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Abstract: Telomerase represents an essential molecular machinery for tumor occurrence and pro-
gression and a potential therapeutic target for cancer treatment. Sensitive and reliable analysis of
telomerase activity is of significant importance for the diagnosis and treatment of cancer. In this study,
we developed a telomerase-activated nanoscintillator probe for deep-tissue and background-free
imaging of telomerase activity and screening telomerase inhibitors in tumor-bearing living mice
models. The probe was constructed by modifying lanthanide-doped nanoscintillators with aptamer-
containing DNA anchor strands which hybridized with quencher labelled–oligonucleotide strands
and telomerase primers. The X-ray-induced fluorescence of the probe was quenched originally but
turned on upon telomerase-catalyzed extension of the primer. Benefiting from exceptional tissue
penetrating properties and negligible autofluorescence of X-ray excitation, this probe enabled direct
detection of telomerase activity in vivo via fluorescence imaging. Furthermore, with the direct,
readable fluorescent signals, the probe enabled the screening of telomerase inhibitors in living cells
and whole-animal models in the native states of telomerase. This strategy would inspire the devel-
opment of low autofluorescence and deep tissue bioimaging probes for disease diagnosis and drug
development in high-level living settings.
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1. Introduction

Telomerase is a ribonucleoprotein reverse transcriptase that synthesizes telomeric
DNA repeats at chromosome termini with an internal RNA template to compensate for the
‘end-replication problem’ [1,2]. Usually, telomerase activity is strictly repressed in most nor-
mal cells but greatly activated in a majority of tumor cells (85–90%) because the maintenance
of telomere length by overexpressed telomerase is essential for tumors to escape the replica-
tive senescence and crisis [3]. In this sense, telomerase has received enormous attention as
an appealing molecular marker for cancer diagnosis and anticancer drug discovery [4–6].
This has spurred the development of polymerase chain reaction-based telomerase repeat
amplification protocol (PCR-TRAP), the most classic method for analyzing telomerase
activity in cell and tissue lysates [7,8]. To minimize the artifacts caused by PCR, modified
TRAP methods have been developed by combining with electrochemical [9,10] and optical
technologies [11]. However, these methods still face interferences from cell lysates, not to
mention the requirement of time-consuming procedures for sample preparation. Alterna-
tively, given the high sensitivity, straightforwardness, and non-invasiveness of fluorescence
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imaging, various fluorescent probes have been attempted to directly visualize telomerase
activity in living cells [12–14] and even in vivo [15,16]. Nevertheless, these probes are not
without shortcomings, including the photobleaching of fluorophores, autofluorescence
from biological specimens, and limited tissue penetration depth of UV/visible (UV/vis)
excitation light sources [17,18]. Along this line, the development of a more reliable fluores-
cent probe overcoming these issues would allow better interrogation of the information on
telomerase in its native physiological state.

Towards this goal, here, we developed an activatable nanoscintillator probe for track-
ing telomerase activity and screening telomerase inhibitors in vivo. Nanoscintillators are a
class of luminescent nanomaterials that can absorb and convert ionizing radiation (X-rays,
γ-rays, etc.) into UV/vis/near-infrared photons [19]. Of note, the exceptional penetration
depth of the excitation sources (i.e., X-rays), avoidance of autofluorescence, and optical
stability have enabled broad applications of nanoscintillators in the biomedical field [20–22].
In this study, we leveraged core–shell NaLuF4:Tb/Gd@NaYF4 nanoscintillators (NSs) and
telomerase-responsive DNA molecular devices (DMDs) to construct a telomerase probe.
As shown in Scheme 1, in the telomerase-responsive DMDs (Table S1), a long single-strand
DNA (A-strand, 66 base, red) is covalently immobilized on the nanoscintillator surface
and has three functional domains: an AS1411 aptamer sequence at the 3′-terminal for
targeting cancer cells, the middle sequence for carrying telomerase primer (TP, blue), and
the telomeric repeat-complementary sequence at the 5′-end for binding BHQ1 (black hole
quencher 1)-labeled strand (BHQ1-strand, green). Initially, the fluorescence of nanoscin-
tillators is quenched due to the proximity of BHQ1 to their surface. Once encountering
telomerase, the extension of the TP strand displaces the BHQ1-labeled strand, turning
on the fluorescence of nanoscintillators for signal readout. With systemic studies, we
demonstrated the application of this probe for detecting telomerase activity in solution,
living cells, and tumors, and screening telomerase inhibitors in animal models.
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Scheme 1. Schematic illustration of the design and working principle of the nanoscintillator probe
for detecting telomerase in vivo. (a) The X-ray-induced fluorescence of the nanoscintillators (NSs) is
quenched by BHQ1 in the beginning due to the fluorescence resonance energy transfer (FRET) effect;
upon telomerase-catalyzed extension of the primer, strand-displacement leads to the detachment of
the BHQ1-strand from the surface of NSs and the FRET effect is inhibited, whereby the fluorescence
of NSs is recovered for signal readout. (b) Specific recognition and internalization of probe into tumor
cells for in vivo monitoring telomerase activity.
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2. Materials and Methods

Additional information on reagents and materials, characterizations, experimental
details, DNA sequences, and cell culture was given in the Supporting Information.

