 ppm Food consumption decreased

exposure [145]

Water flea
(D. pulex) Pure glyphosate Organism exposed 50 mg/L Reduced grazing [153]

Wolf spider
(T. helluo and P. milvina) Buccaneer Plus Paper filter discs were

exposed with herbicide 12 mL/m2
Tigrosa caught prey faster

while P. milvina required more
lunges to capture prey

[150]

Three-keeled pond
turtle(M. reevesii) Glyphosate—ammonium Eggs were exposed 0, 2, 20, 200, 2000 mg/L Increase in the amount of time

it took to forage [154]

Wolf spider
(H. cf. bivittata)

Unspecified glyphosate
formulation

In a test tube
30 min 280 mg/L a.i. Lower consumption rates for

specific prey [151]

Planarian
(G. tigrina) Roundup ® GBH

96 h
1.87, 3.75, 7.5, 15 mg/L

a.e. glyphosate
Decrease in consumption rates

as concentration increased [146]

Agrobiont spider
(P. agricola) Ground beetle

(P. cupreus)
Roundup ® Biaktiv

Freshly doused paper
and paper left to dry for

1 day

No significant difference in
predation rates [152]

3.3. Anti-Predator Behavior

Glyphosate-based herbicides like Roundup® have adverse effects on anti–predator
capabilities of some organisms, but not others (Table 8). For some organisms, exposure
to GBHs led to a decrease in predator awareness. Zebrafish exposed to GBH were found
to be in areas that put them at a higher risk of predation indicating loss in predator
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awareness compared to unexposed fish [157–161]. In another fish, the common spiny
loach, Lepidocephalichthys thermalis, exposure to Roundup® (3 h and 15 days at 0.8 mg/L)
led to an increase in activity in the presence of conspecific alarm cues (CC) [162]. Wood
frog, Lithobates sylvaticus, tadpoles exposed to injured conspecific cues and Roundup®

did not change their activity, while tadpoles unexposed to Roundup® decreased activity
when exposed to cues from injured conspecifics, which indicates that glyphosate impairs
the tadpole’s ability to respond to the threat of predation [163]. Gulf coast toad, Incilius
nebulifer, tadpoles pre-exposed to Roundup® and exogenous corticosterone (CORT) became
more active in the presence of predator cues. Pre-exposure to the individual reagents and
control all showed a decrease in activity [164]. Blue Ridge two-lined salamander showed
synergistic effects of temperature and glyphosate on anti-predator behaviors. Use of refuge
became less frequent in exposed salamanders at ambient temperatures (12 ◦C) and an
interactive effect between elevated temperatures (23 ◦C) and glyphosate also had lower
frequency of refuge use. Glyphosate led to a reduction in burst distance, speed and distance
from a predator attack, unaffected by temperature [127]. When exposed to Roundup®,
damselfly larvae exhibited more activity in the presence of predator cues than the controls,
which reduced their activity in the presence of predator cues. Exposed larvae walked more,
faced their food and fed more often than the controls. However, the predator, the emperor
dragonfly, Anax imperator, was not more effective at eating exposed larvae than the controls,
despite the change in anti-predator behavior, perhaps because exposed larvae’s increased
swimming speeds may counteract the reduced anti-predator behavior [165]. In damselfly,
exposure to either Roundup® or pure glyphosate at 1 or 2 mg/L induced slower escape
speeds in the presence of predator cues. Roundup® induced significantly slower escape
speeds than glyphosate, indicating that “inert” ingredients affected their anti-predator
capabilities [147]. Exposure to GBH decreased the amount of time wolf spiders spend
ambulatory compared to controls in response to predator cues from beetles but not giant
wolf spiders’ predator cues [166].

In other organisms, exposure to GBH causes little to no effects on anti-predator
behavior. For instance, threat of predation from newts and dragonflies did not affect the
anti-predation behavior of tadpoles of the agile frog, Rana dalmatina. Tadpoles exposed to
varying levels of herbicide exhibited different behaviors, as the concentration increased,
tadpoles decreased their activity around the predators. It was also shown that more
tadpoles hid more often at the higher concentrations from the predators, more tadpoles hid
from the dragonfly larvae than newts. Overall, the authors suggest that exposure to the
herbicide did not significantly alter the tadpole’s anti-predator response [167]. Likewise,
the anti-predator capabilities of marsh frog tadpoles were not affected by exposure to
Roundup® Power 2.0 [130].

Table 8. Effects of GBH exposure on anti-predator behavior.

Species Herbicide/Ingredient Used Exposure Concentration Results Source

Zebrafish
(D. rerio) Roundup® Exposed for 30 min 1.4 µL

After simulated bird attack, fish
remained in the central zone

compared to control and other
tests.

[157]

Zebrafish
(D. rerio) Roundup® Exposed from 3–120 h

post fertilization 4.8 µg/L

Exposed fish remained in the area
which had a stimulus unlike

control; exposed fish displayed
hypermobility and more time

spent in the central zone

[158]

Zebrafish
(D. rerio) Glyphosate Exposed from 3–120 h

post fertilization 4.8 µg/L
After predatory stimulus, fish

entered and spent more time in
the central zone than the control

[159]

Zebrafish
(D. rerio) Roundup® Pre-exposed for 96 h 3, 5 mg/L

Exposed fish spent more time
spent in the top zone of the tank

compared to the bottom zone
[160]
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Table 8. Cont.

Species Herbicide/Ingredient Used Exposure Concentration Results Source

Zebrafish
(D. rerio) Roundup® Ultramax Embryos were

pre-exposed for 72 h 0, 1, 2, 5 µg a.i./mL

5 µg a.i./mL led to less time
spent at the bottom of the tank

when a visual stimulus was
encountered, indicating loss of

fear

[161]

Common spiny loach
(L. thermalis) Roundup®

Pre-exposed for 3 h and
15 days; briefly exposed

to Roundup® mixed
with CC and other

mixtures

0.8 mg/L

Pre-exposure led to an increase in
activity in the presence of

conspecific alarm cues (cc);
unexposed fish did not detect
conspecific alarm cues when
Roundup®+cc were mixed

[162]

Wood frog tadpoles
(L. sylvaticus) Roundup® weathermax

Tadpoles were
pre-exposed for 1 h;
unexposed tadpoles

briefly exposed to CC
mixed with Roundup®

and other mixtures

0.5 mg a.e./L

Pre-exposure led to no change in
behavior in the presence of

conspecific cues compared to
control; unexposed tadpoles
exposed to Roundup® mixed
with CC led to no change in

behavior compared to control
suggesting Roundup®

inactivated CC

[163]

Gulf coast toad tadpoles
(I. nebulifer) Roundup® ready to use Tadpoles were pre

exposed for 7 days 0.736 mg a.e/L

Mixture of Roundup® and
exogenous corticosterone led to

more activity compared to
individual reagents and control

[164]

Blue Ridge two-lined
salamander
(E. wilderae)

Roundup® ready to use Exposed for 5 h. 0.73, 1.46, 2.92 µg
a.e./L.

Ambient temperatures +
glyphosate led to a lower
frequency of refuge as the
concentration increased;

reduction in burst speed (speed
and distance away from a
predator) occurred during

exposure

[127]

Damselfly larvae
(E. cyathigerum) Roundup® Pre-exposed for 24 h 1.5 mg/L

Exposure led to more activity in
the presence of predator cues

compared to the control; survival
rate from altered anti-predator

behavior did not have a
significant change on survival

from predation

[165]

Damselfy
(C. pulchellum) Roundup® and glyphosate Pre-exposed for 7 days 1, 2 mg/L

Exposure to glyphosate and
Roundup® led to a decrease in
escape swimming speed with 2

mg /L of Roundup® inducing the
slowest escape speed

[147]

Wolf spider
(P. Milvina) Buccaneer Plus

Semicircles were
sprayed with herbicide
and placed in testing

apparatus.

2.5%
Exposure led to less time moving

when exposed to S quadriceps
cues but not to H. Helluo

[166]

Agile frog
(R. dalmanita) Glyphogan classic 21 days of exposure 0, 2, 6.5 mg a.e./L

Increase in concentration led to a
decline in activity in the presence

of predators, except for newts
which were similar to the control

(no predator); hiding occurred
more often at higher

concentrations, except for newts
and the control

[167]

Marsh frog tadpoles
(P. ridibundus) Roundup® power 2.0 Embryos were exposed

for 96 h
0.7 mg a.e./L, 3.1 mg

a.e./L and 7.6 mg a.e./L
Exposure had no effect on

anti-predator behavior [130]

3.4. Reproductive and Maternal Behavior

As an endocrine disruptor, glyphosate and GBHs particularly affect animal reproduc-
tion and reproductive behavior. Exposure to glyphosate can lead to a variety of negative
effects on the reproductive systems of animals, including courtship, mating, fertility, and
maternal behavior (summarized in Tables 9 and 10). Ait Bali et al. [106] found that the
mice had difficulty conceiving and success rates rapidly declined when exposed to higher
concentrations of glyphosate. The females who were not exposed to glyphosate had an 87%
success rate for conceiving, females exposed to 250 mg/kg had a 60% success rate, and fe-
males exposed to 500 mg/kg had a 25% success rate. Similarly, fecundity rates and fertility
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rates of planaria decrease as the concentration of glyphosate increases [146]. In earthworms,
L. terrestris and Aporrectodea caliginosa, and Japanese medaka, Oryzias latipes, it was found
that fecundity and fertility rates were negatively impacted by GBH exposure [168,169]. The
offspring of female Wistar rats exposed to GBH had lower rates of fertility as well [170].

