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Abstract: Mitigating climate change and enhancing fertility in agricultural systems require the
adoption of more sustainable fertilizer management practices. Applications of recycled organic
materials, such as animal and green wastes, can promote soil carbon stabilization via changing
extracellular enzyme activities while providing the necessary nitrogen (N) for plant growth. The
goals of this study were to quantify the effects of compost type (cow manure, green manures, mixtures
of green and cow manure at various proportions, and inorganic fertilizers) on (1) enzyme activity
(phenol oxidase, peroxidase, and urease), and (2) mineralized N under laboratory incubation at
30 ◦C over an eight-week period. The lowest oxidative enzyme activities (phenol oxidase and
peroxidase) were found in the soil treated with a mixture of 50% cow manure and 50% green manure
(2.45 µmol h−1 g−1) and a mixture of 30% cow manure and 70% green manure (3.21 µmol h−1 g−1)
compared to all other fertilizer treatments. The highest phenol oxidase activity was found in soils
amended with green manures (3.52 µmol h−1 g−1), while the highest peroxidase activity was found
in soils amended with a mixture of 70% cow manure and 30% green manure (5.68 µmol h−1 g−1).
No significant differences were found in total net mineralized N content among all organic fertilizer
treatments, but these were significantly lower than total net mineralized N in soil treated with
inorganic fertilizers. These results indicate similar effects of organic amendments and mixtures in
providing plant-available N, but different effects on lignin-degrading enzyme activities, which may
lead to differences in soil organic carbon cycling and long-term C storage depending on which organic
amendment is utilized.
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1. Introduction

The intensification of commercial agriculture combined with the increasingly negative
effects of global climate change requires the adoption of more sustainable soil management
practices [1,2]. Potential solutions for the mitigation of climate change and improvement of
soil quality include the recovery of natural resources lost in the food supply chain [3–5].
Diverting organic matter from landfills into green manures can provide a suitable soil
amendment capable of enhancing soil fertility [6,7].

Organic composts can positively affect soil’s physical, chemical, and biological proper-
ties compared to standard practices of inorganic fertilizer application [8–11]. However, the
use of animal manure-based fertilizers can present concerns regarding environmental con-
tamination [12–14]. Additionally, animal manure commonly contains antibiotic-resistant
bacteria and other pathogens that can be harmful to human health [13,14].

Combinations of organic fertilizers may be more efficient in providing plant-available
nutrients and promoting soil organic carbon stabilization than the sole application of a
single type of compost material. Soil amended with food waste-based composts (green
manures) or combinations of green and animal manure was shown to be more beneficial
for plant productivity and environmental health than soil amended with cow manure [15],
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producing less CO2 emissions than cow manure-based compost in laboratory incubation
studies [6,16]. Applications of plant manures are also suitable for providing long-term N
supplies to crops [17]. Additionally, mixed manure treatments and integrated fertilizer
regimes have also shown success in increasing crop maize yield and N availability as well
as increasing soil organic C and N [7,18,19].

Nitrogen (N) availability in soil and composts can vary considerably. Organic N
sources are only available for plant uptake after they are mineralized to inorganic N [20].
Mineralization is mediated by the production of extracellular enzymes by soil microbial
communities [21,22]. Phenol oxidase and peroxidase are involved in the degradation
of lignin polyphenols commonly found in green manure inputs [23,24]. These lignin-
degrading enzymes are particularly important in soil environments with plant litter inputs,
such as forest ecosystems, or in green manures in agricultural operations [25]. They are
effective indicators of soil organic matter (SOM) dynamics and nutrient availability [26,27].
Repression of the activity of these enzymes was correlated with the accumulation of organic
matter in soils [23]. For example, large accumulations of SOM and C in peatlands were
attributed to their low rates of phenol oxidase activity [28]. Inhibiting these oxidative
enzymes may be beneficial for the long-term storage of SOC in agricultural systems. In soils
amended with inorganic fertilizers and animal manures, urease catalyzes the hydrolysis of
urea into ammonia and carbon dioxide [29–32]. While urease activities are important for
transforming N inputs into plant-available N, increased risks of ammonia volatilization and
N losses following high urease activity can be problematic [29]. Inhibiting urease can be
helpful in reducing these losses and organic amendments that will lower urease activities
should be investigated [33]. Finding organic manures that inhibit oxidative enzymes and
lower urease responses can be beneficial in agricultural systems.

