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Abstract: Background: Vascular health is increasingly recognized for its roles in the pathogenesis
and progression of Alzheimer’s disease (AD). The objective of this study was to investigate effects of
exercise training, dose, and cardiorespiratory fitness (CRF) on neurotrophic factors in community-
dwelling, older adults with mild-to-moderate AD dementia. Methods: This was a pilot blood
ancillary study of the FIT-AD trial. Participants in the parent study were randomized to 6-month
aerobic exercise (AEx) or stretching control. For this ancillary study, resting plasma brain-derived
neurotrophic factor (BDNF), irisin, fibroblast growth factor-21 (FGF-21), and insulin-like growth factor-
1 (IGF-1) biomarkers were assessed at baseline, 3, and 6 months. Estimates of within- and between-
group effect sizes were calculated (Cohen’s d). Relationships of biomarker change with dose and
CRF change were explored with multivariable linear regression and repeated measures correlations.
Results: The sample (n = 26, 18 AEx/8 stretching) averaged 77.6 ± 6.9 years old, with the majority
being male (65.4%), and non-Hispanic White (92.3%); between-group effect sizes were generally
small except for irisin (d = −0.44)), AEx group relative to stretching group. Associations of dose and
changes in CRF with changes in neurotrophic biomarker were weak (r2 ≤ 0.025). Conclusions: The
effects of exercise on BDNF, irisin, IGF-1, and FGF-21 were heterogeneous in AD. Our findings need
validation in future, adequately powered exercise studies in AD.

Keywords: exercise; vascular factors; neurotrophic biomarkers; Alzheimer’s disease; cardiorespiratory
fitness; dose-response

1. Introduction

Alzheimer’s disease (AD), currently afflicts 6.5 million Americans over the age of
65 years, and is projected to affect 13.8 million by 2060 [1]. AD is classically considered a
neurodegenerative disease characterized by the presence of neurofibrillary tangles from
hyperphosphorylated tau and accumulation of β-amyloid plaques in the brain [2], which
culminates in a clinical milieu consisting of cognitive impairment, behavioral and psycho-
logical symptoms, and inability to perform activities of daily living [3].

However, as our understanding of AD pathophysiology has evolved, it is increasing
realized that this devastating disease likely involves multifactorial pathologies, and in
particular, support has accumulated for the view that vascular factors play a key patho-
physiological role in the cognitive decline seen in AD [4,5]. This evidence is supported
by post-mortem studies where vascular pathology has been concurrent in the majority of
cases of clinically diagnosed AD [4]. Vascular alterations seen in AD are at the local (brain)
and systemic levels. Local vascular pathological findings include increased intracranial
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atherosclerosis and cerebral amyloid angiopathy [6], while systemic changes collectively
reduce cerebral blood flow [7]. The mechanisms driving the association between atheroscle-
rosis (and other vascular alterations) and β-amyloid accumulation in AD are incompletely
understood. One hypothesis is that this is the result of a repetitive and toxic accumula-
tion of vascular inflammation and free radical-mediated oxidative stress, which promotes
and exacerbates endothelial dysfunction that is destructive to the already deteriorating
vasculature and brain [6]. On the molecular level, vascular health is modulated by many
biomolecules including neurotrophic factors. Neurotrophic factors, classically named
for their neurogenerative and neuroprotective properties [8], are increasingly studied for
their pleiotropic, cardioprotective effects. Some of the more studied cardioprotective neu-
rotrophic factors include brain-derived neurotrophic factor (BDNF), irisin (fibronectin type
III binding domain-contain protein), insulin-like growth factor 1 (IGF-1), and fibroblast
growth factor 21 (FGF-21) [9–12]. Collectively, these neurotrophic factors are thought to
elicit their vascular health properties through the reduction of traditional cardiovascular
disease (CVD) risk factors (i.e., hyperlipidemia, insulin resistance, and hypertension) as
well as anti-inflammatory and antioxidant effects that mediate improvements in endothelial
functioning and attenuate the atherosclerotic process [11,13,14]. The growing evidence of
neuro- and cardioprotective effects of neurotrophic factors is further supported by findings
that resting plasma neurotrophic factor levels are generally suppressed in persons with AD
dementia [15,16] and atherosclerotic CVDs [17,18].