Pinning behavior, considered crucial for the development of sexual competence in
males, was diminished in both male and female offspring perinatally exposed to the highest
dose of GBH. Both doses of GBH reduced female sexual behavior, as demonstrated by a
decrease in the female’s receptiveness to the male’s sexual advances, measured by latency to
the first lordosis, a postural change in females that indicates receptivity to mating, number
of lordosis, and number of mounts without lordosis. Male sexual behavior, measured in
latencies to the first mount, first intromission, first ejaculation, number of total mounts with
or without intromissions, and number of ejaculations in 30 min, was unaffected. The study
suggests that the prenatal and lactational exposure to GBH disrupted aromatase activity,
leading to the impairment of sexual behavior in female offspring, including a precocious
vaginal opening [171].

GBHs decrease masculinization of male mice exposed before puberty [172,173]. Both
maternal exposure to glyphosate and exposure before puberty disturbed the masculin-
ization process during the critical period of sexual hypothalamic differentiation. Sexual
partner preference score, measured by (total time spent in estrous female area—total time
spent in sexually active male area), increased and copulatory behavior was altered, with an
increase in latency to first mount, first intromission, and mount after first ejaculation. In
the same mice, exposure increased estradiol serum concentrations, but this did not lead to
increased sexual arousal. However, the mice began puberty at a younger age, which may
lead to an increase in sexual behaviors at a younger age [172].

Wolf spider males exhibit less courtship when exposed to glyphosate. Females were
placed inside traps and 47.2% of the traps captured between one and four males. Traps with
GBH on filter paper inside the trap captured fewer males than those treated with distilled
water. Traps with GBH surrounding the opening also captured fewer males than those
with only water on the filter paper ring. This suggests that the herbicide interferes with
female pheromone production. In an olfactometer experiment, there was no significant
difference in the choice of a corridor that the spider took regardless of the presence of
a female or not, leading to belief that the spiders were not repulsed by GBH itself. The
conclusion was made that the males had trouble in detecting and/or responding to the
females pheromones [174]. Another study confirmed that exposure to glyphosate impaired
sexual chemical communication between female and male wolf spiders, Pardosa agrestis,
reducing the male spider’s ability to find their mate [175]. Male agrobiont spiders and
beetles exhibit similar courtship behaviors and experience similar success rate and duration
of mating regardless of whether the surface they were on contained GBH residues [152]. A
similar study on wolf spiders and glyphosate showed no significant effect on courtship or
sexual behavior in either sex of the spider [176]. This may be due to differences between
species. While exposure levels from [176] are difficult to compare because of different
experimental procedures (5.04 µg/cm2 at 30.34%), they appear to be comparable among
the other three studies (12 g/L [174], 14.4 g/L [152] and 15 mL/L [175]).

Chronic sublethal exposure to glyphosate and another pesticide, thiacloprid, nega-
tively affected colonies of the ant species, Cardiocondyla obscurior, decreasing the number of
eggs and pupae when exposed to both pesticides simultaneously [177]. Specifically, queens’
reproductive performance decreased, possibly due to trade-offs between detoxification and
reproduction. The density of endosymbionts in workers decreased, which could be respon-
sible for the decrease in the queens’ reproductive performance. In addition, the pesticides
had no effect on the sex ratio, but resulted in smaller colonies. The results highlight the
importance of studying multiple stressors and the long-term effects of chronic exposure.

Exposure to glyphosate and its commercial formulations can interfere with the re-
productive fitness of fish by affecting their neural and endocrine systems. Exposure to
glyphosate (0.5 mg/L in Roundup®) decreases the sexual activity and sperm quality of male
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livebearers found in rice plantations in southern Brazil and northern Argentina [38,126].
Livebearers also experienced a reduction in copulation and mating success, thus decreasing
sexual activity [178]. GBH exposure also negatively impacts mate attraction by changing
territorial behavior, aggressiveness, and coloration of livebearers, zebrafish, and male
Mozambique tilapia, Oreochromis mossambicus, all traits important in courtship behavior
and mate attraction, which ultimately decreases reproduction. Territorial behavior is impor-
tant because females lay their eggs within these territories, and those with more resources
attract more females. Aggressiveness includes chasing and biting rival males to secure
access to females. Finally, coloration indicates a male’s health and genetic quality, such
that brighter and more colorful patterns attract females [178,179]. Adult zebrafish that
are exposed to glyphosate in combination with warm temperatures showed significant
malformities in offspring, which may ultimately negatively impact sexual development
and behavior in later stages of life [180]. Conversely, GBH exposure did not significantly
impact the fertility and reproductive potential of rainbow trout, since both the control and
exposed fish had high fertility [129]. GBHs decreased ovary size and number of mature
oocytes in fruit flies [181], which may account for GBH-induced reductions in fertility [61].

Several studies [106,171,182,183] show that female rats and mice who were exposed
to glyphosate while pregnant exhibited less maternal behavior, including decreased nurs-
ing, grooming of offspring, brooding, and reduced time spent in the nest compared to
unexposed pregnant females. This negatively affects the offspring, interfering with their
development and interactions with their environment. For example, offspring of exposed
mothers had reduced locomotor function and mental health impairments. It was also found
that maternal exposure to GBH had negative effects on maternal care of offspring, resulting
in decreased body weight of rats at 75 and 90 days of age, with male offspring being
more susceptible than females [171]. Another study [184] found that perinatal exposure
to GBH reduced maternal care and aggressive behavior in rats, which may impair their
ability to protect their offspring from predators. This was due to hormonal deregulations
that decreased maternal reflexes and motivation. The time and number of pups retrieved
decreased with a high dose of GBH, and maternal grooming and nesting was also observed
to decrease. Maternal grooming and nesting are important for the pups’ development of
endocrine and emotional responses to stress, and the lack of such grooming or nesting by
the mother can alter the pup’s endocrine development and its response to stress later in life.

Maternal behavior of Wistar rats exposed to two different concentrations of GBH
during pregnancy and lactation was not affected, nor did it impact water and food intake
of mothers or their body weight, gestational length, or litter size. There were also no visible
external malformations in the pups or any effect on their body weight due to GBH intake by
mothers. These findings suggest that exposure to GBH during pregnancy and lactation did
not have any significant adverse effects on maternal behavior of rats [185]. No significant
changes were observed in maternal behavior of Wistar rats between the experimental and
control groups [183]. These conflicting results may be attributed to the lower doses of GBH
in both Gallegos [185] and de Oliveira [183] and the different formulations that were used.
Additionally, there were no observed behavioral changes in Japanese medaka fish despite
induced altered expression in reproductive related genes [169].

Nikbakhtzadeh and Fuentes [186] found that exposure to glyphosate was lethal to eggs,
larvae and pupae, prolonged larval development, and delayed pupation of the mosquito,
Culex quinquefasciatus. Female mosquitoes avoided ovipositing in glyphosate-contaminated
water [186], but glyphosate at 5 mg/L from Roundup® Super Concentrate had no effect on
where female field crickets, Gryllus lineaticeps, chose to lay their eggs [187].
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Table 9. Effects of GBH exposure on courtship and mating behavior.

Animal Behavior Exposure Test Used Outcome Source

Swiss mice,
male and female Courtship

In food: glyphosate
250 mg/kg and

500 mg/kg

Copulation, fertility,
and fecundity rates

- Higher rates of copulation
with low fertilization success
rate as concentration of
glyphosate increased

[106]

Mozambique tilapia
(O. mossambicus),
male and female

Courtship
5 ppm, 8 ppm and 10 ppm

of
glyphosate

Color pattern, chasing
distance of males,

chasing occurrences,
size of territory

- Negatively impacted color and
pattern of fish.

- Higher concentrations of GBH
reduced the distance males
chased their rivals and effects
leveled off after 8 ppm

- Chasing occurrences decreased
from control to experimental,
however, experimental groups
were not significantly different
from each other

- Territory sizes decreased from
control to experimental group.
8 ppm and 10 ppm
concentrations showed no
significant difference from one
another

[179]

Planarian
(G. tigrina)

male and female
Fertility

Borosilicate glass beakers:
Roundup® Original 1.87,
3.75, 7.5 and 15 mg a.e./L

Fertility and Fecundity
rates

- Decreased fertility [146]

Rainbow trout
(O. mykiss) Fertility and fecundity 360 and 420 g/L

Glyphosate
Fertility and Fecundity

rates

- No significant difference
between control and
experimental when it came to
fertility and fecundity rates

[129]

Earthworm
(L. terrestris and

A. caliginosa)
Fertility and fecundity Unspecified concentration

of GBH
Fertility and fecundity

rates

- Fertility and fecundity both
decreased when GBH was
introduced.

[168]

Male wolf spider
(P. milvina) Courtship behavior Roundup® II Original

diluted to 12 g/L

Olfactometer
experiment and pitfall

experiment

- GBH made it difficult for the
male spiders to find their
mates

[174]

Livebearer
(J. multidentata),
male and female

Courtship behavior Roundup®: 5, 10, 20, 35,
60, and 100 mg/L

Number of
persecutions, copulation

attempts, number of
copulations, and mating

success

- Lower number of copulations
in the fish exposed to GBH

- Mating success dramatically
decreased in the males that
were exposed to GBH after 28
days

[178]

BALB/c mouse,
male and female Courtship behavior

Roundup®

Transorb: 50 mg/kg of
glyphosate

Open-field test, elevated
plus-maze test, and

forced swim test

- Male mice exposed to
glyphosate before puberty had
a demasculinization effect.