Synthesis of NaLuF4:Tb(15%)/Gd(25%) nanoparticles. In a typical experiment, a
mixture of Ln(CH3COO)3·4H2O (0.5 mmol; Ln = Lu, Gd, Tb at the desired ratio), 4 mL oleic
acid (OA), and 16 mL 1-octadecene (ODE) were added to a 50 mL two-neck round-bottom
flask. Then, the resultant mixture was heated to 160 ◦C under vacuum for 45 min. After
cooling the solution to room temperature, 10 mL methanol containing 1.25 mmol NaOH
and 2 mmol NH4F were added to the reaction system and stirred for 30 min at 50 ◦C,
followed by heating to 100 ◦C for another 10 min under vacuum. Thereafter, the solution
was heated to 300 ◦C at a rate of 20 ◦C/min and kept at 300 ◦C for 60 min under a nitrogen
atmosphere while stirring. After cooling to room temperature, the resultant nanoparticles
were collected by precipitation with ethanol and centrifugation at 8000 rpm and washed
with ethanol and cyclohexane (1:1, v/v) three times. Finally, the obtained nanoparticles
were redispersed in 5 mL cyclohexane.

Synthesis of NaLuF4:Tb(15%)/Gd(25%)@NaYF4 (NSs). In a typical procedure, 0.5 mmol
Y(CH3COO)3·4H2O, 5 mL OA and 7.5 mL ODE were added to a two-neck round-bottom
flask, and then the resultant mixture was heated to 160 ◦C under vacuum for 50 min. After
cooling the solution to room temperature, the core NaLuF4:Tb(15%)/Gd(25%) nanoparticles
dispersed in 4 mL cyclohexane were added to the reaction system, and the suspension was
heated at 80 ◦C for 20 min to evaporate the cyclohexane. After cooling to room temperature,
10 mL methanol containing 1.25 mmol NaOH and 2 mmol NH4F were added to the reaction
system and stirred at 50 ◦C for 30 min, and then the resultant mixture was heated to 80 ◦C for
another 20 min under vacuum to evaporate the methanol. The suspension was then heated to
290 ◦C at a rate of 20 ◦C/min and kept at 290 ◦C for 90 min under a nitrogen atmosphere while
stirring. After cooling to room temperature, the nanoparticles were collected by precipitation
with ethanol and centrifugation at 8000 rpm and washed with ethanol and cyclohexane (1:1,
v/v) three times. Finally, the nanoparticles were redispersed in 5 mL cyclohexane and stored
at 4 ◦C for further use.

Synthesis of silica-coated NSs (NSs@SiO2) particles. 1-hexanol (2 mL), Triton X-100
(2 mL), and cyclohexane (10 mL) were mixed and stirred until the mixture became clear.
Then, 300 µL deionized water and NSs solution dispersed in cyclohexane (4 mL 0.01 M) were
sequentially added to the solution. The resultant mixture was stirred for 10 min at room
temperature before the addition of 80 µL tetraethyl orthosilicate. After further vigorously
stirring the suspension for 20 min, ammonium hydroxide (160 µL) was added, and the mixture
was stirred at room temperature for 20 h. In the end, NSs@SiO2 particles were collected by
centrifugation at 8000 rpm and washed with ethanol three times.

Preparation of carboxyl group-functionalized NSs@SiO2 (NSs@SiO2-COOH) parti-
cles. NSs@SiO2 particles (180 mg) were first dispersed in isopropyl alcohol (120 mL),
3-aminopropyltriethoxysilane (200 µL) was then added to the suspension, and the resul-
tant suspension was refluxed in an oil bath at 85 ◦C for 10 h. The resultant nanoparticles
(NSs@SiO2-NH2) were collected by centrifugation at 10,000 rpm for 10 min and washed
with deionized water and ethanol. Sequentially, to prepare NSs@SiO2-COOH particles,
NSs@SiO2-NH2 particles (120 mg) were dispersed in N,N-dimethylformamide, and succinic
anhydride (190 mg) was added to the suspension, which was further stirred at room tem-
perature for 20 h. Thereafter, the resulting nanoparticles were collected by centrifugation at
10,000 rpm and washed with deionized water three times.