The production and activities of phenol oxidase and peroxidase are sensitive to changes
in soil fertilizer management practices and various environmental factors, such as nitrogen
inputs, spatiotemporal microbial community structure, lignin inputs, soil pH, water con-
tent, and oxygen availability [23,34–36]. Phenol oxidase and peroxidase are sensitive to N
fertilizer inputs due to the effects of N fertilizer on the soil microbial community compo-
sition [25,37]. Microorganisms release phenol oxidase and peroxidase to degrade lignin
for the acquisition of nitrogen under microbial N limitation; these processes are inhibited
when more readily available N sources are applied [23,38]. Iyyemperumal and Shi [26]
reported that phenol oxidase and peroxidase activities decreased after inorganic fertilizer
application and increased after subsequent applications of swine effluent in bermudagrass
and tall fescue forage systems due to the change in soil microbial community structure.
Waldrop and Zak [39] found that forest ecosystems containing leaf litter high in lignin and
soils with diverse fungal and bacterial communities responded negatively to NO3

− inputs
by decreasing phenol oxidase activity. In contrast, forest ecosystems containing leaf litter
low in lignin with a lower index of fungal and bacterial diversity responded positively to
NO3

− by increasing phenol oxidase activity [25].
Our knowledge of the effects of commercially available green manures on N sup-

ply and soil enzyme activity is limited, and results from published studies are vari-
able [26,40,41]. For example, Dong et al. [41] reported decreased phenol oxidase activities
following green manure applications in walnut orchards. In contrast, Hassan et al. [40], who
investigated rice straw and peanut plant-based green manures, found increased phenol
oxidase activity in alkaline soils treated with green manures. These variations in phenol
oxidase activity following green manure applications demonstrate that soil amendments
can affect enzyme expression and activity, and thus nutrient availability, in different ways.
This ambiguity may be a barrier for producers interested in utilizing organic fertilizer
regimes [42].

The goals of this study were to determine and compare the effects of commercial
organic composts (green manure, animal manure, and mixtures of cow manures and green
manures) and inorganic fertilizers on (1) N mineralization and (2) extracellular enzymes
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involved in C and N mineralization processes (phenol oxidase, peroxidase, and urease)
using a laboratory incubation approach.

2. Materials and Methods
2.1. Soil Collection and Preparation

Surface soil (0–15 cm) was collected from the campus community garden plot at
Sweet Briar College in Amherst, VA, USA (37◦33′02.0′′ N, 79◦05′06.3′′ W). The soil was
mapped as 4C (Clifford clay loam) with 7 to 15 percent slopes. According to the record
reported by WeatherSpark (accessed on 23 March 2022), the high and low average monthly
temperatures are 19.7 ◦C and 9.3 ◦C. The average monthly precipitation is 10.6 cm. The site
had a long history of cropping. Plant debris was removed from the soil sample. The soil
was air-dried at room temperature until it reached constant mass. The air-dried soil sample
was then ground and sieved through a 2 mm sieve for analysis and incubation.

2.2. Physical and Chemical Determination of Soil Samples

The air-dried soil samples were used to determine soil pH, macronutrient content
(determined by the Virginia Tech Soil Testing Laboratory, Blacksburg, VA, USA), and total
C and N (determined by the Stable Isotope Mass Spectrometer Laboratory, University of
Florida, Gainesville, FL, USA). Soil pH was measured with a LabFit pH analyzer (Bayswa-
ter, UK) by adding 10 mL DI water to 10 cm3 soil for a 1:1 (v/v) ratio. Macronutrient
determination was performed using Mehlich 1 extraction methods [43] by inductively
coupled plasma atomic emission spectrometer (SPECTRO Analytical Instruments, Kleve,
Germany). Total C and N were determined by dry combustion using an elemental analyzer
(N.C. Technologies, Charlotte, NC, USA).