[173]

Wolf spider
(P. agrestis) Courtship behavior 15 mL/L of Roundup®

and 3 mL/L of Nurelle D
Two-choice olfactometer

and Y-maze set-up

- Males were less likely to follow
the females 3 h after a one-time
exposure to the environment
that the females were kept.
Sexual chemical
communication was disturbed

[175]

Ant
(C. obscurior) Fertility

fed with 75% honey-water
mix-

ture containing 3 µg/g
thiacloprid, 100 µg/g
glyphosate or 3 µg/g
thiacloprid+ 100 µg/g

glyphosate

Egg production, pupae
production

- Decreased brood production
and decreased reproduction in
the queen ant observed in
combination treatment of
thiacloprid and glyphosate.

[177]

Many fish species from
embryo to adult Courtship

Many different
concentrations of

glyphosate

Many different tests
done from each paper

- Decreased sexual activity and
aggresivness [38]
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Table 9. Cont.

Animal Behavior Exposure Test Used Outcome Source

Agrobiont spider
(P. agricola), ground

beetle
(P. cupreus)

Courtship

Roundup® Biaktiv
Diluted to 1 part GBH and

25 parts water
(1:25) = 14.4 g/L

Predation, locomotion,
Avoidance, defence, and

mating

- No significant difference
between control and
experimental group in sexual
behaviors

[152]

Wistar rat,
male and female Fertility

MAGNUM SUPER II,
2 mg/kg/day or
200 mg/kg/day

Fertility rates
- Impaired reproductive

capability in the F1 generation [170]

Fruit fly
(D. melanogaster) Fertility

Roundup® Super
Concentrate: 0.5, 1.0, and
2.0 g/L and Roundup®

Ready to
Use: 1.0, 2.0, and 4.0 g/L

Ovary size, number of
mature oocytes, body

weight of females

- Reduced size of ovaries and
reduced number of mature
oocytes

[181]

Mosquito
(C. quinquefasciatus) Fertility

Roundup® super
concentrate: 0.5
and 1 g/Liter

Oviposition experiment,
egg viability

experiment, and
triple-choice oviposition

experiment

- Females avoided ovipositing in
GBH exposed waters [186]

Wistar rat,
male and female Courtship Roundup® Transorb: 50

and 150 mg/kg

Observations on male
and female sexual

behavior

- No significant change in
behavior in male rats in
experimental and control
groups

- Reduced sexual behavior;
treated offspring showed
increased latencies to the first
lordosis and reduced number
of lordosis compared to the
control group. No difference in
the number of mounts between
both groups

[171]

Wistar rat
PND 90 and adult Courtship

Roundup® Transorb: 0.25
mL/

100 g of body weight
between 7 and 8 am from

GD18 to
PND5

Sexual partner
preference score, sexual

behavior

- Males exposed to GBH spent
more time in the females’
section and copulatory
behavior was altered

- Sexual partner preference in
males exposed increased
approximately 4-fold towards
females

- Puberty was seen starting at a
younger age

[172]

Japanese medaka
(O. latipes) Courtship

Embryos exposed to
0.5 mg/L glyphosate,
0.5 mg/L and 5 mg/L
Roundup® for 15 days

Fecundity and
fertilization efficiency

- Induced altered expression in
reproductive related genes;
however, no effect on behavior

[169]

Zebrafish
(D. rerio) Fertility

1 ppm and 5 ppm
glyphosate for 96 h

temperatures: 28.5 ◦C, 29
◦C, 29.5 ◦C, and 30 ◦C

- Parents who are exposed to
glyphosate and high
temperatures have offspring
who are malformed which
ultimately affects sexual
development and activity later
in development

[180]

Fruit fly
(D. melanogaster) Courtship

Roundup® sprayed on
GMO corn and then fed to

fruit fly

Portion mated (females)
and courtship rate

(males)

- No significant changes in
behavior when flies were
exposed to Roundup®or GMO
corn

- Mortality and reproduction
were significantly impacted
even in the lower end of
dosage used in the experiment.

[61]

Wolf spider
(P. milvina) Courtship Hi-Yield® Kilzall

5.040 µL/cm2
Body shakes and leg

raises
- No change in courtship or

mating behavior [176]
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Table 10. Effects of GBH exposure on maternal behavior.

Species Exposure Behavior Outcome Source

Swiss mice, male and female In food: glyphosate 250 mg/kg
and 500 mg/kg Nest building - Decreased nest building [106]

Sprague Dawley Rat, male
and female

Vanilla wafer cookie:
Glyphosate: 5 mg kg−1 d−1 and
Roundup® Plus: 5 mgkg−1d−1

Maternal behavior
- Mothers exposed to GBH spent more

time licking their pups [182]

Wistar rat, male and female Glifloglex®: 0.65 g/L and
1.30 g/L Maternal Behavior

- No significant change in maternal
behavior while rats were pregnant [185]

Wistar rat, male and female 50 mg/kg per day of GBH Maternal behavior
- No change in maternal behavior

between both experimental and
control groups

[183]

Wistar rats, male and female Roundup® Transorb: 50 and
150 mg/kg of GLY-BH

Pup retrieval, percentage of
dams that retrieved all pups,

total number of pups
retrieved for each dam,
grooming of the pups,

fullmaternal behavior, nest
building, maternal aggressive

behavior

- Mothers treated with 150 mg/kg
GBH had impaired maternal
aggressive behavior

- The mothers exposed to glyphosate
showed a decrease in maternal
behavior through an increased
pup-retrieval time, a decrease in the
number of pups retrieved, and a
decrease in maternal grooming

- Decrease in nesting and full
maternal care in rats exposed to
glyphosate

[184]

Cricket (G. lineaticeps)
Roundup®: 5 mg GLY/L of

water and glyphosate: 5 mg/L
of water

Choice oviposition
experiment and no-choice

oviposition Experiment

- Neither herbicide affected where the
mothers oviposited [187]

3.5. Learning, Memory, and Cognition

Learning involves the acquisition of new information, while memory is the ability
to retain that information and apply it in future situations. Studies that focus on visual
and olfactory learning tasks indicate that some sensory learning systems are extremely
susceptible to GBH exposure, while in other situations they may not be affected at all
(Table 11). In the mosquito, Aedes aegypti, for example, habituated less to a visual stimulus
after exposure to a dose only 5% of the lethal dose, and almost completely lost habituation
at higher but still field-relevant concentrations [188]. The effect of GBH on honeybee
sensory learning is more complicated. In two-color discrimination associative learning,
whether the association was between neutral stimuli and electric shock [100] or between a
sucrose reward and an aversive solution [189], GBH exposure did not affect visual learning.
However, in a 10-color discrimination scenario, which is a realistic foraging situation for
honeybees, GBH-exposed bees failed to learn during the second half of training, resulting in
significantly worse performance than unexposed control bumblebees, Bombus terrestris [189].
The same authors found no effect on 10-odor discrimination. Glyphosate exposure did
impair olfactory learning in 9-day-old young adult honeybees (but not at 5 or 14 days, [138])
and adult honeybees [98,104] in some two-choice associative learning situations, but not in
another [190]. Apparently, difficult sensory learning tasks are more likely to be damaged
by GBH exposure than simple ones.

Even in paradigms in which sensory learning is not impaired by GBH exposure, mem-
ory often is (Table 12). Though Hernandez et al. [190] found no effect on learning, or on
memory overall, exposure did shorten memory retention from long-term to medium-term
sensory memory. Helander et al. [189] found that sensory memory was significantly and
strongly impaired in the same situations as learning and 10-color discrimination but not
2-color or 10-odor situations. Importantly, this was true whether bees were exposed to
GBH before or after learning acquisition. Similarly, Herbert et al. [104] and Luo et al. [98]
identified deficiencies in short-term and medium-term olfactory memory in exposed hon-
eybees. A study of farmers in Uganda identified that visual memory is also impaired
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by pesticide exposure in humans, as are language memory, perceptual motor function,
complex attention, and processing speed. Specifically, glyphosate exposure is associated
with impaired visual memory, as measured by the Benton visual retention test [191].

Spatial learning ability has been assessed based on maze completion in rats and turtles,
and homeward flight paths in honeybees. In an open field experiment, honeybees exposed
to GBH took longer to accomplish homeward flight, and were less likely to transition
from an indirect flight path on their first trial to a direct path on the second [99]. Similarly,
turtles exposed to GBH took longer to complete a cross maze, and those exposed to high
concentration took longer than low concentration [154]. Rat spatial learning was examined
using the Morris Water Maze test, where they use visual cues outside of the water to find a
submerged platform in opaque water. Those rats exposed to GBH took longer to find the
correct quadrant and the platform during the second half of the learning phase, regardless
of the exposure concentration [192].

GBH exposure impaired spatial memory even more strongly than spatial learning. In
honeybees, those exposed to GBH at 25% or 50% of the ED50 (ED50 = 10 mg/L in sucrose)
concentration took 6 or 10 times longer to complete a simple maze 2 h after training than
unexposed controls. After 24 h, the results were only slightly less pronounced. In addition,
while control bees required no course corrections, exposed bees did in a dose-dependent
manner. Differences between exposed and unexposed bees were even greater in a complex
maze, both in terms of completion time and course corrections [60], again indicating that
more complex types of learning and memory decrease more than simple ones. Rodents’
spatial memory was also impaired, including rats tested in the water maze test mentioned
above [192] (but not [193]). In addition, chronic GBH exposure reduces short term spatial
memory in a y-maze among young mice exposed through maternal dosing, prenatally, and
through lactation [106] (but not those exposed only during gestation [194]) and chronically
exposed adult mice [195].