Preparation of the probe. NSs@SiO2-COOH (2 mg) particles were dispersed in 2-(N-
morpholino) ethanesulfonic acid (MES) buffer (pH 6.0, 10 mM), then 60µL N-(3-(dimethylamino)
propyl)-N-ethylcarbodiimide (30 mg/mL) and 120 µL N-hydroxysuccinimide (50 mg/mL) were
added to the suspension. After stirring for 30 min, the pH of the suspension was adjusted with
PBS to neutral, and then amino functionalized A-strand (40 µL, 0.1 M) was added, followed by
stirring at room temperature for 18 h. In the end, the resultant nanoparticles were collected by
centrifugation at 10,000 rpm, washed with water (pH 7.4) for three times, and re-dispersed in
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Tris-HCl buffer (10 mM Tris, pH 7.4, 250 mM NaCl, 100 mM KCl) for further use. Then, 1 mL
of A-strand-grafted NSs@SiO2 (1 mg/mL) dispersed in Tris-HCl buffer was incubated with
8 nmol of BHQ1-strand and 8 nmol of telomerase primer at room temperature for 12 h under
shaking. The probe was collected by centrifugation at 10,000 rpm and washed with Tris-HCl
buffer three times.

Telomerase Extraction. Telomerases were extracted from Hela cells with CHAPS buffer.
Firstly, Hela cells (1.0 × 106) were collected and transferred in a centrifuge tube when Hela
cells were in the exponential growth stage. Secondly, Hela cells were washed with iced PBS
two times. Thirdly, the cells were transferred in the cold CHAPS lysis buffer (0.5% (w/v)
CHAPS, 10 mM Tris, pH 7.5, 1 mM ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-
tetraacetic acid, 0.1 mM phenylmethanesulfonyl fluoride, 10% glycerol, and 1 mM MgCl2)
and incubated at 4 ◦C for 30 min. Then, the lysate was centrifugated (12,000 rpm) at 4 ◦C
for 20 min. The supernatant was collected and stored at −80 ◦C for further use.

Detection of telomerase activity in vitro. To determine the telomerase-responsive
character of the probe, the time-dependent fluorescence variation kinetics of the probe
was performed. The probe (0.5 mg/mL) and deoxynucleotide solution mixture (dNTPs;
200 µM) were added into TRAP buffer containing telomerase extracts from 100,000 Hela
cells, and then the mixture was incubated at 37 ◦C for different times (10, 20, 30, 40, 60,
100, and 120 min) and time-dependent variation in fluorescence intensity was recorded.
For comparison, we used PBS to replace the telomerase extracts to record the changes in
potential background fluorescence.

To investigate the relationship between X-ray-induced fluorescence signals and
telomerase activity, dNTPs (200 µM) and different amounts of telomerase extracts
equivalent to different numbers (0, 100, 500, 1000, 2000, 5000, 10,000, 20,000, 50,000,
100,000) of Hela, HepG2, or MCF-7 cells were added to TRAP buffer containing the
probe (0.5 mg/mL) and then the resultant suspensions were incubated at 37 ◦C for
40 min before recording the X-ray-induced fluorescence of each group. The change in
the fluorescence intensity at λ = 546 nm of the probe was plotted against the number
of cells. The limit of detection (LOD) was calculated using the equation LOD = 3σ/S,
where σ is the standard deviation of ten consecutive measurements of the blank, and S
is the slope of the linear part of the plot.

To verify the specificity of the probe towards telomerase, a series of biomolecules
(BSA, thrombin, GSH, trypsin, lysozyme, and glucose) were respectively added into TRAP
buffers containing 0.5 mg/mL of the probe. Then, the resultant mixtures were incubated at
37 ◦C for 40 min, and the fluorescence was recorded at the end. To study the stability of
the probe, the probe was incubated with PBS buffer, Dulbecco’s modified Eagle’s medium
(DMEM), DMEM containing 10% fetal bovine serum (FBS), and saline (0.9% NaCl solution)
at 37 ◦C, respectively, for a series of time (0, 1, 4, 8, 12, 24, 36, and 48 h). At these indicated
time points, the X-ray-induced fluorescence and hydrodynamic size of the probe were
recorded.

Detection of telomerase activity in living cells. To assess telomerase activity in living
cells with the probe, 5 × 105 Hela cells were first seeded in a 6-well plate. After 24 h
incubation at 37 ◦C, the medium was removed, and the cells were washed with PBS,
followed by the addition of fresh medium containing the probe (0.5 mg/mL), and the cells
were incubated for different times (0, 1, 2, 3, 4, and 5 h). Thereafter, the cells were washed
with PBS and digested by trypsin, and the cell suspensions of each group were collected
for recording the X-ray-induced fluorescence intensity.