Soil particle size was determined using methods outlined by Kettler et al. [44]. Concen-
trations of soil NH4

+ and NO3
− were determined using 1M KCl extraction and colorimetry

at 697 nm and the difference between 220 nm and 275 nm, respectively, using a Cary ultra-
violet spectrophotometer (Agilent, Santa Clara, CA, USA) [45,46]. Soil organic matter was
determined by loss of ignition [47]. The physical and chemical properties of the original
unamended topsoil are presented in Table 1.

Table 1. Physical and chemical properties of unamended soil.

Properties Value

pH 7.5
TC (%) 3.88
TN (%) 0.31

C:N 12.5
NO3

− (mg kg−1) 3.48
NH4

+ (mg kg−1) 5.53
CEC (meq/100 g) 16.4

P (mg kg−1) 142
K (mg kg−1) 380

Mg (mg kg−1) 561
Ca (mg kg−1) 5541

SOM (%) 8.77
Sand (%) 27.08
Silt (%) 47.7

Clay (%) 25.21
Total carbon (TC), total nitrogen (TN), C:N, nitrate (NO3

−), ammonium (NH4
+), cation exchange capacity (CEC),

and Mehlich I extractable phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca), and soil organic
matter (SOM). The data were generated by analyzing three subsamples of one composited soil sample.

2.3. Chemical Property Determination of Soil Amendments

Commercially available cow (Black Kow, Oxford, FL, USA) and green manures (Blue
Ribbon Organics, Caledonia, WI, USA) were used as soil organic amendments. A commer-
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cially available inorganic fertilizer (13-13-13) was used as an inorganic soil amendment for
comparison (Winston Weaver Co., Winston Salem, NC, USA). Organic amendments were
dried in an oven at 105 ◦C for 24 h and lightly ground before incorporation into the soil.
The inorganic fertilizer was directly applied to soil samples. A subsample of oven-dried
organic amendments was used to analyze total C and N through dry combustion using an
elemental analyzer (N.C. Technologies, Charlotte, NC, USA). Concentrations of NH4

+ and
NO3

− in each amendment were determined as described above. The chemical properties
of soil amendments are presented in Table 2.

Table 2. Chemical properties of soil amendments.

Amendment pH TC (%) TN (%) C:N NO3−
(mg kg−1)

NH4
+

(mg kg−1)

Black Kow (CM) 7.5 31.3 1.43 21.96 350.60 146.20

Blue Ribbon Organics (GM) 7.3 20.57 1.48 13.90 271.21 98.14

Total carbon (TC), total nitrogen (TN), carbon to nitrogen ratio (C:N), nitrate (NO3
−), ammonium (NH4

+). The
data were generated by analyzing three subsamples of each soil amendment.

2.4. Laboratory Incubations

The treatments in this study included seven amendment applications: an unamended
control (CON), Black Kow cow manure (CM), Blue Ribbon Organics organic compost
(green manure GM), 50:50 mixture of cow manure and green manure (50CM50GM), 30:70
mixture of cow manure and green manure (30CM70GM), 70:30 mixture of cow manure and
green manure (70CM30GM), and Winston Weaver 13-13-13 inorganic fertilizer (IN). The
treatments were replicated three times. Data were collected at four weeks and eight weeks.

Amendments were thoroughly mixed with soil at a rate of 58 mg g−1 soil to be
consistent with other lab incubation and field studies [6,7,48]. The soil moisture content
during incubation was 28%, which represented 80% field capacity and was determined
according to Grewal et al. [49] and Richards [50]. To aid in distributing the amended soils
in each jar, large batches of soil and amendment mixture were made. There were seven
batches, one for each treatment consisting of 1 kg of soil and the appropriate amounts of soil
amendment (5.8 g cow manure in CM, 5.8 g green manure in GM, 2.9 g each cow manure,
and green manure in 50CM50GM, 1.79 g cow manure 4.06 g green manure in 30CM70GM,
4.06 g cow manure and 1.79 g green manure in 70CM30GM, and 0.6 g inorganic fertilizer in
IN). DI water was added at 280 mL for each batch and the mixtures were mixed to ensure
the amendments were consistently applied to the soil. Then, 128 g (accounting for dry soil
and the added water weight) of the homogenous treatment mixtures were applied to their
corresponding polystyrene jars (250 mL). Each treatment was replicated three times. A
single layer of gas permeable parafilm was secured over the jars. The jars were incubated
in the dark in a temperature-controlled chamber at 30 ◦C. Water content was monitored
every ten days by weighing the jars and distilled water was added as needed to maintain
moisture content.