Mice and rats explore and spend more time with an unfamiliar (novel) object than one
they have spent time interacting with in the past. However, mice exposed to GBH fail to
discriminate between novel and familiar objects. In adults, chronic and subchronic exposure
significantly reduce discrimination. This effect most prominently impacts short-term (6-h)
memory [107]; and is dose-dependent when young mice are exposed through maternal
dosing [106]. These results are similar in rats, both in terms of an increase in variance
among exposed females and overall novel object recognition impairment in males [196]
or both sexes [192]. In contrast, Del Castilo et al. [193] did not observe a decrease in novel
object recognition in 3-month-old mice exposed to GBH since pregnancy; the difference
may be attributed to lower doses.

Consistent GBH exposure is detrimental to aversive stimulus-avoidance memory in mice
and in fish. In both taxa, electric shocks are applied when the animal enters a dark area of their
arena during training. Short-term memory is measured as the latency to enter the dark area 2 h
later; long-term memory is tested 24 h after training. Mice exposed to 500 mg/kg, whether as
adults [195] or through maternal dosing [106] exhibited shorter latency to enter the dark area
after 24 h, whether dosing was chronic, subchronic or acute. Maternally dosed and chronically
dosed adults’ short-term avoidance memory was also impaired at this dose. A lower dose of
250 mg/kg impaired avoidance memory after acute and subchronic dosing in adults (short-term
memory), subchronic and chronic dosing in adults (long-term memory), and maternal dosing
(long-term only). In zebrafish [115] and a livebearer fish [126], long-term aversive stimulus
memory is impaired by GBH exposure. These are also among the few learning and memory
papers that directly compare exposure to different formulations. Consistent with results from a
wide variety of taxa comparing the effects of glyphosate to those of formulated GBHs on many
different behavioral, physiological, morphological, and genetic endpoints (reviewed in [28,56]),
Bridi [115] found that Roundup® exposure affected memory more than exposure to glyphosate
alone, and Sanchez et al. [126] compared two different Roundup® formulations with somewhat
different results.
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Most information about how GBH exposure affects humans is based on case studies
resulting from accidental acute exposure or intentional exposure during suicide attempts. Most
of these case studies indicate that short-term and/or verbal memory loss occurs. The exception
is Wang et al. [75], who report a case in which the patient exhibited parkinsonian syndrome,
but without short-term memory loss. Other cases do report short-term memory loss, often
beginning quickly (hours to days after exposure) [95,197,198]. In some cases, memory loss lasted
for many months [95] or years [199] through the end of the study. In other cases, dramatic
improvements were observed [197,198]. Types of memory affected include word recall [197],
confusion, verbal memory, general memory and delayed memory [95], and both retrograde
and anteriograde amnesia [95,198]. While there is some variation among these case studies,
both in how patients were assessed and the memory impairments reported, the overall pattern
indicates that short-term and language memory are most often affected.

Table 11. Effects of GBH exposure on learning.

Animal Exposure Specific Behavior Behavior Test Used Behavioral Outcomes Source

Rat pups
PND 28–35

Glyphosate
35 mg/kg
70 mg/kg

every 2 days
PND 7–27

Spatial learning Morris water maze test Learning less at days 3 and 4 [192]

Honeybee
(A. mellifera)

Glyphosate PESTANAL
2.5 mg/L
5 mg/L

10 mg/L

Spatial learning Homeward flight path

Proportion direct second trial > first trial in
controls (3/15 vs. 12/15) but not exposed

bees (8/16 vs. 11/16)
Proportion with indirect on the first trial
→direct on second decreased with
concentration but not significant

[99]

Honeybee
(A. mellifera)

Roundup® or glyphosate
0.12 mg/L (1.2 ng/bee)
0.24 mg/L (2.4 ng/bee)

2 weeks of
sucrose solution

Aversive stimulus
learning,

visual learning

Associative learning
task:

2-color choice paired
with shock

No effect [100]

Honeybee
(A. mellifera)
young bees

Glyphosate Associative olfactory
learning

Training: olfactory
stimulus paired with
reward, vs. unpaired

5 days old: no effect
9 days old: impaired
14 days old: no effect

[138]

Bumblebee
(B. terrestris)

Roundup® Gold
0.1 µL

once before training

Associative visual
learning

10-color choice paired
with sucrose reward or

aversive solution

Untreated bees increased performance
during each of the five bouts. Treated bees
failed to learn between 3 and 4, or 4 and 5
and performed significantly worse than

controls during 4 and 5 [189]
Associative visual

learning 2-color choice No effect

Associative olfactory
learning 10-odor choice No effect

Honeybee
(A. mellifera)

Glyphosate
2.5 mg/L
5 mg/L

Daily, 15 days

Associative olfactory
learning

Proboscis extension
response (PER)

Sucrose sensitivity, elemental and
non-elemental learning impaired [104]

Honeybee
(A. mellifera)

adult foragers

Glyphosate
375 ng

1500 ng
Single dose or divided over

three days

Associative olfactory
learning PER No effect [190]

Honeybee
(A. mellifera)

Roundup®, unspecified
formulation

0.72 g/L
3.6 g/L = recommended

dose7.2 g/L
3 h/day, 11 days

Associative olfactory
learning PER

%PER lower in bees exposed to paired
sucrose and odor during 2nd and 3rd

conditioning sessions for 1⁄2 RC and 2 RC
but not 1 RC

[98]

Honeybee
(A. mellifera)

ED50 = 10 mg/L,
ED25 = 5 mg/L dissolved

Roundup® granules in
saturated sucrose solution

administered 2 h before
testing

Spatial learning

Simple maze
completion time

>10× longer for ED50 and >6× longer for
ED25 bees to complete

[60]
Complex maze

Even greater differences in completion
time and course corrections (though

control bees did make course corrections,
exposure increased >10×

Mosquito
(A. aegypti)

fourth-instar larvae
(5–8 days from

hatching)

Glyphosate
from hatching

Non-associative
visual learning Habituation to shadow

Decreased by doses <5% of lethal dose
50 µg/L—no effect, normal habituation

100 µg/L—intermediate
210 µg and 2 mg/L—almost no

habituation

[188]
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Table 12. Effects of GBH exposure on memory.

Animal Exposure Specific Learning/Memory Behavior Behavior Test Used Behavioral Outcomes Source

Swiss mice
male

1 month

GBH, unspecified formulation
250 or 500 mg/kg/day:

acute (once);
subchronic (daily for 6 weeks);

chronic (daily for 12 weeks)

Recognition memory Novel object recognition
Chronic and subchronic—reduced discrimination

Acute—similar average discrimination ability (NS),
more variation

[195]

Spatial working memory Y-maze Chronic—reduced spontaneous alternation
Subchronic—no effectAcute—no effect

Aversive stimulus memory Passive avoidance task

Short-term memory (2 h):
chronic—500 mg/kg reduced latency

subchronic and acute—250 mg/kg reduced latency
Long-term memory (24 h):

chronic and subchronic—250 and 500 mg/kg reduced
latency

acute—500 mg/kg reduced latency

Swiss mice
male and female offspring

60+ days

GBH, unspecified formulation
250 or 500 mg/kg/day:

maternal gestation and lactation

Working memory Y-maze Lower alternation in a dose dependent manner

[106]

Recognition memory Novel object recognition test
Reduced ratio of time with novel object in a

dose-dependent manner
Lower discrimination index

Aversion avoidance memory Passive avoidance test

Short-term memory (2 h):
decreased latency at 500 mg/kg

Long-term memory (24 h):
decreased latency at 250 and 500 mg/kg

Mice
male

4 weeks

Glifloglex®

4 mg/day 3X/wk, 50 mg/kg/day:
intranasal

Recognition memory Novel object recognition test Short-term (6 h): impaired
Long-term (24 h): not impaired (recovered) [107]

Swiss mice
male and female

3 months

Roundup®, unspecified formulation
0.075% w/v: Drinking water

Recognition memory Novel object recognition test No differences for males or females [193]
Spatial memory Water maze No difference for males or females

Rats
male and female

adults

Glifloglex®

0.65 g/L
(NOAEL; 100 mg/kg/day)
1.3 g/L (200 mg/kg/day)

gestation and lactation

Recognition memory Novel object recognition test
Females—no significant effect; high variation among

exposed females during familiarization phase
Males—impaired

[196]

Rat pups
PND 28–35

Glyphosate 35 mg/kg
70 mg/kg every 2 days

PND 7–27

Recognition memory Novel object recognition test Decrease in time spent with novel object at both
concentrations [192]

Spatial memory Morris water maze test Lower in rats exposed to either concentration

Bumblebee (B. terrestris)
Roundup® Gold

0.1 µL
once before training

Associative Visual memory 10-color choice paired with sucrose or
aversive solution

Whether treated before learning bout 1 or after learning
bout 5, exposed bees performed significantly and much

worse than control bees
[189]

Associative Visual memory 2-color choice No effect

Associative Olfactory memory 10-odor choice No effect
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Table 12. Cont.

Animal Exposure Specific Learning/Memory Behavior Behavior Test Used Behavioral Outcomes Source

Honeybee
(A. mellifera)

Glyphosate
2.5 mg/L
5 mg/L

Daily, 15 days

Associative olfactory memory Proboscis extension response (PER) Short-term memory decreased [104]

Honeybee
(A. mellifera)

adult foragers

Glyphosate
375 ng

1500 ng
Single dose or divided over three days

Associative Olfactory learning PER

memory retrieval at 14 min or 24 h after conditioning
did impair memory retention patterns—unexposed bees

were more likely to have successful long term than
medium term memory, while exposed bees were more

likely to have successful medium term memory.