Coinciding with the growing evidence of vascular factors in AD pathogenesis, sub-
stantial data have also accumulated in support of the role exercise plays in the prevention
and management of AD and age-related cognitive decline [19,20]. Exercise, particularly
aerobic exercise (AEx), is known for its ability to improve vascular health physiologically
and molecularly. Physiologically, exercise induces favorable changes in traditional CVD
risk factors in parallel with direct effects related to improving endothelial function [21].
Molecularly, exercise provides a stimulatory effect for the secretion of neurotrophic factors
from several tissue types (e.g., muscle, liver, adipose, endothelial cells), believed to be in
response to increased metabolic demands [8]. Neurotrophic factors released in response
to exercise include, but are not limited to, BDNF, irisin, FGF-21, and IGF-1 [8,22]. As
exercise exerts beneficial effects on the vasculature through its stimulatory effect on several
neurotrophic factors, these proteins are dually capable of inducing changes in the brain
(neurogenesis and neuroplasticity) [22,23]. Therefore, exercise-induced neurotrophic factor
release represents a plausible mechanism by which exercise may promote both cardiovas-
cular and brain health, important for the management of AD dementia. Indeed, exercise,
and in particular AEx, is now considered an important neuroprotective therapy based on
subgroup findings from meta-analyses specific to cognitively intact older adults [24] as
well as adults with mild cognitive impairment [25], mediated in part by increased resting
plasma neurotrophic biomarkers.

However, the effect of AEx on resting plasma neurotrophic factor levels in AD demen-
tia is understudied and is limited to two studies, which have focused only on BDNF [26,27]
and IGF-1 [26]. Likewise, when looking at the effects of AEx as a therapy for chronic
diseases, its pleiotropic effects are generally believed to be mediated in part by dose and
cardiorespiratory fitness (CRF) [28], both yet to be studied in the context of neurotrophic
factors in AD dementia. Hence, the primary objective of this pilot study was to derive
preliminary estimates of within- and between-group effect sizes from a 6-month AEx or
stretching intervention on resting plasma neurotrophic factors in older adults with mild-
to-moderate AD dementia. Secondarily, it investigated the relationships of exercise dose
and CRF change with resting plasma neurotrophic factors to help inform directions of
future exercise RCTs. We expected that AEx would produce favorable trends in plasma neu-
rotrophic biomarkers compared to stretching exercise in older adults with mild-moderate
AD dementia. Additionally, exercise dose and CRF would be positively associated with
change in resting plasma neurotrophic factor levels.



J. Vasc. Dis. 2023, 2 353

2. Materials and Methods
2.1. Design

This study used a cohort design and was the blood ancillary study of the FIT-AD
trial [29]. The parent FIT-AD trial investigated the effects of 6-month AEx or stretching
on cognition and hippocampal volume in community-dwelling older adults with mild-
to-moderate AD [30]. The parent FIT-AD trial, which implemented a 2-parallel group
design, randomized 96 participants to either an AEx or stretching control group using a 2:1
allocation ratio. The study statistician generated the randomization scheme, which was
stratified by age (66–75, 76–85, and 85+), and used random permutated blocks of 3 and
6 participants. Investigators, with exception of the study statistician and data collectors,
were blinded to group allocation [30]. The parent FIT-AD trial adhered to the Consolidated
Standards of Reporting Trials (CONSORT) elements [31]. The findings from the parent
FIT-AD trial (NCT01954550) pertaining to primary outcomes (effects of intervention on
cognition) and secondary outcomes (effects of intervention on hippocampal volume) have
been previously published [30].

This blood ancillary study was implemented during year 2 of the parent FIT-AD trial
after 30 participants were already enrolled. Since the emphasis of this pilot study was
to provide preliminary results to estimate effect sizes for power calculation for a future
large-scale study, an a priori power analysis was not conducted. We anticipated 30 enrollees
over the remaining years of the study and subsequently determined a target sample size
of 25 after adjusting for a conservative attrition rate of 15% [29] (Figure 1). The targeted
sample size was in accordance with sample size recommendations for pilot studies as
previously published [32–34]. This ancillary blood study was approved by the university’s
Institutional Review Board (IRB: #1508M77566). For participants who demonstrated the
capacity to consent, written informed consent was obtained. Written assent and surrogate
consent were obtained for participants who could not ethically provide informed consent.
All procedures involving experiments on human subjects were done in accordance with
the ethical standards of the Committee on Human Experimentation of the institution in
which the experiments were done or in accord with the Helsinki Declaration of 1975.

2.2. Sample

To be eligible for the parent FIT-AD trial [30], participants were required to be
community-dwelling, non-institutionalized older adults (over the age of 65) with a clinical
diagnosis of AD dementia. Clinical diagnosis of AD dementia was verified by their primary
care providers and by 3 clinician investigators (geriatric psychiatrist, neuropsychologist,
and gerontological nurse practitioner) per 2011 diagnostic criteria. The degree of cognitive
impairment required for study inclusion was mild-to-moderate (defined as a scores of
15–26 on the Mini-Mental State Examination [MMSE] and 0.5–2 on the Clinical Dementia
Rating [CDR] scale). In addition, to be included in the parent FIT-AD trial, participants
had to have physician clearance and be stable on AD drugs (i.e., taking for >1 month) if
prescribed. The exclusion criteria included having a contraindication to exercise (as defined
by the American College of Sports Medicine [ACSM]) [35] and having a non-AD cause of
dementia/cognitive impairment (psychiatric condition [e.g., major depressive disorder],
chemical dependency, or neurologic condition [e.g., Parkinson’s disease]) that was likely
causative of the cognitive impairment.