2.5. Accumulated Mineralized N Analysis

Inorganic N was extracted from moist soils using 4 g of soil and 40 mL 1M KCl
(1:10 m/v ratio). Samples were shaken on a reciprocating shaker for 1 h at 200 oscillations
per minute, centrifuged at 3000 rpm for 10 min, and filtered using Whatman NO. 42
filter paper before ultraviolet spectroscopy. Concentrations of NH4

+ and NO3
− were

determined before incubation, after four-week incubation, and after 8-week incubation
using the methods described above.

The net mineralized NH4
+ after 4-week and 8-week incubation was determined by

subtracting the NH4
+ concentration before incubation from mineralized NH4

+ after 4-week
and 8-week incubation, respectively. Net mineralized NO3

− after 4-week and 8-week
incubation was determined by subtracting the NO3

− concentration before incubation from
mineralized NO3

− after a 4-week and an 8-week incubation, respectively. Total mineralized
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N after 4 weeks and 8 weeks was determined by adding net mineralized NH4
+ and NO3

−

after 4-week and 8-week incubation, respectively. The change in total net mineralized N
was determined by subtracting total net mineralized N after 4-week incubation from total
net mineralized N after 8-week incubation.

2.6. Soil Enzyme Analysis

Enzyme assays for phenol oxidase, peroxidase, and amidohydrolase (urease) were
performed at eight weeks. Following the methods outlined by Wallenstein et al. [51]
and Sinsabaugh et al. [35], 2 g of moist soil subsamples from each incubation jar were
homogenized with 200 mL of 50 mM, pH 5.0, acetate buffer. Phenol oxidase and peroxidase
were measured spectrophotometrically using L-3,4,-dihydroxyphenylalanine (DOPA) as
the substrate. Phenol oxidase assays were prepared using 2 mL of 5 mM L-DOPA solution
and 2 mL of soil solution in 15 mL centrifuge tubes. Controls were prepared using 2 mL of
soil solution and 2 mL of acetate buffer. Peroxidase samples and controls were prepared
similarly, with the addition of 0.2 mL of 0.3% hydrogen peroxide. There were five replicate
samples and three replicate controls for each incubation jar. The centrifuge tubes were
incubated at 20 ◦C for 1 h and centrifuged for 10 min at 3000 rpm. Absorbance was
measured at 450 nm using a spectrophotometer. The activity was calculated according
to Sinsabaugh et al. [35] and expressed as µmol g−1 h−1. Urease activity was measured
using urea as the substrate [52]. The preparation of this assay was similar to the methods
described for the phenol oxidase assay with 2 mL of 20 mM urea added to all samples
and control replicates. Absorbance was measured at 697 nm. Enzymatic activity of urease
was calculated as the amount of µg NH3 catalyzed in the sample homogenate per hour of
incubation and expressed as µg NH4

+ g−1 h−1 released during the reaction.

2.7. Data Analysis

Analysis of variance (ANOVA) was used to evaluate the effects of soil amendments
on net mineralized NO3

−, net mineralized NH4
+, and total net mineralized N after four

weeks of incubation; and phenol oxidase, peroxidase, urease, net mineralized NO3
−, net

mineralized NH4
+, and total net mineralized N after eight weeks incubation, using JMP

(version 10. SAS Institute Inc., Cary, NC, USA). Prior to the ANOVA test, the normality of
data was evaluated using a Shapiro-Wilk test. Non-normal data were transformed using
a log transformation. If the p-value generated from the ANOVA was less than 0.05, the
difference was considered statistically significant and then multiple comparisons were
conducted using the Tukey-Kramer Test.