[190]

Honeybee
(A. mellifera)

Roundup®, unspecified formulation
0.72 g/L

3.6 g/L = recommended dose
7.2 g/L

3 h/day, 11 days

Associative Olfactory learning PER
% PER lower for all exposed bees in memory trials 1–5,
but only significant for 1/2RC in all trials and in T1, T4,

and T5 for 1RC
[98]

Honeybee
(A. mellifera)

ED50 = 10 mg/L, ED25= 5 mg/L dissolved Roundup®

granules in saturated sucrose solution administered 2 h
before testing

Spatial memory Simple maze completion time-

24 h after exposure, times were lower than at 2 h, but
still 5–8.5X longer than controls

Simple maze course corrections—control bees 0, ED25
1.3, ED50 2.35 [60]

Complex maze Substantially and significantly after 24 h

Zebrafish
(D. rerio)

3-day larvae
adults

Glyphosate
Roundup®

96 h
0.01 mg/L 0.065 mg/L and 0.5 mg/L

Aversion avoidance memory Dark/light association
Impaired by 0.5 mg/L Roundup®; other concentrations

not significant
Glyphosate alone not significant

[115]

Livebearer
(J. multidentata)

Roundup® Original
Roundup® Transorb

Roundup® WG
96 h

0.5 mg/L

Long-term memory Avoidance inhibition test
All fish spent more time in the light area in testing than

training
RWG: less time in light area in testing

[126]

Three–keeled pond turtle
(M. reevesii)

Glyphosate ammonium eggs
2, 20, 200 or 2000 mg/L Spatial learning Maze Longer time to cross maze;

dose-dependent [154]

Human Accidental exposure Parkinsonism Mental exam Short-term memory loss [199]

Human Occupational exposure Benton visual retention test Impaired visual memory [191]

Human Unknown exposure amount Encephalopathy Neuropsychological test

Day 2—memory problems
Day 12—overall test score 22/30, 0/3 word recall,

impaired memory and executive function
3 years—neuropsychological tests 28/30, 2/3 word recall,

improvements in memory and executive functioning

[197]
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Table 12. Cont.

Animal Exposure Specific Learning/Memory Behavior Behavior Test Used Behavioral Outcomes Source

Human Commercial formulation
Unknown amount Hippocampal infarction IQ and memory tests

At admission—memory normal
Several hours—memory deficit, short-term memory

loss, including of suicide attempt
Day 9—short-term recall deficits

3 weeks—partial improvement; IQ = 70, verbal memory
52, general memory 64, delayed memory; 65 indicates

retrograde and anterograde amnesia.
2 months—verbal memory 74, general memory 84,

delayed memory 86
6 months—memory impairments remain.

[95]

Human Chronic occupational exposure Parkinsonism No short-term memory loss [75]

Human Unknown amount Encephalopathy Short-term memory impairment, retrograde and
anterograde amnesia [198]
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3.6. Social Behaviors

Studies on a variety of animal species have assessed the effects of pesticides and
herbicides on social behavior. The scope of these investigations includes effects on anxiety-
related and depressive-like behavior, aggression, autism spectrum disorders (ASD), and
more (summarized in Table 13). In critical developing stages of the brain such as the
prenatal, postnatal, and adolescent periods, exposure may be even more detrimental,
having possible impacts not just on higher cognitive functioning like in learning and
memory, but also on social and emotional behavior as well as the development of ASD [105,
200]. Generally, herbicides like glyphosate have been reported to affect motor and emotional
functioning in addition to sociability in several non-target animals. Though neurotoxicity of
glyphosate on humans is less frequently studied, studies have made associations between
glyphosate and neuropathology like ASD and Parkinson’s disease.

Herbicides like glyphosate have been shown to cause neurotoxic effects linked to
changes in mood such as anxiety-related and depressive-like behavior. In rodents, the open
field (OF) test is commonly used to assess locomotor activity and emotional reactivity to
new environments, where a tendency to stay in the peripheral areas in the OF arena, termed
thigmotaxis, and thus, less time spent in the center, indicates anxiety-like behavior [107].
Elevated plus maze (EPM) tests have also similarly been used to assess anxiety in rodents.
Employing these methods, studies on GBH exposure in mice have reported decreased
locomotor activity [107,201], indicating effects on nervous system function, and increased
anxiogenic behavior [105–107,202,203]. Ait Bali et al. [105,202,203] have shown that these
effects are dose-dependent and occurred after subchronic (6 weeks) and chronic (12 weeks)
GBH exposure, but not acute. Another study by Bicca et al. [204] assessed subchronic
exposure of Zamba® GBH at 50 mg/kg on rodents and explored the potential therapeutic
effects of the flavonoid, quercetin. The results showed increased anxiety in the EPM test
with fewer open arm entries and less time spent in the open arm. These effects were
largely recovered by quercetin. Conversely, some studies did not find anxiolytic behavioral
effects of glyphosate in the OF test [193,201,205], and Joaquim et al. [201] noted reduced
exploratory behavior of only male mice during the EPM test. Exposure to GBH during
critical development stages of the brain may have important effects on emotional behavior
later in life. De Castro Vieira Carneiro et al. [194] reported that mice between postnatal
day (PND) 25–28 that were exposed to 0.3 mg/kg/day of GBH during gestation crossed
lines more frequently in OF tests, suggesting hyperactivity, and exhibited increased marble
burying behavior which may be indicative of anxiety. In another study, rats were exposed to
either 0.65 or 1.3 g/L of GBH during gestation and lactation. Females at PND 45 that were
exposed to the highest concentration of GBH crossed fewer squares in an OF test, indicating
decreased locomotor activity. These effects were also observed in 90-day-old male and
female rats exposed to either concentration of GBH. The authors state their findings are
positively correlated to an increase in emotional response in adulthood [185].

Glyphosate also affects locomotor activity and anxiety in other non-target organisms
such as zebrafish. A study assessing the potential effects of global warming on glyphosate
toxicity found that zebrafish exposed to glyphosate at increasing temperatures spent more
time at the bottom of the tank and had more erratic movements suggesting increased
anxiety [206]. They also found that glyphosate exposure at increasing temperatures caused
disruptions in the zebrafish’s circadian rhythm, where they spent less time swimming
during the light portion of the cycle and more in the dark portion. Ivantsova et al. [118]
compared the effects of glyphosate and AMPA (glyphosate’s main metabolite) as well as a
mixture of the two on zebrafish larvae. While glyphosate, but not AMPA or the mixture,
induced hyperactivity in zebrafish, there were no observed effects on anxiety with any of
the treatments.

In livebearers, unlike what has generally been seen in rodents, unexposed fish spend
more time in the peripheral areas in an OF test than the central area where there is increased
predatory susceptibility, indicating natural anxiety behavior [126]. Two formulations of
GBH, Roundup® Original and Roundup® Transorb, increased the amount of time fish



Agrochemicals 2023, 2 391

spent in the central area, while a third formulation, Roundup® WG, did not. The authors
suggest that this could be due to a depressive-like state coinciding with reduced alertness.
Similarly, Lanzarin et al. [161] found that zebrafish embryos exposed to the highest tested
concentration of GBH did not exhibit evasion behavior when introduced to an aversive
stimulus compared to the unexposed embryos. This decreased perception of fear could be
due to adverse effects on CNS development, specifically in the habenula region of the brain
which plays a role in aversive response control.

While it is unclear whether the effects of GBH on evasion behavior are caused by a
depressive-like state, other studies have also linked glyphosate exposure to depression-like
behavior. Ait Bali et al. [105,202] reported that subchronic and chronic, but not acute,
exposure to GBH not only induced anxiety in mice but also depressive behavior, where
mice subjected to a tail suspension test and splash test showed a dose-dependent increase
in immobility time and decrease in grooming time, respectively. These results were in
agreement with Joaquim et al. [201], who also reported increased immobility in the tail
suspension test with both male and female mice acutely exposed to GBH. Mice exposed
to GBH also spent more time immobile in a forced swim test and this, like the anxiety
effects previously discussed, also improved with quercetin therapy [204]. Rats exposed to
0.36% glyphosate in water from gestational day 5 until PND 60 demonstrated prolonged
immobility time and decreased time climbing in a forced swim test, indicative of depressive-
like behavior, though no effects on anhedonia-like behavior were seen [207].

Glyphosate affects honeybees’ ability to carry out social activities that rely on func-
tions such as directional flight [99], appetite [104], associative learning, and circadian
rhythms [100]. Decreased social interaction was also observed in rodents exposed to GBH
during gestation [183,208] and also throughout the lifespan from pregnancy until adult-
hood [193]. Impaired social behavior was also found in livebearers exposed to Roundup®

for 96 h [126], as demonstrated by a preference for the side of the aquarium with fewer
fish. De Oliviera et al. [183] found that maternal exposure to GBH reduced the number of
ultrasonic vocalizations emitted by pups, which is an early social communicative deficit.
Additionally, the pups exhibited increased latency to reach the GBH-treated dam’s shavings,
signifying a defect in olfactory discrimination which is important for social behavior devel-
opment. In a three-chamber sociability test, GBH-treated mice spent less time and made
less visits to another conspecific and spent more time with an inanimate object, indicating
adverse effects on adult mice social skills [106]. While many studies have reported negative
effects of GBH on social behavior, a few studies [161,194] did not identify such effects.