To detect the telomerase activity in different cancer cells, MCF-7, Caco-2, HepG2, and
A549 cells were seeded in 6-well plates and cultured for 24 h; then, the culture medium was
replaced with fresh medium containing the probe (0.5 mg/mL). After incubating for 6 h,
cells were washed with PBS and digested by trypsin; the cell suspensions were collected
for recording the X-ray-induced fluorescence intensity and imaging, respectively. Imaging
was performed using the IVIS Lumina III Series system (PerkinElmer).
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For intracellular telomerase inhibitor screening, Hela cells (5 × 105) were seeded in
a 6-well plate at 37 ◦C for 24 h, followed by replacing the culture medium with fresh
culture medium containing different concentrations of epigallocatechin gallate (EGCG; 0,
5, 10, 15, 20, and 25 µM), 3′-Azido-3′-deoxythymidine (AZT; 25 µM), curcumin (25 µM),
Doxorubicin (Dox; 25 µM), and 2-[(E)-3-naphthalen-2-ylbut-2-enoylamino]benzoic acid
(BIBR1532; 25 µM) for 6 h. Then, the cells were washed with PBS and fed with fresh culture
medium containing the probe (0.5 mg/mL) for 4 h. Thereafter, the cells were digested by
trypsin for recording the X-ray-induced fluorescence intensity and imaging, respectively.

Imaging of telomerase activity and screening telomerase inhibitors in vivo. All animal
experiments were approved by the Institutional Animal Care and Use Committee of Fuzhou
University (Protocol Number 013-20210218-006 and the date of approval is 18 February 2021).
Nude mice (6–8 weeks, ~18–20 g) were purchased from Shanghai SLAC Laboratory Animal
Co., Ltd. (Shanghai, China). To establish human cervix tumors in mice, 1× 106 Hela cells were
dispersed in 50 µL PBS buffer and then subcutaneously injected into the right hind leg of athymic
nude mice. When the tumor volumes reached a size of 150–350 mm3, the probe or the mis-probe
lacking telomerase primer dispersed in saline was injected intratumorally. Then, fluorescence
imaging of tumors in the nude mice was performed at 0, 1, 2, 3, 4, and 5 h after administration of
the probe (15 mg/kg, 50 µL, in 0.9% saline) or control probe (15 mg/kg, 50 µL, in 0.9% saline)
using the IVIS Lumina III Series system (PerkinElmer, Waltham, MA, USA). Mice receiving
intratumor injections of saline were set as the control. For screening telomerase inhibitors in vivo,
6 h after Hela tumor-bearing mice treated with AZT (50 mg/kg), EGCG (50 mg/kg), curcumin
(50 mg/kg), BIBIR1532 (50 mg/kg), or Dox (50 mg/kg) by intratumor injection, the mice were
treated with the probe for 4 h, and then X-ray-induced fluorescence imaging was recorded.

Statistical analysis. The obtained data were expressed as the mean value ± standard
deviation (SD), and the statistical significance between groups was analyzed with one-way
ANOVA and Tukey’s post hoc tests using the software GraphPad Prism. Reported p values
were classified as follows: **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05. A value of
p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterization of the Probe

The detailed synthetic process of the probe is depicted in Figure S1. To construct the
probe, lanthanide-doped core–shell nanoscintillators (NaLuF4:Tb(15%)/Gd(25%)@NaYF4)
with sizes around 25 nm were first prepared according to our previous work [23] and
then deposited with a c.a. 2 nm thick silica shell (NSs@SiO2, Figure S2 and Figure 1a–c).
The X-ray excited fluorescence spectra of NSs and NSs@SiO2 particles showed that four
characteristic emission bands at 489, 546, 584, and 612 nm, assigned to the 5D4 → 7FJ (J = 6,
5, 4, 3) transitions of the Tb3+ luminescence center (Figure 1d). The deposition of silica
shell showed no obvious impact on the emission characteristics of the NSs. Thereafter, the
obtained NSs@SiO2 particles were sequentially functionalized with amino and carboxyl
groups (Figure S3), followed by grafting the A-strand. Finally, the TP and BHQ1-strand
were hybridized into their complementary segments in the A-strand to form the telomerase-
responsive DMDs. The conjugation of the DMDs was confirmed by the characteristic
absorption bands of DNA at 260 nm and BHQ1 centered at 546 nm in the UV–vis absorption
spectrum (Figure 1e) and a negatively charged zeta potential (Figure S4). The X-ray-induced
fluorescent spectra of the probe showed that the emission of NSs was strongly quenched
(Figure 1f) because the overlap of emission bands with the absorption spectrum of BHQ1
led to fluorescence resonance energy transfer (FRET). These results indicated the successful
modification of DMDs to the surface of NSs@SiO2. Finally, the content of the DNA device in
the probe was measured to be about 0.499 nmol per mg probe by measuring the conjugated
number of BHQ1-strands (Figure S5).
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Figure 1. Synthesis and characterization of the probe. Representative TEM images of the as-prepared
(a) NSs and (b) NSs@SiO2 particles. (c) Size distributions of NSs and NSs@SiO2 particles. (d) The
normalized UV-vis absorption spectrum of BHQ1-strand (green line) and the X-ray-induced fluores-
cence spectra of the core nanoparticles (NaLuF4:Tb(15%)/Gd(25%), black line), the core–shell NSs
(red line), and NSs@SiO2 particles (blue line). (e) UV-vis absorbance spectrum of NSs@SiO2 particles,
the probe, BHQ1, and A-strand DNA. (f) X-ray-induced fluorescence spectra of NSs@SiO2 particles
and the probe.