3. Results
3.1. Soil Enzyme Activity

A significant effect of soil amendments on phenol oxidase activity was found
(p < 0.001). The highest phenol oxidase activity was 3.52 ± 0.29 µmol h−1 g−1, observed
in soil with green manure amendments (Figure 1a). The lowest phenol oxidase activity
was 0.42 ± 0.02 µmol h−1 g−1 in soils with inorganic fertilizer application (Figure 1a). No
significant differences were observed among soil amended with CON, CM, 50CM50GM,
30CM70GM, and 70CM30GM (Figure 1a).

A significant effect of soil amendments on peroxidase activity was found (p = 0.001).
Different mixtures of green manure and cow manure displayed different effects on per-
oxidase activity. The highest peroxidase activity was 5.68 ± 0.37 µmol h−1 g−1, observed
in soils with 70CM30GM amendments (Figure 1b). The lowest peroxidase activity was
0.80 ± 0.35 µmol h−1 g−1 in soils with 50CM50GM amendments (Figure 1b). No signif-
icant differences were observed between CM and IN, which have significantly higher
peroxide activity than CON and 50CM50GM (Figure 1b). No significant differences were
found among treatments with a high proportion of GM including GM, 50CM50GM, and
30CM70GM (Figure 1b).
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No significant effect of soil amendments on urease activity was found (p = 0.17,
Figure 2).

Figure 1. Phenol oxidase (a) and peroxidase (b) activity after eight weeks in soil treatments with
six types of amendments expressed in µmol h−1 g−1 for the unamended soil (CON) and soils
amended with cow manure (CM), green manure (GM), 50:50 ratio of cow manure and green ma-
nure (50CM50GM), 30:70 ratio of cow manure and green manure (30CM70GM), 70:30 ratio of cow
manure and green manure (70CM30GM), and inorganic fertilizer (IN). Different letters indicate
significant differences at p < 0.05. The error bars represent standard error (n = 3). Peroxidase data
were log-transformed.

Figure 2. Urease activity in soil treatments with six types of amendments after eight weeks of
incubation expressed as µg NH4

+ g−1 h−1 in unamended soil (CON), soils amended with cow
manure (CM), green manure (GM), 50:50 ratio of cow manure, and green manure (50CM50GM), 30:70
ratio of cow manure and green manure (30CM70GM), 70:30 ratio of cow manure and green manure
(70CM30GM), and inorganic fertilizer (IN). Different letters indicate significant differences at p < 0.05.
The error bars represent standard error (n = 3).
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3.2. Net Mineralized NO3
− and NH4

+ Content

Significant effects of soil amendments on net mineralized NO3
− were found after four-

week (p = 0.001) and eight-week incubation (p < 0.001). The highest net mineralized NO3
−

was observed in soils treated with IN amendments (161 ± 14 mg kg−1 after a four-week
incubation, and 214 ± 4 mg kg−1 after an eight-week incubation), which was significantly
higher than all organic treatments and CON (Figure 3). Unamended control soils displayed
the lowest NO3

− (68 ± 2 mg kg−1 at four weeks and 86 ± 4 mg kg−1 at eight weeks
(Figure 3). No significant differences were found between all organic treatments and CON
after four weeks (Figure 3a). At eight weeks, all organic treatments did not have significant
differences, but all organic treatments had significantly higher amounts of net mineralized
NO3

− than CON (Figure 3b).

Figure 3. Mineralized NO3
− at four (a) and eight (b) weeks in soil treatments with six types of amend-

ments expressed as mg kg−1 An unamended soil (CON), soils amended with cow manure (CM),
green manure (GM), 50:50 ratio of cow manure and green manure (50CM50GM), 30:70 ratio of cow
manure and green manure (30CM70GM), 70:30 ratio of cow manure and green manure (70CM30GM),
and inorganic fertilizer (IN). Different letters indicate significant differences at p < 0.05. The error
bars represent standard error (n = 3). For four weeks mineralized NO3

− data were log-transformed.