Changes in aggression also occur in some animals exposed to glyphosate. In Sanchez
et al.’s [126] study, livebearers were tested for aggressive behavior by observing their
proximity to their own reflection in a mirror, which indicated preference for an “opponent”.
All GBH-treated fish spent more time in proximity to the mirror and thus demonstrated
more aggressiveness than non-treated fish. In contrast, Bridi et al. [115] reported that
glyphosate impaired aggressive behavior in zebrafish, utilizing a similar methodology.
Pinning behavior is an important assessment of play fighting behavior in rodents where
the goal of the rat is to wrestle the opponent onto its back and stand over it [171]. Pinning
behavior was impaired in both male and female offspring of dams exposed to the highest
GBH dose of 150 mg/kg/day from day 15 of gestation to PND 7. Since pinning behavior is
critical to the development of male rat sexual competence, this could affect sexual behavior
in adulthood.

Over the past few decades, there has been a rapid increase in the prevalence of autism
spectrum disorder (ASD), a neurodevelopmental disorder characterized by difficulties in
social communication and unusually limited and repetitive behaviors and interests [209].
With the simultaneous increase in global herbicide and pesticide use, many studies as-
sessing the association between pesticides and neurodevelopmental disorders like ASD
have shown a strong relationship [200,210–212]. Del Castilo et al. [193] found that both
male and female 3-month-old mice exposed to GBH since pregnancy exhibit more repet-
itive marble burying, a behavior used to assess stereotyped behavior in mouse models
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of autism. Other studies also support these findings [183,194], reporting an increase in
repetitive/stereotyped behavior in rodents exposed to GBH during gestation and through-
out the lifespan [193]. In addition, in a novel object recognition test, mice demonstrated
cognitive deficits after maternal glyphosate exposure, suggesting ASD-like cognitive im-
pairment [208].

Some case studies have assessed the effects of pesticides and herbicides on neuro-
logical disorders like ASD and Parkinson’s disease in humans. For example, a study by
von Ehrenstein et al. [79] examined birth data between 1998–2010 from the Central Valley
of California, a major agricultural location. The risk of developing ASD correlates with
exposure to glyphosate and other herbicides such as chlorpyrifos, diazinon, malathion,
avermectin, and permethrin. This risk increases following prenatal exposure to ambient
pesticides within 2000 m of their mother’s residence during pregnancy. Exposure during
the first year of life can further increase the risk of ASD with intellectual disability comor-
bidity. Other studies have linked glyphosate exposure, through occupational exposure
or accidental ingestion, to Parkinsonian syndrome [75,199,213]. A case study by Zheng
et al. [214] detailed the events of a previously healthy 58-year-old woman following acute
glyphosate exposure, where the patient developed Parkinsonian syndrome that completely
resolved after treatment with ATP, pralidoxime iodide, and scopolamine hydrobromide.

Social behavior is important to the procreation, survivability, and adaptability of
species throughout the animal kingdom. In honeybees, for instance, social interaction and
cooperation is vital to the survivability of the entire colony, as each member has specific
tasks to carry out [215]. Social behavior in rodents also plays a role in the development
of other cognitive and emotional processes which later form part of the adult behavioral
repertoire [183]. Thus, disruptions in social behavior can have damaging effects to not just
the individual organism but to whole populations, species, or ecosystems.

Table 13. Effects of GBHs on Social Behaviors.

Animal Exposure Specific Behavior Behavior Test Used Behavioral Outcomes Source

Zebrafish
(D. rerio)

Glyphosate and AMPA
(0.1, 1, or 10 µM) or mix

of both (1 µM) for 7
days

Locomotor activity and
anxiety

Distance moved during
alternating light and

dark periods,
Dark/light preference

Hyperactivity of zebrafish exposed to
glyphosate but not AMPA or the mixture

No effect on anxiety-like responses
[118]

Mice Roundup® Transorb 25,
50, or 100 mg/kg;

Generalized behavior
and anxiety

Open field, elevated
plus maze, tail

suspension

Decreased locomotion in female mice
No effect on anxiety but reduced exploration

in male mice
Increased immobility time both males and

females

[201]

Zebrafish
(D. rerio)

Roundup® UltraMax 0,
1, 2 and 5 µg a.i./mL;

72 h

Escape-like response,
anxiety/stress, social

behavior

Visual stimulus
response, nearest

neighbor distance and
inter-individual

Exposed larvae did not exhibit evasion
behavior [161]

Rat ZappQI620 Syngenta;
50 mg/kg/day Social behavior, ASD

Open field, social play
behavior test, homing

behavior test, hole
board test

Reduced number of ultrasonic vocalizations
in pups

Decreased social interaction time in pups
and deficit in olfactory discrimination

Increased stereotyped behavior

[183]

Rat Roundup® Transorb; 50
and 150 mg/kg Play fighting behavior Intruder play fighting

test
Pinning behavior impaired in both male and

females offspring [171]

Zebrafish
(D. rerio)

Glyphosate 1 ppm and
5 ppm for 96 h at 28.5,

29, 29.5, or 30 ◦C

Circadian rhythm and
anxiety

Locomotor test, novel
diving tank test

Disruptions in circadian rhythm
Fish spent more time at the bottom of the

tank with more erratic movements
[206]

Mice
GBH, unspecified

formulation (0.039%
w/v)

Social behavior, ASD Three-chamber test,
novel object recognition

Deficits in social interaction in offspring
ASD-like cognitive impairment [208]

Mice
Roundup®; lifelong

exposure to low doses
(0.075% w/v)

Social behavior Open field, social
approach test

Reduced time spent exploring the stranger
mouse and increased repetitive behavior

No effect on anxiety or locomotion
[193]

Mice Glifloglex®;
2 mg/nostrils/day Anxiety Plus maze Increased thigmotaxis and higher anxiety [107]

Mice Roundup® Original depression Forced swim test Increased immobility time and decreased
climbing activity [207]
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Table 13. Cont.

Animal Exposure Specific Behavior Behavior Test Used Behavioral Outcomes Source

Livebearer
(J. multidentata)

Roundup® Original,
Roundup® Transorb,
and Roundup® WG

Aggression, anxiety,
social behavior

Open field, proximity to
own reflection in a

mirror

More time spent in proximity to the mirror
More time spent in central area of open field [126]

Mice Glyphosate 0.3 mg/kg
daily per oral

Anxiety, locomotor
activity

Open field, social
interaction, and
marble-burying

More frequent crossing of lines in open field
Increased marble burying behavior

No effect on social behavior
[194]

Mice Zamba® 50 mg/kg Anxiety, depression Elevated plus maze
Forced swim test

Fewer open arm entries and less time spent
in open arm

Increased immobility time
[204]

Mice Roundup®

500 mg/kg/day
Anxiety,

depression

Open field, elevated
plus maze, tail

suspension, splash test

Increased anxiogenic and depressive
behavior after subchronic and chronic

exposure
Dose-dependent increase in immobility time

and decrease in grooming time

[105]

Mice Roundup® 250 or
500 mg/kg/day Anxiety, depression

Open field, elevated
plus maze, tail

suspension, splash test

Decreased time spent in center of open field
after subchronic and chronic exposure

Increased immobility time after chronic
exposure

Decreased grooming time after both
subchronic and chronic exposure

[202]

Mice Roundup® 250 or
500 mg/kg/day Anxiety, social behavior Three-chamber

sociability test
More time spent with inanimate object

Fewer visits made to conspecific [106]

Mice Roundup® 250 or
500 mg/kg/day Anxiety Open field, elevated

plus maze

Increased anxiogenic and depressive
behavior after subchronic and chronic

exposure
[203]

Zebrafish
(D. rerio)

Roundup® or
glyphosate (0.01, 0.065,

and 0.5 mg/L
Aggression Proximity to own

reflection in a mirror

Reduced time spent in proximity to the
mirror

Decreased number of entries into the mirror
contact zone

[115]

Human Acute glyphosate
exposure Parkinsonism Parkinsonism syndrome that resolved after

treatment [214]

Human Ambient pesticides
including glyphosate ASD

Increased risk for ASD after prenatal
exposure

Increased risk for ASD with comorbid
intellectual disability after exposure during

infancy

[79]

4. Discussion

Glyphosate-based herbicides impact a wide variety of behaviors among animals,
including activity, foraging and feeding, anti-predator behavior, courtship, mating, mater-
nal behavior, learning, memory, anxiety-like behavior, depression-like behavior, aggres-
sion, and other social behaviors. When given the opportunity, many types of animals
are able to detect GBH contamination. They avoid areas contaminated with GBH when
possible (e.g., fish [121,129]). In addition, animals sometimes eat less when the food it-
self is contaminated with GBH. Food containing GBH led to some species decreasing
food consumption [134–136], while in others, it had no effect [144]. For example, bees
showed different results in different studies, even though they had similar modes of ex-
posure. Bees increased consumption of GBH-contaminated food [140], decreased food
consumption [138,139], or their food consumption was not affected by glyphosate con-
tamination [104,141–143]. It appears that the variation could be caused by season, which
may affect honeybees’ willingness to feed [140,216]. It could also be due to the differences
in the herbicide formulation used, and dosage, as each formulation contains different
in ingredients in addition to glyphosate. The decrease in food consumption sometimes
seen may be due to GBHs affecting the taste or smell of the food, thereby either disrupt-
ing food recognition or overcoming the recognition of food with a stronger aversive cue.
Taken together, these provide evidence of the ability of at least some animals in some
situations to detect and avoid GBH contamination. However, there is some concern that
co-exposure to different pollutants may confuse animals’ abilities to perceive, identify,
and/or avoid individual toxins, and specifically, that glyphosate can mask identification of
other agrochemicals [217].
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GBH exposure affects many different animal species by changing their level of activity.
Many studies indicate that glyphosate reduces activity, including overall activity levels,
speed, distance traveled, coordination, and navigation efficiency. GBH-induced activity
reduction affects terrestrial animals across taxa (see Table 5), regardless of the mode of
activity (walking, crawling, flying), age or stage of animals (e.g., [115,116]), or method
of GBH administration [112]. However, in aquatic animals like fish, GBH exposure can
increase or decrease activity depending on concentration, duration of exposure, and dis-
tribution of the contaminant within the body of water. Increases in activity might allow
animals to swim away from contaminated water, while decreases in activity might reflect
a more general or long-term response to GBH exposure. Decreased activity would likely
affect many other aspects of animals’ lives, including foraging and feeding, anti-predatory
behavior, courtship, mating, and other social behaviors, ultimately impacting both the sur-
vival and reproductive aspects of fitness for exposed animals. When GBH contamination is
widespread at high enough concentrations, species and ecosystems become threatened.