Participants in the parent FIT-AD trial were required to meet additional eligibility
criteria if they wished to participate in the ancillary blood study [29]. Interested partici-
pants had to (1) agree to adhere to the pre-sampling instructions for the 24 h preceding
the scheduled blood collection; and (2) agree to donate 20 mL blood at each time point
(60 mL total).
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2.3. Experimental Protocol

All participants were encourage to complete three supervised sessions a week over
26 weeks (72 sessions). All sessions were directly supervised in-person with a maximum
interventionist-to-participant ratio of 1:3. Study interventionists monitored their exercise
responses (heart rate [via heart rate monitor], rating of perceived exertion [RPE], ability to
talk, and signs and symptoms). All sessions started at 30 min (including 5 min warm-up
and 5 min cool-down) and were gradually lengthened to 60 min [30].

AEx

Participants completed an AEx program on recumbent cycle ergometers that imple-
mented a linearly progressive, moderate-vigorous intensity protocol. Moderate-vigorous
intensity was defined as 50–75% heart rate reserve (HRR) and was individually prescribed
from results of the cardiopulmonary exercise test (CPET). A secondary measure of intensity
utilized was RPE, where prescriptions progressively increased from 9 to 15 using the classic
6–20 Borg RPE scale [36]. The initial exercise prescription was set for 20 min at an intensity
of 50–55% of HRR or RPE 9–11. By week 8 (24 sessions), participants had completed the
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ramp-up phase and then were in the maintenance phase and exercised for 50 min a session
at a target intensity level of 70–75% HRR (or RPE 14–15) [30].

Stretching

Range of motion and flexibility training was prescribed as light (i.e., HRR ≤ 20%,
RPE ≤ 8) with session frequency and duration matched to AEx group [30].

2.4. Outcome Variables

Blood Draws/Biomarkers

Blood sampling occurred at baseline, 3, and 6 month visits to the University of Min-
nesota Clinical and Translational Science Institute. All blood (plasma) samples were
collected at least 48 h after the completion of last exercise session and between the hours of
0900–1200, in an attempt to account for collective peak plasma levels of the neurotrophic
factors (i.e., diurnal variations) [37–41], while maintaining flexibility times for participant
travel to get their blood drawn. Because this study was focused on the effects of chronic
AEx on resting plasma neurotrophic biomarkers, blood draws were also conducted at least
48 h following completion of a last exercise session to ensure biomarker levels were not
confounded by the effects of the last exercise session (i.e., acute effect of exercise) [42–45].
Samples were immediately placed on wet ice and transported to coauthor DL’s lab for
processing. Briefly, to process and create aliquots of the samples, the laboratory technician
inverted and centrifuged the plasma EDTA tubes for 15 min at 4 ◦C using a temperature-
controlled centrifuge with a swing-out rotor at 1439 g. Immediately after completion, the
tubes were removed from the centrifuge, were subsequently aliquoted, and stored in a
freezer set to −80 ◦C [29].

Plasma-free and plasma total BDNF were measured using the Human Free BDNF and
Human BDNF Quantikine ELISA kits (R&D Systems, Minneapolis, MN, USA), respectively.
Plasma irisin was measured by Irisin ELISA kit (Phoenix Peptide, Burlingame, CA, USA).
Plasma IGF-1 was measured on the Roche Cobas 8000 instrument. Plasma FGF-21 was
measured using the Human Insulin-like Growth Factor Binding Protein 1 Quantikine
ELISA kit and Human Fibroblast Growth Factor 21 Quantikine ELISA kit (R&D Systems,
Minneapolis, MN, USA), respectively. Coefficient of variation (CV) for inter-assay CV (%)
variations in plasma values were 1.7–4.8%, 2.1–4.3%, 9.5–15.7%, 1.3–2.1%, and 1.7–5.9% for
BDNF-free, BDNF-total, irisin, IGF-1, and FGF-21, respectively.

Exercise Dose

To calculate training dose, we implemented a practical heart rate monitor-based
measure (heart rate physical activity score HRPAS) [46]. A session HRPAS was quantified
following each session, where the session HRPAS reflected the product of intensity (average
session HRR achieved) and session duration (min). The individual HRPAS from each
session was then summed to give a cumulative HRPAS (i.e., exercise dose).