Significant treatment differences in net mineralized NH4
+ were found after four-week

(p = 0.023) and eight-week incubation (p = 0.001). At four weeks, no significant differ-
ences were found between CON and IN treatment, which were significantly higher than
all organic amendment treatments (Figure 4a). Among all organic treatments, GM and
50CM50GM had significantly higher net mineralized NH4

+ than 30CM70GM
and 70CM/30CM.

There was a decrease in net mineralized NH4
+ in all treatments at eight weeks com-

pared to the four-week incubation (Figure 4). At eight weeks, the soils treated with IN
amendments had the highest NH4

+ content (2 ± 0.03 mg kg−1), which was significantly
higher than all other treatments (Figure 4b). Net mineralized NH4

+ content observed in
soils treated with GM amendments was significantly higher than all other organic treat-
ments (Figure 4b). Soil treated with CM and 70CM30GM had the lowest net mineralized
NH4

+ (0.2 ± 0.06 mg kg−1 and 0.09 ± 0.02 mg kg−1, respectively) (Figure 4b).

3.3. Net Mineralized N

Significant effects of all soil amendments on total net mineralized N were found after
four-week (p < 0.001) and eight-week incubation (p < 0.001). The highest net mineralized N
content was observed in soils treated with IN amendments (164 ± 13.50 mg kg−1 after a
four-week incubation, and 215 ± 4 mg kg−1 after an eight-week incubation), which was
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significantly higher than all organic treatments and CON (Figure 5). Unamended control
soils displayed the lowest N content (72 ± 2 mg kg−1 at four weeks and 87 ± 4 mg kg−1

at eight weeks (Figure 5). No significant differences were found between all organic
treatments and CON after four weeks (Figure 5a). At eight weeks, all organic treatments
did not have significant differences, but all organic treatments had significantly higher net
mineralized N than CON (Figure 5b). In terms of changes in total mineralized N, significant
effects of soil amendments were observed (p = 0.023). The CM incorporated treatments and
IN showed significantly higher increases in total mineralized N than CON (Figure 6). The
GM treatments showed lower total net mineralized N than all CM incorporated treatments
and higher total net mineralized N than CON (Figure 6).

Figure 4. Mineralized NH4
+ at four (a) weeks and 8 weeks (b) in soil treatments with six types

of amendments expressed as mg kg−1 in an unamended soil (CON), soils amended with cow
manure (CM), green manure (GM), 50:50 ratio of cow manure and green manure (50CM50GM),
30:70 ratio of cow manure and green manure (30CM70GM), 70:30 ratio of cow manure and green
manure (70CM30GM), and inorganic fertilizer (IN). Different letters indicate significant differences
at p < 0.05. The error bars represent standard error (n = 3). Eight weeks of mineralized NH4

+ data
were log-transformed.

Figure 5. Total net mineralized N at four (a) weeks and eight weeks (b) in soil treatments with six
types of amendments. Expressed as mg kg−1 in an unamended soil (CON), soils amended with cow
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manure (CM), green manure (GM), 50:50 ratio of cow manure and green manure (50CM50GM),
30:70 ratio of cow manure and green manure (30CM70GM), 70:30 ratio of cow manure and green
manure (70CM30GM), and inorganic fertilizer (IN). Different letters indicate significant differences at
p < 0.05. The error bars represent standard error (n = 3).

Figure 6. Change in total net mineralized N between four and eight weeks in soil treatments with
six types of amendments expressed as mg kg−1 in an unamended soil (CON), soils amended with
cow manure (CM), green manure (GM), 50:50 ratio of cow manure and green manure (50CM50GM),
30:70 ratio of cow manure and green manure (30CM70GM), 70:30 ratio of cow manure and green
manure (70CM30GM), and inorganic fertilizer (IN). Different letters indicate significant differences at
p < 0.05. The error bars represent standard error (n = 3).