Pre-exposure to GBH for different durations affects foraging and feeding behavior. In most
studies, animals decreased the amount of uncontaminated food consumed or increased the
time to forage or feed on uncontaminated food after pre-exposure [145,146,153,154]. However,
increases in food consumption after GBH exposure were also documented [147–149], while
other studies showed that pre-exposure had no effect on feeding behavior [152,155,156]. Some
predators (primarily wolf spiders) became hyperactive after exposure to GBH but less coordi-
nated, improving their catches per minute but increasing the number of lunges required for
each catch [149,150]. Impacts of GBH on foraging and feeding behavior will result in negative
consequences for exposed organisms if they expend too much energy foraging or acquire too
little food, particularly if the result is that they are unable to maintain sufficient energy and
nutrients to maintain normal functions, including reproduction.

Exposure to GBH affected many prey species’ anti-predator capabilities. Zebrafish pre-
exposed to GBH return to and spend more time in areas which had a predatory stimulus,
indicating loss of predator awareness and putting them more at risk of predation. Zebrafish
naturally spend time in peripheral areas, suggesting that they are risk-aversive, which
can make them less susceptible to predation, but GBH exposure impaired their ability
to detect danger and apparently decreased their baseline level of fear [157–161]. Other
species displayed an increase in activity after pre-exposure to GBH and brief exposure
to predator cues [162,165], making them more prone to predation. Meanwhile, in other
species a decrease in activity was recorded in the presence of predators and predator
cues after exposure to GBH [166,167]. GBH exposure impaired some species physically,
decreasing escape speed after exposure [127,147]. Furthermore, in a few studies, no effect
from pre-exposure to GBH on anti-predator behavior were recorded [130,167]. Deactivation
or masking of predator cues by GBHs was documented [162,163], similar to GBHs masking
the presence of other agrotoxins, as mentioned above [217]. Since some organisms rely on
olfactory detection of predator cues in their environment; cues deactivated or masked by
GBHs may increase vulnerability. In essence, the evidence suggests that exposure to GBH
disrupts some animals’ anti-predator capabilities, making them vulnerable to predation
with potential repercussions for food webs and ecosystems.

Glyphosate and GBHs can act as endocrine disruptors and negatively impact the
reproductive systems of animals. Exposure to glyphosate has been linked to reduced
courtship, mating, and fertility rates, as well as impaired maternal behavior in animals.
Studies have found that exposure to glyphosate can lead to difficulty conceiving in mice
and decreased fecundity and fertility rates in different species of fish, invertebrates, and
rodents [38,61,146,168,170,178–182,184,186,195]. GBH exposure has also been linked to
diminished pinning behavior in rodents, decreased female sexual behavior, and disrupted
aromatase activity, leading to the impairment of sexual behavior in female offspring [171].
Exposure to glyphosate has been found to decrease masculinization of male rodents ex-
posed before puberty and impaired sexual chemical communication between female and
male wolf spiders, reducing the male spider’s ability to find their mate [169,172–175].
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Chronic sublethal exposure to glyphosate and another pesticide, thiacloprid, negatively
affected colonies of ants, decreasing the number of eggs and pupae and resulting in smaller
colonies [177]. While some studies have found no adverse effects in terms of the impact
of GBH on courtship, fertility rates, and maternal behavior [129,152,176,183,185,187], it is
important to note that the effects of glyphosate and GBHs on reproductive behavior can
vary depending on the species, the level of exposure, and the stage of reproduction. Over-
all, these studies suggest that exposure to glyphosate can lead to disruptions in maternal
behavior, courtship, and fertility which can have negative impacts on the development and
survival of offspring.

Researchers working with bees, rats and mice, and other animals have extensively
explored the effects of GBH on a variety of types of learning and memory. While there
are some mixed results, taken together, these studies suggest that GBH exposure reduces
spatial and some types of sensory learning. Memory of all types discussed are impaired
by GBH exposure, whether exposure occurs before learning or between learning and
recall ([189]; human studies). Spatial learning [60,99,192] and memory [60,154,192,195]
are both impaired by GBH exposure, potentially interfering with the ability of animals
to navigate effectively in their environment. For example, exposure impairs cognitive
abilities needed to integrate spatial information to successfully return to the hive [99]. GBH
exposure interferes with some types of sensory learning [98,104,138,188–190] and all types
of sensory memory studied [98,104,189,190], which could impact foraging, recognition of
food, recognition of mates, recognition of offspring, and other social interactions. Other
types of memory harmed by GBH exposure include recognition memory and aversive
stimulus memory [106,107,115,126,192,195,196]. In addition, case studies and population
assessments indicate that GBH exposure, both incidental and through ingestion, impairs
various types of memory in humans, especially visual memory [191], word recall [95,197],
and short-term memory [95,198,199], while in some cases, it induces both anterograde and
retrograde amnesia [95,198]. In terms of both learning and memory, more difficult tasks
seem to be more affected by exposure than simple ones [60,189].

The effects of glyphosate and GBH on anxiety-like behavior and social behavior, in
addition to the development of neurological disorders, have been demonstrated throughout
the literature. Most commonly, GBH exposure causes increased anxiety [105–107,202–204]
and changes in motor activity, whether animals exhibit decreased locomotion [107,201] or
hyperactivity [118,194,206]. GBHs also cause depressive-like behavior [105,201,202,204,207],
changes in aggressiveness [115,126], and ASD-like cognitive impairment [183,193,208].
Social behavior is also affected by GBH exposure, as demonstrated by deficits in early
communication and olfactory discrimination [183], impairment of functions needed to
carry out social activities [37,99,100,104], and decreased social interaction with other ani-
mals of the same species [106,126,183,193,208]. Interestingly, impaired evasion behavior
was seen in multiple aquatic systems, demonstrated by an increased time spent in the
central areas of the tank [126,161]. Of the studies assessed here, however, rodents generally
exhibit the opposite behavior, spending more time in the periphery of an open field arena.
This suggests that responses to GBH may be species and/or habitat-specific. In addition,
epidemiological studies report adolescent-related psychiatric illness and sensorimotor
deficits resulting from GBH exposure [105]. Other studies in humans have demonstrated a
relationship between glyphosate and neurological disorders such as ASD [79,200,210,211]
and Parkinsonism [75,199,213,214].

While there is variation among the reported results, some of these could be attributed
to differences in methodology, especially age of exposure, duration of exposure, dose or
concentration, and GBH formulations. For example, prolonged exposures cause more
toxic effects and more severe effects than acute exposure [105,201,202]. The dose of GBH
fed to honeybees may have led to variation in amount of feeding behavior [104,138–143].
Similarly, Gallegos [185] and de Oliveira [183] observed no adverse effects of GBH exposure
on maternal behavior, which may be attributed to lower doses and different formulations
of GBH than in other similar studies. Griesinger [174] and Ward [176] used different con-
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centrations and different formulations of GBH, which may be the cause of their conflicting
results about courtship behavior. No effect of glyphosate on associative learning was
found when a very low dose was administered [190], while other studies used higher
concentrations and identified learning deficits [98,104]. A study that did not observe effects
on either anxiety or novel object recognition used lower doses of glyphosate than in other
studies [193].

While it is important for researchers to use ecologically relevant doses, any concentra-
tion up to the recommended dose for application is ecologically relevant in some situations,
such as brief exposures when an animal is in an agricultural field or other area while it
is being sprayed, or eating nectar, pollen, or other parts from a plant that was recently
sprayed. A great deal of variability in experimental approaches, including concentration,
duration, method and medium of exposure, etc., make generalizations difficult. However,
the methods used in most lab and field studies seem to use exposures that are between
concentrations as applied and those measured in different environments at times mostly
unspecified with regard to local or nearby spraying (compare Table 1 to Tables 5–13).

Commercial formulations of GBH include a variety of adjuvants and other ingredients
that are often listed as proprietary information and therefore are not disclosed on packaging.
These additives could have synergistic effects, making it difficult to attribute toxicity to
any one specific ingredient, and this could contribute to the differences between formula-
tions. Bridi [115] found that Roundup® exposure affected memory more than exposure to
glyphosate alone, and Sanchez et al. [126] compared two different Roundup® formulations
with somewhat different results. Another study found that Roundup® had more of a nega-
tive impact on anti-predator capabilities and an increase in food consumption compared to
glyphosate [147]. Zebrafish embryos exposed to Roundup® and glyphosate had contrasting
effects—Roundup® induced more swimming and glyphosate had the opposite effect [119].