CRF

Cardiopulmonary exercise test. Participants completed a CPET on a recumbent cycle
ergometer (Precor 842i, Woodenville, WA, USA) at the University of Minnesota’s Labora-
tory of Clinical Physiology, as previously published [47]. Expired gases were measured
continuously by a respiratory mass spectrometer (MGA 1100, Beck’s Physiological Systems,
St. Louis, MO, USA), with breath-by-breath analysis averaged over 30 s intervals. Briefly,
participants cycled at 50–60 RPM and every 3 min, the resistance of the cycle was increased
to promote volitional fatigue. Participants were instructed to cycle until they were no
longer able to maintain cycling rate (i.e., volitional fatigue). Predetermined termination
criteria in the absence of volitional fatigue included (1) achieving the ACSM criteria for
achieving a maximal effort [35]; or (2) ACSM relative or absolute indications to terminate
based on clinical signs and symptoms [35]. VO2peak was defined as the median oxygen
consumption during the last 30 s before cessation of exercise [47].
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2.5. Statistical Analyses

Descriptive statistics with means/standard deviations (SD) and frequencies/percentage
were used to summarize the characteristics (clinical and demographic) of the participants
at baseline. Statistical assumptions were checked prior to analysis. The chi-square test
and independent samples t-test were used for categorical measures and continuous mea-
sures, respectively, to test differences in baseline characteristics between the stretching and
AEx groups.

Effect size estimates for between-group differences in change in each biomarker from
baseline to follow-up assessment (either 3-month or 6-month) were computed by first
obtaining a partial r2 corresponding to the group (AEx vs. stretching) effect using a pair of
nested regression models (Model 1: follow-up biomarker value predicted from baseline
biomarker value; Model 2: follow-up biomarker value predicted from baseline biomarker
value and study group). The difference in model R2s (Model 2 R2—Model 1 R2) was then
converted to a standardized mean difference (Cohen’s d). Estimates of within-group effect
sizes (standardized between-time point differences) for change in biomarkers from baseline
to follow-up were derived from the paired sample t-test comparing follow-up values to
baseline values within each study group.

To examine the associations between measures of exercise dose received and change
in biomarker levels, we estimated a set of multivariable linear regression models, with
total dose incurred over the course of the intervention (3 and 6 months) predicting each
biomarker level at 3 and 6 months, adjusting for the corresponding biomarker level at
baseline. To examine associations between change in CRF and changes in biomarkers, we
used repeated measures correlations. Three correlations were computed for each CRF-
biomarker combination: correlation between changes in CRF and the biomarker from
baseline to the 3-month assessment; between changes in CRF and the biomarker from
baseline to 6 months; and between changes in CRF and the biomarker across all three
time points. The corresponding r2 values (obtained by squaring the repeated measures
correlation coefficients) were also computed. Analyses were conducted in R 4.1.3 using
the lm function for multivariable regression models, the r_to_d and t_to_d functions of
the effectsize package for effect size estimation, and the rmcorr package for repeated
measures correlations.

3. Results
3.1. Sample and Intervention Descriptors

In total, 44 consecutive potential participants of the parent FIT-AD trial received
recruitment materials for this ancillary blood study via email. Of the 44 that received
the recruitment materials, 10 did not respond. For those who responded (n = 34), we
screened out 8. Of the 8 who did not pass the screening process, 6 were understood
to be unlikely to participate (defined as unlikely for successful blood collections due to
(1) time burden, (2) caregiver burden, or (3) travel barriers). Of the 26 enrolled participants,
8 were in the stretching group and 18 were in the AEx group (Figure 1). The sample
was 35% female and 92% non-Hispanic White with a mean age of 77.6 (6.9) years and
MMSE score of 21.6 (3.3). There were no significant differences between the two groups
at baseline regarding demographic and clinical descriptors (Table 1). Adherence (exercise
session attendance) was not significantly different between groups (collective session
attendance 84.8%).
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Table 1. Demographic and clinical variables.

All (n = 26) Cycling (n = 18) Stretch (n = 8) T Value or χ2 p

Age 77.6 (6.9) 76.8 (7.6) 79.3 (5.5) −0.81 0.423
Sex (Female) 9 (34.6) 7 (38.9) 2 (25.0) 0.472 0.492

Race/Ethnicity 2.72 0.256
non-Hispanic White 24 (92.3) 17 (94.4) 7 (87.5)

Hispanic White 1 (3.8) 1 (5.5) -
Black American 1 (3.8) - 1 (12.5)

Education (years) 15.4 (2.9) 15.9 (3.2) 14.5 (2.5) 1.05 0.361
APOE genotype 2.88 0.224

E2/E3 3.8% 5.6% 0%
E3/E4 42.3% 33.3% 62.5%
E2/E4 26.9% 33.3% 12.5%
E4/E4 26.9% 27.8% 25.0%
BMI 27.7 (4.4) 26.8 (4.1) 29.7 (4.7) −1.58 0.126