4. Discussion
4.1. Effects of Soil Amendment Type on Enzyme Activity

In the present study, we did find significant differences among all the treatments in
peroxidase and phenol oxidase activities. Significantly higher phenol oxidase activity was
found in soils treated with green manure compared to all other amendment applications
(Figure 1a). Compared to green manure, the addition of cow manure to soil amendments
at various ratios inhibited phenol oxidase activities, consistent with Saiya-Cork et al. [25]
and Nyiraneza et al. [53]. This may be due to increased inputs of lignin in the green
manures derived from plant litter materials, which was shown to increase phenol oxidase
activities [25]. Conversely, Dong et al. [41] reported a decrease in phenol oxidase activities
after applications of green manure compared to an unamended control, and Khan et al. [54]
reported a decrease in phenol oxidase activities and an increase in hydrolytic enzymes
in response to green manure amendments. These differences in changes in soil enzyme
activities might be explained by differences in the sources of organic material between green
manure and amendments containing cow manure, such as the relative amounts of complex
versus easily decomposable organic C compounds, and soluble carbon content [26,55].

We found the lowest phenol oxidase activity in soils amended with inorganic fertil-
izers (Figure 3), which indicates that inorganic fertilizer treatments promote inorganic N
availability more than organic amendments. This is due to the increased availability of
inorganic N input decreasing the expression of phenol oxidase [56,57]. No differences in
phenol oxidase were found between cow manure and cow-green manure treatments, which
were significantly lower than sole green manure treatment (Figure 3). This indicates that
adding cow manure to green manure may be helpful in reducing phenol oxidase activity
since cow manure was shown to inhibit phenol oxidase activity [26,53].
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Compared to phenol oxidase activity, we observed different and larger variations in
peroxidase activity. Significantly higher peroxidase activity was found in soil with the
70CM30GM treatment than in all other organic and inorganic treatments, even though they
displayed similar NO3

− and total mineralized N content (Figures 1b, 3 and 5). However,
no significant differences among all high ratios of green manure treatments (green manure,
50% green manure 50% cow manure, and 70% green manure 30% cow manure) were
observed (Figure 1b). This may be due to a high proportion of plant-based materials, such
as plant litter amendment, which was shown to lead to lower peroxidase activity [25,58].

The different amendments in our studies may lead to changes in different organic
carbon pools, for example, higher concentrations of labile organic carbon, and complex
organic substances with carboxylic and phenolic-OH groups [53,57,59]. Thus, our study
indicates that the addition of a high proportion of cow manure into green manure may
change significantly the quantity and quality of biochemical conditions, which may be
optimal and promote the activity of certain microorganisms and thus the biochemical
processes [55]. For example, higher peroxidase activity was found in soils amended with
Azospirillum + Pseudomonas biological fertilizers and ligninolytic microorganisms than in
the control [60,61]. However, this needs future research for support.

Urease in soil derived from plant residues, animal waste, or soil microbes is responsible
for the hydrolysis of urea to NH3 and CO2 [29]. Unlike the variations in phenol oxidase and
peroxidase activity among treatments, significant differences were not observed among
all treatments (Figure 2). Compared to the cow manure treatment, all green manure
incorporated treatments showed lower urease activity (Figure 2). This indicates that cow
manure may produce greater urea products, which promote urease activity more than green
manures. Additionally, our study indicates that adding green manures into the animal
manure may reduce urease activity and thus N loss, which is beneficial to agricultural
management practice in reducing N loss.

4.2. Effects of Soil Amendment Type on Accumulated Inorganic N

Compared to CON, all fertilizer amendments showed significantly higher net accumu-
lated nitrate and total mineralized N (Figures 3 and 5). Inorganic treatments had the highest
inorganic N after four and eight weeks of incubation, which was significantly higher than
all organic treatments (Figures 3–5). This is expected since inorganic fertilizers release
inorganic N faster than organic manures [62]. However, the rate of inorganic N release
slowed down from week 4 to week 8 (Figure 6), which was similar to GM treatment and
lower (not statistically significant) than all CM-involved treatments. This may indicate the
GM was slower in N mineralization rate than all CM-involved treatments, which would be
consistent with Flavel and Murphy [63] and Agehara and Warncke [62]. Thus, GM shows
advantages for crops at the earlier growth stage when less N is needed, and for crops that
have a slower N uptake rate, such as high tunnel crops and greenhouse crops to reduce
loss [63]. However, high application rates of plant waste may be needed to achieve suitable
N availability [63].