3.2. Telomerase Detection In Vitro

The strand-displacement behavior of DMDs by telomerase-triggered TP elongation
was first validated by polyacrylamide gel electrophoresis (Figure S6). Then, the X-ray-
induced fluorescence of the probe under different conditions was measured to confirm
its feasibility for telomerase activity sensing. After incubating the probe with a mixture
of deoxynucleotides (dNTPs) and telomerase extracts from 100,000 Hela cells at 37 ◦C
for 2 h, the X-ray-induced fluorescence intensity of the probe at 546 nm was significantly
increased compared with that of the nontreated probe. In contrast, neither the extracts
from the normal cell line (L02, normal human liver with limited expression of telomerase)
nor the heat-inactivated Hela cell extracts (95 ◦C for 20 min) induced obvious fluorescence
enhancement. Moreover, minimal fluorescence enhancement was observed for a nonspecific
probe lacking the TP strand (denoted as mis-probe) (Figure 2a). These results proved that
telomerase could catalyze the extension of the TP strand and, thereafter, trigger the release
of the BHQ1-strand via strand displacement. Concomitantly, the detachment of the BHQ1-
strand from the surface of the NSs@SiO2 reduced the FRET efficiency, recovering the
fluorescence of NSs for signal readout.
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Figure 2. Sensitivity and selectivity of the probe. (a) X-ray-induced fluorescence spectra of suspen-
sions containing the probe, dTNPs, and different analysts as indicated. Experiments conducted with
the mis-probe were used as the control. The spectrum of an equal amount of NSs@SiO2 particles was
shown for better comparison. (b) X-ray-induced fluorescence spectra of the probe upon incubation
with telomerase extracts from different numbers of Hela cells. (c) The relationship between fluores-
cence intensity enhancement (∆I) at 546 nm and Hela cell numbers. Inset: linear plot of the ∆I versus
Hela cell numbers. (d) Fluorescence intensity at 546 nm of the probe after incubating with telomerase
and different control analytes as indicated. Error bars represented the standard deviations of three
independent experiments.

Next, we measured the time-dependent fluorescence variation kinetics of the probe by
incubating it with dNTPs and telomerase extracted from 100,000 Hela cells at 37 ◦C. As
shown in Figure S7, the X-ray-induced fluorescence of the probe enhanced over time and
reached a plateau within 40 min. Based on these results, 40 min of reaction time was chosen
in the following experiments. Then, we tested the sensitivity of the probe by incubating
it with telomerase extracts from different numbers of cells. As shown in Figure 2b, the
intensity of X-ray-induced fluorescence increased gradually with increasing cell numbers,
and there was a good linear relationship between the fluorescence enhancement (∆I) at
546 nm and the telomerase activity equivalent to 0–10,000 Hela cells (Figure 2c). Remarkably,
the limit of detection was calculated to be 37 Hela cells, which was comparable to the
detection limit of most of the previously reported methods [24,25]. Furthermore, similar
trends in the fluorescence changes were also observed for the probe after being treated
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with telomerase extracts from different cancer cells, such as HepG2 (Figure S8) and MCF-7
cells (Figure S9), and the detection limits were measured to be 51 and 48 cells, respectively.
These results suggested that this scintillating probe provided an alternative tool for the
sensitive detection of telomerase activity.

We next evaluated the selectivity and stability of the probe. The selectivity of the probe
was verified by incubating it with various biomolecules, including thrombin, glutathione
(GSH), trypsin, lysozyme, glucose, and glycine. As shown in Figure 2d, the X-ray-induced
fluorescence had no significant change upon incubating with the control analytes. In sharp
contrast, a distinct fluorescence enhancement was observed in the presence of telomerase.
These results demonstrated good sensing specificity of the developed probe for detecting
telomerase even in complex biological media. Furthermore, we measured the stability of
the probe by incubating the probe in PBS buffer, DMEM, DMEM plus 10% FBS, and saline
for 48 h, which showed that the fluorescence intensity and hydrodynamic size of the probe
changed negligibly (Figure S10). These results substantialized the stability of the probe in
biorelevant aqueous environments.