4.1. Mechanisms of GBH-Induced Behavioral Impairments

Glyphosate can act via a variety of mechanisms, both in general and as it relates to
behavioral toxicity. Two of these mechanisms, oxidative stress and disruption of the gut
microbiome, are general, disrupt the function of a variety of organs throughout the body,
and have widespread effects on many aspects of physiology and behavior. Other mecha-
nisms that specifically cause behavioral responses to GBH exposure involve endocrine and
neurological control of these behaviors.

Exposure to glyphosate increases reactive oxygen species and causes inflammation,
both of which affect learning and memory. Increases in anti-oxidant enzymes SOD and
PO correlate with learning and memory impairments in mice [195], and is associated with
synaptic plasticity for short-term and long-term memory storage [106]. Recognition mem-
ory impairment is related to other markers of antioxidant stress, including MDA content,
CAT activity, and GPx activity in rats [196]. GBH-induced memory loss in humans has also
been attributed to oxidative stress [198]. Oxidative stress can also lead to inflammation,
which can cause morphological changes. Several proteins associated with inflammation
increase in concentration in the hippocampus and prefrontal cortex after exposure to GBHs,
specifically GFAP and Iba-1, and of TNF-alpha in the hippocampus only [106]. Oxida-
tive stress has also been proposed as a mechanism of glyphosate-induced toxicity with
regard to avoidance behavior, [114], reproductive behaviors [114,183], and anxiety and
depression [204,207].

Several studies have reported that glyphosate disrupts the normal gut microbiota,
promoting overgrowth of pathogenic bacteria [55,105,202,218,219], which could have dan-
gerous impacts on the organisms’ health in general. Because mammal gut microbiota utilize
the shikimate pathway to synthesize precursors to neurotransmitters like serotonin and
dopamine [219–221], disruption of this pathway by glyphosate could also have important
neurologic health implications, including causing anxiety and depression-like behavior in
mice [202].
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Glyphosate as an endocrine modulator has been suggested as a potential mechanism
of toxicity, particularly regarding reproductive outcomes, including courtship, mating
behavior and maternal behaviors. Glyphosate inhibition of aromatase, the enzyme respon-
sible for the irreversible conversion of androgens to estrogen, causes an imbalance between
androgens and estrogens. Particularly during the neonatal period in rats, this disruption in
steroid sex hormones could interfere with brain development of the sexual organization
and thus impair sexual behavior in adulthood [106,171]. Male rats who were exposed to
glyphosate showed higher levels of testosterone and estradiol compared to the control
group. The higher levels of testosterone levels could explain why the male’s sexual partner
preference increased dramatically towards the females [172]. Exposure to the herbicide
GLY-BH decreased specific binding to D1-DA receptors in the nucleus accumbens, basal ex-
tracellular dopamine levels, and high-potassium-induced dopamine release in the striatum.
This resulted in hypoactivity and impaired maternal behavior, possibly due to blockage of
the Ait-Balistriatal and mesolimbic systems. The decrease in maternal grooming behavior
may be a result of perinatal exposure to the herbicide, as it has been shown that decreased
grooming behavior is associated with decreased D1 receptor activation [184].

Neurological mechanisms of glyphosate toxicity that contribute to impairments in
learning, memory, anxiety, and other social behaviors include structural localization, neu-
rotransmitter activity, and oxidative stress and inflammation specifically within the brain.
The two most important structures related to learning and memory and implicated in GBH
toxicity are the hippocampus and the prefrontal cortex. GBH toxicity to the prefrontal
cortex may be morphogenic, related to the expression of brain-derived neurotrophic factor
and tyrosine-related kinase receptor [106,195]. In rats, hippocampus involvement is related
to decreased dendritic complexity, synaptic spine formation and maturation, and therefore
decreased formation of synaptic terminals [192]. Hippocampal lesions were also associated
with learning and memory loss in mice [106]. In humans, hippocampal lesions after GBH
poisoning [95,197,198] resolved after several months [95,197].

One cause of GBH induced neurotoxicity to the hippocampus, PFC, and striatum is
that glyphosate mimics glycine, a required cofactor for glutamate activation of NMDA.
According to this mechanism, glyphosate hyper-excites NMDA glutamate receptors, caus-
ing cell death [196–199]. In bees, glyphosate binds to NMDA receptors more efficiently
than endogenous glycine, making GBHs more toxic to bees than to humans [60]. Another
neurotransmitter involved in glyphosate toxicity is acetylcholine. Specifically, GBHs inter-
fere with acetylcholine esterase activity, reducing its concentration in the hippocampus,
prefrontal cortex and striatum [106,195,196].

Potential mechanisms of glyphosate neurotoxicity related to depression and anxiety
have also been extensively discussed. Sulukan et al. [206] suggested a possible mechanism
involving an important receptor for serotonin, 5-HT4R, which modulates depression and
anxiety responses. Some studies have discussed changes to the dopaminergic, seritoner-
gic, and glutaminergic systems as possible explanations for anxiety and depressive-like
behavior [105,161,183,185]. Influences on brain development, sexual and play behavior in
rodents could be associated with glyphosate as an endocrine modulator, since glyphosate
inhibits aromatase, the enzyme responsible for the irreversible conversion of androgens
to estrogen [171]. Other mechanisms have been explored, such as inflammatory cellular
disorganization [106], disruption of manganese homeostasis [219], changes in gene expres-
sion [118,203], and oxidative stress [204]. In conclusion, more research is warranted to
elucidate the mechanism by which glyphosate causes neurotoxicity in non-target animals.

4.2. Further Research

Many behavioral areas have been researched in only a few taxa (Figure 1), often com-
mon model systems. None of the articles we were able to identify studied behavioral effects
in mammals other than mice, rats, humans, and birds, and only a few used amphibian
or reptile systems. While human behavior was examined in terms of effects of GBH on
memory, there were no studies of how other human behaviors are affected by GBHs. Even
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among invertebrate models, honeybees were disproportionately the focus of the studies
reviewed here. While honeybees serve a critically important role in pollination, so that their
behavior might be disproportionately important, and their exposure disproportionately
likely, for example in agriculture, other insects and non-insect invertebrates should also be
studied in terms of the effects of GBH on behavior. Overall, future studies are needed to
address the effect of glyphosate and GBH on behavior in a wider range of taxa, including
mammals other than mice and rats.

Additionally, studies have been conducted on animals in a laboratory setting. More
research is needed to understand the full extent of glyphosate’s impact on activity, foraging,
anti-predatory behavior, and reproductive behaviors in organisms that are exposed to
GBH in natural settings. Field-based studies should focus on exposure at environmentally
relevant doses, ranging from those applied in agricultural settings to smaller concentrations
that would persist in areas affected by agricultural overspray, drift, or runoff. These field-
based studies are critical to better understand the impact of GBHs on the behavior of
animals in their environments, and by extension the overall impacts of GBH exposure on
ecosystems and ecosystem services.

More research is also needed on mechanisms of behavioral changes, tying together
physiological results with consequential behaviors. While research on physiological toxicity
is extensive, the relationship between these physiological effects and behaviors are only
partially understood. Given that experimental research on humans is nearly impossible,
fully delineating the mechanisms of behavioral GBH toxicity in animals can help us under-
stand which specific behavioral results from animal experiments are likely to also apply to
human behaviors, and ultimately the potential impacts on human populations and human
wellbeing.

5. Conclusions

Glyphosate, the active ingredient in many herbicides, has been the subject of much
debate due to its potential toxic effects on non-target organisms. In this review, we examined
the effects of glyphosate and GBHs on animal behavior. While there are some discrepancies
between the methodologies and results, studies demonstrate that glyphosate impairs
activity, foraging and feeding, anti-predator behavior, reproductive and maternal behaviors,
learning and memory, and social behaviors in animals. Although glyphosate toxicity in
non-target organisms has been studied, its mechanisms and effects on human health are
still unclear, justifying further research and investigation. Due to the possible dangers and
unknown impact of glyphosate in humans and on the environment, we advise caution
when using glyphosate and GBHs and suggest implementation of alternative agricultural
and municipal practices.

Overall, animal behavior endpoints should be considered in regulatory decisions about
chemical environmental contaminants. Appropriate performance of many types of behav-
ior impact reproduction and survival, food webs, and therefore, ecosystem health [95].
Behavior, as a sub-lethal endpoint, provides a particularly sensitive test for biotic dis-
ruptions that result from environmental contamination with chemical pollutants, and
importantly, provides more accurate assessment of the effect of contaminants on real-world
ecosystem health than mortality-based endpoints alone [222]. For example, the sensitivity
of behavioral endpoints are 10 to 1000 times greater than those for mortality at accurately
providing an early warning about chemical contaminants. [223]. Other benefits of exam-
ining animal behavior in ecotoxicological assessment include that it is often inexpensive,
non-invasive, and increasingly can be automated [96,223]. In fact, a variety of new tools
and technologies, reviewed in [222], allow for behavioral investigation of the effects of
contaminants with higher resolution and at larger scales, further increasing the usefulness
of behavioral outcomes for making regulatory decisions. Including animal behavior in
regulatory decisions would therefore allow a more complete and accurate understanding
of the impacts of new and emerging contaminants, low concentrations of contaminants,
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and allow identification of contaminants of concern much more quickly than waiting for
more widespread indications of ecosystem collapse, perhaps after it is too late.
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