No significant differences in mineralized nitrate and ammonium among all organic
treatments were found after four weeks of incubation as well as eight-week incubation.
This indicates that all organic amendments may show similar initial labile C and N, which
may lead to similar biochemical N processes at the earlier stage of mineralization [62].
This trend may be different and differentiated among organic treatments after a long
time of incubation due to changes in the labile C and N pool in each treatment [64]. Our
study indicates the similar efficiency of inorganic N supply among inorganic fertilizer, cow
manure, and green manure, as well as combinations of cow manure and green manure
for short life-cycle crops, such as high tunnel and greenhouse crops. However, different
amendments may lead to changes in long-term soil productivity and nutrient supply due
to the changes in oxidative enzyme activity observed in this study (Figure 1).
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4.3. The Implications of Soil Amendment Applications for Sustainable Agriculture

Soils currently act as potent carbon sinks and have the potential to store more carbon
under proper management practices [65,66]. Efficient utilization of soil organic amend-
ments manures can sustain SOC storage, reduce CO2 emission, and mitigate climate change,
especially in agricultural systems [67,68]. Agriculture typically leads to the loss of soil or-
ganic matter, which is due to increased phenol oxidase activity leading to faster recalcitrant
SOC turnover [69]. Repressing or activating these enzymes through applications of soil
amendments can influence an ecosystem’s ability to act as a carbon sink or a net source
of carbon to water bodies and the atmosphere [65,66]. Inhibiting these enzymes could be
beneficial in promoting SOM accumulation and C storage in agricultural systems.

Fertilization significantly affects the production and activity of soil extracellular oxi-
dases, which are responsible for soil organic matter turnover and stabilization as well as
long-term nutrient cycling and soil carbon sequestration capacity [69]. While inorganic
fertilizer amendments also reduced phenol oxidase and peroxidase activities and displayed
increased N mineralization indicating increased C storage and N supply, applications of
inorganic fertilizers are not beneficial for long-term C storage [70]. Additionally, inorganic
fertilizer applications are associated with losses of N through leaching which can negatively
impact surrounding ecosystems [71]. Therefore, inorganic fertilizers would not be optimal
in promoting soil amendment management practices that meet the multiple ecological
functions of providing sufficient nutrients for crops, reducing nutrient loss, and promoting
long-term SOC stabilization [72].

Integrated fertilizer applications are promising alternatives for sustainable agriculture.
We found similar total net accumulated inorganic N among all organic and inorganic
treatments while 50CM50GM and 30CM70GM treatments displayed lower oxidative en-
zyme activity after eight weeks of incubation compared to cow manure, green manure,
and inorganic fertilizer treatments (Figures 1 and 6). This indicates a higher potential
of 50CM50GM and 30CM70GM fertilizer application in SOM accumulation and C stor-
age than other treatments while providing similar N availability. Similarly, combinations
of green and cow manure or inorganic fertilizers maintain soil fertility while providing
the necessary N inputs for plant productivity [15,18,19]. In addition, animal manure ap-
plication in agriculture led to antibiotics and pathogen issues [14]. Thus, lowering the
proportion of cow manure might be helpful in mitigating these issues. Thus, combinations
of organic fertilizers may be more efficient in providing plant-available nutrients and SOC
storage than the sole application of a single type of compost material. However, SOC
decomposition and stabilization are influenced by diverse physical environmental factors,
such as variations in soil type, temperature, and water content, which were kept consistent
in our study. The efficiency of integrated amendments applications needs further long-term
field investigations.

5. Conclusions

Although green manures showed similar inorganic N availability to all other organic
manure treatments, higher phenol oxidase enzyme activity was observed. This indicates
enhanced decomposition of recalcitrant C sources in a short time following amendment
application. In contrast, mixed manure amendments containing equal or lower proportions
of cow manures compared to green manures displayed similar amounts of accumulated
inorganic N and reduced oxidative enzyme activity after eight weeks of incubation. There-
fore, mixed manure amendments at 50:50 ratios or 30:70 ratios of cow manure and green
manure may be promising in promoting C accumulation in agricultural soils while also
providing mineralized N content similar to other applications of manures. However, all
these effects need to be further studied under field conditions for their long-term effects.
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