3.3. Analysis of Intracellular Telomerase Activity

The probe was then employed for the monitoring of intracellular telomerase activity.
To show whether the AS1411 aptamer in the probe could favor its uptake by cancer cells,
we employed Hela cells as the experimental cell line and L02 cells as a control. To directly
visualize the cellular uptake of the probe under confocal laser scanning microscopy (CLSM),
we replaced the BHQ1 with Cy3. As shown in Figure S11, after incubating with Hela cells,
green fluorescence could be observed in the cytoplasm after 1 h of incubation, and the
fluorescence intensity enhanced gradually with increasing incubation time and plateaued
around 3 h. In contrast, although the fluorescence signal of Cy3 could be detected in
the normal cells (L02), the intensity was much lower than that in Hela cells at each time
point. These results indicated that the probe could be preferably internalized by Hela cells
because AS1411 aptamer in stand A could specifically recognize and bind to nucleolin that
is overexpressed on the surface of cancer cells [26,27]. We next evaluated the cytotoxicity of
the probe by incubating it with Hela and L02 cells at various concentrations; the cellular
viabilities of both cell lines were almost not affected up to 200 µg/mL (Figure S12). These
results indicated that the probe had a satisfactorily low cytotoxicity.

Before utilizing the probe for directly detecting intracellular telomerase activity, we
assessed the autofluorescence of cell suspensions under X-ray excitation. As shown in
Figure 3a, compared to the strong background fluorescence generated under UV light
(365 nm) excitation, the autofluorescence was reduced by more than 99% upon excitation by
X-ray. These results confirmed that the scintillator-based probe was reliable for analyzing
target biomolecules such as telomerase in complex biological environments. We next
leveraged the probe for tracking telomerase activity in living cells. After treating Hela cells
with the probe at different times, cells were digested, and the fluorescence intensity of cell
suspensions was measured. As shown in Figure 3b, the fluorescence intensity at 546 nm
gradually increased over incubation time, and the fluorescence enhancement reached a
plateau around 4 h. By contrast, no significant enhancement in X-ray-induced fluorescence
was observed in L02 cells over the same time. In additional experiments using the mis-
probe, no obvious changes in X-ray-induced fluorescence were recorded in either Hela cells
or L02 cells, indicating that the enhancement in fluorescence in Hela cells was due to the
specific response of the probe to telomerase. Moreover, similar changes in X-ray-induced
fluorescence were also observed in other four kinds of cancer cells (including MCF-7,
Caco-2, HepG2, and A549 cells) after being treated with the probe (Figure 3c), showcasing
the generality of the probe for sensing telomerase activity in different cancer cell lines.
Compared with assays sensing telomerase activity from cellular extracts, directly detecting
telomerase activity in living cells with our probe would more reliably reflect the activity of
telomerase and related biological processes in the native state [28].
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3.4. Screening Telomerase Inhibitors in Living Cells

Telomerase inhibitors could be promising therapeutic drugs for cancer treatment, as
most tumors rely on the reactivation of telomerase to maintain telomeres to preserve the
proliferation potential while the telomerase activity of most normal cells is repressed [29,30].
Hence, it is of great significance to develop sensitive and selective tools for screening
telomerase inhibitors. To confirm whether our probe could also be employed for evaluating
the activity of inhibited telomerase and thus for screening telomerase inhibitors, EGCG was
first studied as a representative inhibitor. As shown in Figure S13, 500,000 Hela cells were
treated with different concentrations of EGCG (0, 5, 10, 15, 20, and 25 µM) for 6 h before
incubating with the probe. The fluorescence signals gradually declined upon increasing the
doses of EGCG and reached a plateau above 20 µM, indicating that the probe could read
out the dose-dependent inhibition of EGCG toward telomerase activity. Next, we employed
the probe to screen telomerase inhibitors in living cells. Curcumin, AZT, and BIBR1532
were used as model drugs. These drugs inhibit telomerase activity by down-regulating
human telomerase reverse transcriptase expression [31–34]. Dox was chosen as a control
because its action is not directly associated with the telomerase activity. Afterward, these
drugs were incubated with 500,000 Hela cells for 6 h, and the cells were then treated with
the probe. As shown in Figure 3d, negligible fluorescence enhancement was observed for
groups treated with curcumin, AZT, and BIBR1532, which suggested that the telomerase
activity was suppressed by these drugs. In contrast, the fluorescence signal in the Dox
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group was similar to the control group treated with the probe only and much higher than
that of the telomerase inhibitor-treated groups. These results demonstrated that the probe
could be used for the monitoring of telomerase activity in drug-treated cancer cells and
would be applicable for facilitating telomerase inhibitor screening in living cells.