MMSE 21.6 (3.3) 21.3 (3.7) 22.3 (2.3) −0.96 0.348
CVD 6 (23.1) 4 (22.2) 2 (25.0) FET 0.651

Beta blocker 1 (3.8) - 1 (12.5) FET 0.308
AD medications 17 (65.4) 11 (61.1) 6 (75.0) FET 0.413

VO2Peak (mL/kg/min) 18.3 (4.6) 18.4 (5.0) 18.0 (3.8) 0.20 0.842

APOE; apolipoprotein E: BMI; body mass index: MMSE; mini mental state examination: CVD; cardiovascular
disease: AD; Alzheimer’s dementia: VO2Peak; peak oxygen consumption: FET: Fischer exact test.

3.2. Plasma Neurotrophic Biomarker Changes

Table 2 provide summaries (mean and SD) of resting plasma neurotrophic biomarkers
by group at baseline, 3 months, and 6 months, as well as between-group effect sizes.
Between-group effect sizes were negligible with the exception of moderate effects for
baseline to 3- and 6-month differences in irisin; both time points trended towards a decrease
in biomarker for the AEx group relative to the stretching group. Table 3 summarizes within-
group differences in resting neurotrophic biomarkers using baseline as reference (3 or
6 months: baseline), effect sizes, and p-values. The within-group effect sizes were mostly
negligible (ds < 0.20) except for moderate effect sizes for baseline to 6-month differences in
BDNF-free (d = −0.48) for the AEx group.

3.3. Exercise Dose and Biomarker Change

Associations between 3-month exercise dose and 3-month change in biomarkers were
negative and quite weak (r2 ≤ 0.025), with several r2 values near zero with the exception of
BDNF-free (r2 = 0.04). However, the trajectory of the dose-response relationship improved
at 6 months for each of the biomarkers. Despite this change in trajectory, the associations
between 6-month exercise dose and 6-month biomarker change remained quite weak
(r2 ≤ 0.025) (Table 4).

3.4. Change in CRF and Biomarker Change

Associations of change in CRF with 3- and 6-month biomarker change were generally
weak (r2s = 0.000–0.081; median r2 = 0.025) (Table 5). The two strongest associations were
the negative association between baseline to 3-month changes in CRF and irisin (r = −0.284),
indicating that as fitness increased, irisin levels decreased, and the positive association
between baseline to 6-month changes in CRF and FGF-21 (r = 0.272), indicating that as
fitness increased, so did FGF-21 levels.
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Table 2. Between-group differences (cycling minus stretching) in biomarker change from baseline to 3- and 6-month follow-up.

3 Months vs.
Baseline

6 Months vs.
Baseline

Biomarker Group Baseline 3 Months
M (SD)

6 Months
M (SD)

Mean Difference a

(95% CI) d b p Mean Difference a

(95% CI) d b p

BDNF-free (pg/mL) Cycling 999.50
(722.30)

1481.00
(1273.37)

1201.44
(958.92)

−230.13
(−1443.59, 983.34) −0.18 0.696 18.82

(−854.88, 892.52) 0.02 0.965

Stretching 1408.38
(845.63)

1824.86
(1095.39)

1671.75
(1603.10)

BDNF-total (pg/mL) Cycling 1166.67
(840.37)

1531.87
(1520.52)

1240.75
(730.17)

97.666
(−1197.24, 1392.57) 0.07 0.876 −142.71

(−1051.38, 765.96) −0.14 0.747

Stretching 1560.25
(957.02)

1629.43
(863.76)

1709.25
(1672.96)

Irisin (ng/mL) Cycling 5.00
(2.69)

4.39
(0.52)

4.35
(0.53)

−0.17
(−0.57, 0.23) −0.40 0.395 −0.186

(−0.56, 0.19) −0.44 0.320

Stretching 4.27
(0.49)

4.52
(0.46)

4.44
(0.49)

FGF-21 (pg/mL) Cycling 299.50
(213.60)

261.53
(164.04)

258.12
(128.44)

−60.52
(−218.49, 97.46) −0.37 0.582 14.56

(−109.498, 138.612) 0.11 0.990

Stretching 343.88
(266.26)

328.14
(278.15)

264.75
(153.87)

IGF-1 (pg/mL) Cycling 98.18
(31.68)

95.91
(29.34)

100.96
(36.98)

−4.05
(−19.17, 11.06) −0.25 0.190 −0.08

(−12.74, 12.59) −0.01 0.993

Stretching 100.35
(38.83)

103.11
(37.51)

102.05
(39.51)

a Model-estimated between-group mean difference (cycling minus stretching) in change from baseline. b Standardized between-group mean difference (cycling minus stretching) in
change from baseline. BDNF: brain-derived growth factor; FGF-21: fibroblast growth factor 21; IGF-1: insulin-like growth factor 1.
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Table 3. Within-group effect size estimates for change in biomarkers from baseline to 3- and 6-month follow-up.