3.5. In Vivo Imaging of Telomerase Activity

The use of visible or UV light as the excitation source for most in vivo imaging appli-
cations suffers from high tissue autofluorescence and low tissue penetration depth [17],
which could affect the accuracy and reliability of signal outputs. The exceptional tissue
penetrating and background-free characteristics of X-rays might solve these problems [19].
To this end, we first compared the autofluorescence background in Hela tumor-bearing
mice under UV light and X-ray irradiations. As shown in Figure S14, there was almost no
autofluorescence background in X-ray-excited imaging graphs, while an obvious fluores-
cence background signal was detected upon UV (365 nm) illumination. Next, the tissue
penetration depth of X-ray-induced fluorescence imaging was studied by a tissue phantom
study. Typically, capillary tubes were first filled with a telomerase-pretreated probe, and
then pork of different thicknesses was placed between the capillary tubes and the X-ray
source. As shown in Figure S15, X-ray-induced fluorescence imaging of the activated
probe was clearly presented by X-ray excitation, even with a tissue thickness of 2.5 cm.
These results indicated that the use of an X-ray-induced fluorescence imaging probe for
detecting telomerase in vivo would essentially eliminate the autofluorescence background
and achieve deep tissue imaging.

Encouraged by these results, we then employed the probe to directly visualize telom-
erase activity in Hela tumor-bearing athymic nude mice. The probe, mis-probe, or saline
was injected into tumors, where mice treated with saline and the mis-probe were set as the
control groups. The probe and mis-probe were dispersed in 0.9% saline solution (15 mg/kg,
50 µL). As illustrated in Figure 4a, the fluorescence signal in the tumor of the probe group
gradually increased over time and reached a maximum within 4 h post-injection under
X-ray excitation. In contrast, the tumor fluorescence of the saline group and the mis-probe
groups remained undetected and showed negligible variation over the same time. Consis-
tently, quantitative analysis showed that the intratumoral fluorescence signal of the probe
group revealed significantly much higher enhancement during 4 h post-injection, but no
obvious intensity changed in the control groups (Figure 4b). These results indicated the
feasibility of the probe for monitoring telomerase activity in vivo.
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Figure 4. Imaging telomerase activity in vivo. (a) X-ray-induced fluorescence imaging of telomerase
activity in Hela tumor-bearing athymic nude mice at different time points after intratumoral injection
of the probe. Mice receiving intratumor injection of saline and the mis-probe were utilized as the
control groups. (b) Quantitative analysis of changes in the average fluorescence intensity in the
tumor regions after receiving different treatments as shown in (a); p, photons; sr, steradian. Error bars
represented the standard deviation of five mice. Statistical significance was calculated via ANOVA
analysis with Tukey’s post hoc test. *** p < 0.001, **** p < 0.0001.
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To evaluate the biosafety of the probe in vivo, the body weight of mice was measured
after administration of the probe. As shown in Figure S16, there was no significant change
in the body weight of mice over 20 days post-injection. Additionally, standard hematoxylin–
eosin (H&E) staining of the tissue sections of major organs (liver, spleen, heart, lungs, and
kidneys) indicated that there were no obvious signs of pathological damage in comparison
with the saline group (Figure S17). Moreover, the blood biochemistry tests showed that all
blood paraments of hematological biomarkers (Figure S18) and organ function biomarkers
(Figure S19) exhibited no statistical difference from the group treated with saline. These
results validated the biosafety of the probe for bioimaging applications.

3.6. Telomerase Inhibitor Screening In Vivo

Although we have demonstrated that the probe could detect the activity of telomerase
in inhibitor-treated living cells, two-dimensional cell culture condition cannot replicate the
complexity of the three-dimensional tumor tissue architectures, and it is hard to reflect the
interaction between the tumor microenvironment and cancer cells [35,36]. On the other
hand, tumor-beating animal models could closely recapitulate human pathology, providing
a favorable preclinical tool for screening drugs before clinical testing [37]. Of note, the
quality of information obtained has a strong correlation with the output measure [38].