Cycling Group
3 Months vs. Baseline

Cycling Group
6 Months vs. Baseline

Biomarker n Mean Difference
(95% CI) d p n Mean Difference

(95% CI) d p

BDNF-free (pg/mL) 15 −385.40
(−1155.49, 384.69) −0.29 0.301 16 −250.00

(−670.22, 170.22) −0.33 0.224

BDNF-total (pg/mL) 15 −285.93
(−1170.96, 599.09) −0.19 0.500 16 −148.69

(−556.59, 259.21) −0.20 0.449

Irisin (ng/mL) 15 −0.01
(−0.25, 0.22) −0.03 0.899 16 0.05

(−0.17, 0.27) 0.12 0.635

FGF-21 (pg/mL) 15 3.27
(−87.88, 94.41) 0.02 0.940 16 −5.75

(−90.30, 78.80) −0.04 0.887

IGF-1 (pg/mL) 15 0.49
(−9.23, 10.22) 0.03 0.915 17 −1.60

(−8.11, 4.90) −0.13 0.609

Stretching Group
3 Months vs. Baseline

Stretching Group
6 Months vs. Baseline

Biomarker n Mean difference
(95% CI) d p n Mean difference

(95% CI) d p

BDNF-free (pg/mL) 7 −339.00
(−1413.98, 735.98) −0.32 0.470 8 −263.38

(−1201.54, 674.79) −0.25 0.528

BDNF-total (pg/mL) 7 34.14
(−526.14, 594.43) 0.06 0.886 8 −149.00

(−1270.22, 972.22) −0.12 0.763

Irisin (ng/mL) 7 −0.20
(−0.63, 0.23) −0.47 0.294 8 −0.17

(−0.52, 0.18) −0.42 0.299

FGF-21 (pg/mL) 7 −56.43
(−199.19, 86.33) −0.39 0.371 8 79.12

(−125.14, 283.39) 0.35 0.390

IGF-1 (pg/mL) 8 −2.76
(−17.59, 12.06) −0.17 0.673 8 −1.70

(−15.52, 12.12) −0.11 0.780

BDNF: brain-derived growth factor; FGF-21: fibroblast growth factor 21; IGF-1: insulin-like growth factor 1.
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Table 4. Associations between dose and biomarker values at 3- and 6-month follow-up, adjusting for
baseline biomarker values.

3-Month Dose
(Intensity-Minutes)

6-Month Dose
(Intensity-Minutes)

Biomarker b r2 p b r2 p

BDNF-free (pg/mL) −0.726
(−2.419, 0.968) 0.04 0.381 −0.052

(−0.645, 0.540) 0.00 0.856

BDNF-total (pg/mL) −0.440
(−2.240, 1.359) 0.01 0.614 −0.159

(−0.765, 0.448) 0.01 0.592

Irisin (ng/mL) 0.000
(−0.001, 0.001) 0.00 0.840 0.000

(0.000,0.000) 0.02 0.461

FGF-21 (pg/mL) −0.066
(−0.280, 0.149) 0.01 0.531 0.000

(−0.083, 0.083) 0.00 0.999

IGF-1 (pg/mL) −0.008
(−0.029, 0.012) 0.01 0.396 0.003

(−0.006, 0.011) 0.00 0.557

Note. b = unstandardized regression coefficient. r2 = proportion of variance in biomarker measure at follow-up
accounted for by dose. BDNF; brain-derived growth factor: FGF-21; fibroblast growth factor 21: IGF-1; insulin-like
growth factor 1.

Table 5. Longitudinal correlations between cardiorespiratory fitness and biomarker values for
baseline to 3 months, baseline to 6 months, and across all time points.

Baseline-3
Months

Baseline-6
Months All Time Points

Biomarker r p r p r p

BDNF-free (pg/mL) −0.016
(−0.627, 0.554) 0.942 −0.032

(−0.484, 0.342) 0.881 −0.133
(−0.451, 0.197) 0.372

BDNF-total (pg/mL) −0.134
(−0.631, 0.371) 0.542 −0.100

(−0.540, 0.297) 0.634 −0.223
(−0.427, −0.006) 0.133

Irisin (ng/mL) −0.284
(−0.718, 0.308) 0.189 0.019

(−0.349, 0.535) 0.927 −0.125
(−0.406, 0.250) 0.403

FGF-21 (pg/mL) 0.038
(−0.604, 0.634) 0.860 0.272

(−0.018, 0.572) 0.179 0.135
(−0.161, 0.420) 0.356

IGF-1 (pg/mL) 0.241
(−0.262, 0.523) 0.268 0.013

(−0.612, 0.425) 0.951 0.073
(−0.311, 0.280) 0.624

Note. r = repeated measures correlation between biomarker measure and VO2peak. VO2peak; peak oxygen
consumption: BDNF; brain-derived growth factor: FGF-21; fibroblast growth factor 21: IGF-1; insulin-like growth
factor 1.

4. Discussion

Blood biomarkers are increasingly recognized as important measurements to evaluate
the therapeutic effects of interventional therapies (including exercise) for AD [48]. This
pilot study was unique in exercise-AD research as it (1) employed a stretching control
group in a study with resting plasma neurotrophic factor outcomes, (2) investigated a dose-
response relationship using a fluid measure of exercise dose, and (3) used a gold standard
laboratory measurement of CRF performed on a cycle ergometer (not commonly utilized in
AD research). One preliminary finding was that the between-group effect sizes for testing
plasma BDNF and IGF-1 were negligible (<0.20). These between-group effect sizes are
smaller in magnitude relative to the findings from the limited number of AEx studies
involving persons with AD dementia [26,27]. First, Stein and colleagues showed small-to-
moderate effects of 12 weeks’ AEx compared to usual-care control on resting plasma BDNF
(SMD = 0.31, 95%CI [−0.45, 1.05]) and IGF-1 levels (SMD = −0.61, 95%CI [−1.29, 0.10])
in 34 participants with mild-to-moderate AD dementia [26]. Likewise, a second study by
Enette et al. with 51 participants with mild-to-moderate AD randomized to 9 weeks of
moderate intensity AEx, high-intensity interval training, or educational control showed a
negative effect on plasma BDNF (SMD = −1.4, 95%CI [−2.02, −0.78]) [27].
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To our knowledge, our study is the first AEx-focused RCT investigating the effects of
exercise on resting plasma irisin in persons with mild-to-moderate AD dementia. Three
meta-analyses have looked at the effects of AEx on resting plasma irisin in cognitively
intact adults. Two found that irisin levels decrease following AEx compared to controls
(d = −0.64; 95%CI [−1.32, 0.04]) [49], (Hedge’s g = −0.18; 95%CI [−0.73, 0.37]) [50]. The
third showed that irisin did not change following AEx (−0.01 µg/mL [95%CI, −0.03, 0.02],
p = 0.60) [51]. The moderate effect size for between-group difference (and its direction)
found in our study is in agreement with these aforementioned findings [49]. Currently, the
reasoning and importance of these effects can only be speculated. Irisin is a well-known
myokine that peaks within a few hours following acute exercise, has a short half-life, and
returns to baseline within 24 h [8]. However, irisin is also released from other tissues
including adipose (i.e., adipokine) [8] and resting plasma levels have been shown to
decrease after body fat reduction [52]. It is speculated that AEx-mediated reduction in
resting plasma irisin may be induced by reduced adiposity [50]. In this study, weight and
body mass index (BMI) change were non-significant in both groups and the correlation
between changes in resting irisin and changes in BMI were also non-significant at both 3
(r = −0.09; p = 0.68) and 6 (r = 0.04; p = 0.84) months. Though BMI has known limitations
as a surrogate measure of adiposity, we were unable to directly assess fat mass with gold
standard techniques. Additionally, other research suggests that irisin levels positively
correlate with insulin resistance [53]. This relationship is important given the well-noted
positive effects of AEx on insulin resistance and blood glucose homeostasis [54], both of
which are important contributors to vascular and brain health [55]. Future research efforts
should investigate the effects of AEx on resting plasma irisin and its relationships with
adiposity, insulin resistance, and blood glucose homeostasis in persons with AD dementia.

The findings from this study add to the evidence that exercise training may have highly
variable effects on resting neurotrophic biomarker levels. The reason for this heterogeneity
in response may be due to several factors including variability in exercise prescription
used in studies, and clinical (i.e., healthy adults, obesity, neuropsychiatric conditions,
and neurodegenerative conditions) and racial/ethnic characteristics of study participants.
In addition, some researchers speculate that the measurement of change in both resting
plasma neurotrophic factor levels and the acute response to exercise stimuli following
an exercise training intervention should be measured to evaluate the neurotrophic effect
of exercise, given that plasma neurotrophic factors (including the ones measured in this
study) peak and return to baseline within 24 h of completing an acute bout (session)
of exercise [43,56–58]. Regardless, it is evident that more research is needed to establish
if resting plasma neurotrophic levels can be positively modulated in persons with AD
dementia following participation in exercise training.