Regarding that our probe could directly provide fluorescence readout of telomerase activity
in tumor-bearing mice, we next studied the capacity of the probe for screening telomerase
inhibitors in vivo. We chose curcumin (50 mg/kg body weight), AZT (50 mg/kg body weight),
BIBR1532 (50 mg/kg body weight), EGCG (50 mg/kg body weight), and Dox (50 mg/kg body
weight) as the model drugs. Hela-tumor-bearing mice of different groups were intratumorally
injected with these drugs for 6 h before administration of the probe. Mice treated with PBS
before administration of the probe were set as the blank control group. As shown in Figure 5a,b,
the X-ray-induced fluorescence in the tumors of the groups treated with telomerase inhibitors
(curcumin, EGCG, AZT, BIBR1532) was obviously lower than that of the blank control group. In
comparison with the fluorescence variation in the control group, the X-ray-induced fluorescence
changed negligibly in the group treated with Dox. These results indicated that in comparison
with the conventional output method of screening drugs that evaluated the animal death or
tumor volumes, our probe could provide an intuitional readout and allow more reliable and
rapid measurement of the effects of telomerase-related drugs. This activatable nanoscintillator
probe would provide a powerful tool for identifying telomerase-related anticancer drugs and
could serve as a highly efficient platform for drug discovery. Moreover, it holds great potential to
expand the concept of this design to develop novel tools for screening other target-related drugs.
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(50 µL, 50 mg/kg) and the probe (15 mg/kg, 50 µL, in 0.9% saline solution). Mice receiving PBS
(50 µL) and the probe were used to exclude the possible effect of the drug vehicle. (b) Quantitative
analysis of changes in the average fluorescence intensity in the tumor regions after receiving different
treatments as shown in (a); p, photons; sr, steradian. Error bars represented the standard deviation
of five mice. Statistical significance was calculated via ANOVA analysis with Tukey’s post hoc test.
**** p < 0.0001. n.s., not significant.

4. Conclusions

In summary, we have developed a novel probe by combining X-ray-excited nanoscin-
tillators and telomerase-responsive DNA molecular devices for tracking telomerase activity
and screening inhibitors in vivo. The proposed strategy outperformed the gold standard
method of detecting telomerase activity measurement using PCR in terms of flexibility as it
enabled telomerase activity sensing beyond cell lysates. The negligible autofluorescence
background and high tissue penetration under X-ray excitation allowed the probe to di-
rectly visualize telomerase activity in living cells and tumor-bearing mice by producing
turn-on fluorescence. More importantly, it is applicable to screen telomerase inhibitors
in whole-animal models with easy-to-read fluorescent output signals. Overall, this study
would inspire the development of advanced probes targeting different biomarkers for
cancer diagnosis and anticancer drug discovery.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/targets1010004/s1. Figure S1: Schematic illustration of the synthetic
process of the probe. Figure S2: Synthesis and characterization of NaLuF4:Tb/Gd nanoparticles.
Figure S3: FTIR spectra of the oleate capped NaLuF4:Tb/Gd@NaYF4 (NSs), NSs@SiO2, NSs@SiO2-
NH2, and NSs@SiO2-COOH particles. Figure S4: Zeta potential of NSs@SiO2 particles (A), NSs@SiO2-
NH2 particles (B), NSs@SiO2-COOH particles (C), NSs@SiO2-A-strand particles (D), and probe (E).
Figure S5: Plot of the absorbance of BHQ1-strand at 546 nm versus the concentration of BHQ1-
strand. Figure S6: Gel electrophoresis of the telomerase-responsive DNA devices (DMDs) and the
telomerase-triggered telomerase primer extension and strand displacement. Figure S7: Fluorescence
changes at 546 nm of the probe after incubation with telomerase extracts and PBS for different
reaction times. Figure S8: (a) X-ray-induced fluorescence spectra of the probe after incubation with
telomerase extracts from different numbers of HepG2 cells; (b) the relationship between fluorescence
intensity enhancement (∆I) at 546 nm and HepG2 cell numbers; inset: linear plot of the fluorescence
enhancement versus HepG2 cell numbers. Figure S9: (a) X-ray-induced fluorescence spectra of
the probe after incubation with telomerase extract from different numbers of MCF-7 cells; (b) the
relationship between fluorescence intensity enhancement (∆I) at 546 nm and MCF-7 numbers; inset:
linear plot of the fluorescence enhancement versus MCF-7 cell numbers; Figure S10: The stability
of the probe in different solutions after incubation at 37 ◦C for different times, and NSs@SiO2 in
these solutions was set as the control. Figure S11: Confocal laser scanning microscopy (CLSM)
fluorescence images of (a) Hela cells and (b) L02 cells after treated with the probe for 0, 1, 2, 3, and
4 h. Figure S12: Cell viabilities of Hela and L02 cells after treated with different concentrations of the
probe for 24 h. Figure S13: Inhibition of telomerase activity by EGCG. Figure S14: Comparison of
the autofluorescence background under excitations of UV (365 nm) and X-ray source. Figure S15:
Evaluation of the tissue penetration depth of X-ray. Figure S16: Body weight changes in healthy mice
after intravenous injection of the probe and saline at different times. Figure S17: H&E-stained tissue
sections of the major organs (heart, liver, spleen, lung, and kidney) after intravenous injection of the
probe and 0.9% saline for 20 days. Figure S18: Hematology assays of healthy mice at days 10 and 20
after intravenous injection of the probe. Figure S19: Biochemical blood analysis of healthy mice at
days 10 and 20 after intravenous injection of the probe; Table S1: DNA sequences in this work.
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