We also evaluated the dose-response relationships between AEx intervention and
resting neurotrophic factor levels yet to be studied in persons with AD dementia. Exercise
dose is a product of exercise frequency, intensity, session length (duration), and program
length); however, these components are classically looked at individually rather than col-
lectively regarding their potential influence on training response. Subgroup analyses from
published meta-analyses that included only adults without neurodegenerative conditions
have suggested that components of exercise-dosing metrics on resting plasma BDNF levels
including frequency [59], intensity [59], session duration [59], and program length [59,60]
are not associated with degree of change in resting plasma BDNF levels in cognitively intact
adults. Similar investigations of exercise dose on resting plasma neurotrophic factors in
AD dementia or in general on non-BDNF neurotrophic levels have yet to be conducted.
Likewise, few studies have investigated the relationship between CRF changes, measured
by VO2Peak, with resting plasma neurotrophic biomarker levels changes following AEx
intervention. Our findings align with those recently published by Allard and colleagues,
who showed no significant correlation between changes in resting plasma BDNF and
changes in VO2Peak (r = 0.292; p = 0.20) in participants with mild cognitive impairment [61];
however, investigations in persons with AD dementia are lacking. To our knowledge, there
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has yet to be a study that has assessed the relationship between changes in VO2Peak with
changes in resting FGF-21, irisin, and IGF-1.

The FIT-AD ancillary blood study has several weaknesses that warrant discussions
in addition to the small sample size inherent to the nature of a pilot study. One potential
weakness is the use of a stretching control instead of a sedentary or usual-care control
group. However, the choice to utilize a stretching control group reflected the primary aims
(cognitive function) of the parent FIT-AD trial to control for the Hawthorne effect and social
interaction between participants and between participants and exercise interventionists [30].
Future trials could include a usual-care control on top of a stretching control to parse out
the interventions’ differential effects. Likewise, a lack of a non-dementia control group
may be perceived as a study weakness. The decision to refrain from the use of a non-
dementia control group in the parent FIT-AD trial was based on two main factors: (1) older
adults with AD have more chronic conditions and multimorbidity [62]; and (2) they exhibit
prevalent behavioral and psychological symptoms of dementia, both of which can affect
their exercise participation and exercise interventions [63]. Hence, comparing older adults
with AD dementia to non-AD dementia peers is to compare two different populations
who may react to exercise differently, which can also be perceived as a weaker trial design.
The generalizability of this study may be impacted by the high percentage of participants
(96.2%) who had at least one APOE e4 allele, which is higher than the generally reported
40–65% seen in all AD cases [64]. In animal models, APOE e4 has been shown to promote
impaired BDNF processing compared to APOE e2 and APOE e3 [65]. However, to our
knowledge, the effects of AEx on irisin, FGF-21, and IGF-1 in human APOE e4 carriers vs.
non-carriers has yet to be studied. Hence, the clinical significance of this high level of APOE
e4 carriers in this sample pertaining to a “neurotrophic response to exercise” is unknown
and represents another future direction of study. The predominantly White Caucasian
sample also limits the generalizability of this pilot study. The lack of a diverse sample has
been reported as a shortcoming in other neuroscience and AD-based research [66], and
must be addressed in future studies [67]. Lastly, the ancillary blood study was not powered
to test the statistical significance of intervention effects or other associations; accordingly,
the focal results were estimates of effect sizes (standardized mean differences and r2 values).
Thus, reported p-values should be interpreted with appropriate caution.

Despite the pilot and preliminary nature of this study, the study design and findings
will inform the refinement of the design and conceptual framework for future fully powered
studies investigating the peripheral mechanisms through which exercise training modulates
brain function and cognition. The foremost strength of this ancillary blood study was that
the parent FIT-AD trial [30] was a meticulously controlled study designed to evaluate
the effects AEx on cognition and hippocampal volume in persons with AD dementia.
Secondly, this study used a novel and real-life approach to assess exercise dose, as discussed
previously [46]. Likewise, we employed a gold standard measurement of CRF (VO2peak
from CPET) for investigating the effects of change in CRF on resting plasma neurotrophic
biomarkers. This is important given the negative influence of motor dysfunction on gait in
persons with AD dementia [68] and therefore potential negative influence on walking-based
CRF field tests.

5. Conclusions

Vascular factors are increasingly recognized for their roles in the pathogenesis and
progression of AD, with neurotrophic factors being an important link between vascular
health, exercise, and cognition. Findings from this study suggested that the effects of
exercise on BDNF, irisin, IGF-1, and FGF-21 may be heterogeneous in older adults with
mild-to-moderate AD dementia. The weak linear associations of exercise dose and CRF
changes with changes in resting neurotrophic biomarkers may be attributable to this kind of
heterogeneity. This study provides preliminary data that can inform selection of candidate
neurotrophic biomarkers, study design considerations, and samples size estimates for fully
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powered exercise studies investigating peripheral plasma neurotrophic factors as potential
mechanisms for exercise’s effects in AD dementia.
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