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Abstract: Energy and grain markets are historically connected since oil, natural gas, and/or coal
are used as inputs for fertilizers’ production or transportation costs. The recent rising prices in the
energy market following important events such as the COVID-19 pandemic and the Russia-Ukraine
conflict have again brought attention to researchers. The focus of this paper is to assess any changes
in the relationships between crude oil, natural gas, and grain prices contributing to the review of
the fuel-food relationship using time series models. Several techniques that account for structural
breaks and regime shifts (Zivot-Andrews and Clemente, Montañés, Reyes unit root tests, Johansen’s
cointegration test, and Toda-Yamamoto time domain causality test with time dummy variables for
structural breaks, and Hatemi-J asymmetric causality test) are applied for monthly data covering the
period from January 1982 to September 2022. The main result is that the neutrality hypothesis is still
valid in light of recent developments in the respective markets (no significant linear causality and
asymmetric causality were detected among the series).
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1. Introduction

Agricultural commodity price drivers have gained special attention in the litera-
ture among researchers. Many indicators are identified [1–3]. Comparing graphically
Figures 1 and 2 it can be observed that grain prices react to the same economic dynamics
as oil and natural gas prices (the vertical shadowed bars are the recession periods from the
National Bureau of Economic Research, NBER).
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Figure 1. Monthly crude oil (Crude oil, US, West Texas Intermediate (WTI) 40’ API) and natural
gas prices (Natural Gas (U.S.), spot price at Henry Hub, Louisiana), January 1982–September 2022.
Source: World Bank data, author’s elaboration.
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Figure 2. Monthly grain commodity prices, January 1982–September 2022. Source: World Bank data,
author’s elaboration.

Traditionally in the literature, the relationships between agricultural commodity and
oil prices are seen on the supply-side (since oil is a factor in the production of fertilizers,
both as energy during the production process or as transportation costs) and an increase in
oil price leads to an increase in the agricultural commodity prices. On the demand side, in
the context of biofuels developments, there is an increase in the price of corn and soybeans
following the increase in oil prices since there is a higher demand for these commodities
(for the production of biofuels, [4]).

One way to assess these relationship, is to trace the causality relationships between
energy market prices and agricultural commodity prices. Two groups of authors are
identified in the consulted literature.

Several researchers have stated the neutrality hypothesis, therefore, there is no causal
relationship between them. Yu et al. [5] investigated the long-run linkage between several
edible oil prices among them and crude oil prices for the period from January 1999 to
March 2006. Using time series techniques, they found no significant impact of crude oil
prices on edible oil prices. Zhang et al. [6]’s study was concentrated on the effect of crude oil
prices on Chinese corn, soy meal, and pork prices. Using monthly prices from January 2000
to October 2007, they found no significant influence of crude oil prices on the rest of the
variables. Gilbert [3] emphasized the role of oil price as a factor for the increase in food
prices, linking it with the rise of demand for food crops in the context of biofuel purposes.
Lombardi et al. [7] using a Factor-Augmented VAR approach, found no robust spillovers
from oil to non-oil commodity prices. Kaltalioglu and Soytas [8] investigated for the period
from January 1980 to April 2008, and the volatility spillover mechanism between oil, food
items, and agricultural raw material price indexes found no volatility spillover from oil
markets to food and agricultural raw material prices. [9] studied the response of U.S. cotton
prices to the volatility in world crude oil prices, distinguishing the driven increase by crude
oil demand or supply shocks. It was found that 0% of the variability in cotton prices was
attributed to oil supply shocks.

Few studies find causality between oil and agricultural commodity prices. Hameed
and Arshad [10] using monthly data from January 1983 to March 2008, and the bivariate
co-integration approach with the Engle-Granger two-stage estimation procedure, it was
found that in the long run there was a unidirectional causal relationship between petroleum
price and the price of vegetable oils (palm, rapeseed, soybean, and sunflower). Cooke and
Robles [11] using monthly data for the period from 2002–2009 for corn, wheat, rice, and
soybeans prices, and first difference models and Granger causality tests, it resulted that
oil price Granger causes soybeans and corn prices. Taghizadeh-Hesary et al. [12] using a
panel VAR model and considering eight Asian economies, the relationship between energy
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and food prices was studied, confirming that oil price has had a significant impact on food
prices during the period of study from 2000–2016. They suggested that oil price volatility
represents a risk to food security and energy consumption; diversification in this sector
will be in favor of both energy and food security (fossil fuels and renewable energy sources
optimal combination). As an important input for goods and services production, it has
a direct impact also on different sectors of economies such as agriculture [13]. The paper
of Roman et al. [13] explored the relationship between crude oil and food price indexes
(including meat, oils, cereals, sugar, and dairy), also stating the direction of the impact.
Using different econometric techniques, for the period from 1990:01 to 2020:09, the authors
identified cointegration relationships between crude oil and meat prices and short-term
linkages with food, cereal, and vegetable oils with crude oil prices.

As essential for life, food products are considered in several articles regarding the
relationship between food prices and crude oil prices. In this work, there are three main
agricultural commodities selected, the grain category, such as wheat, corn, and soybeans,
and their relationship with crude oil and natural gas prices, which is studied in terms of
cointegration and causality. The hypothesis in the core of the work is as follows: “In light of
the recent developments in the energy market, along the wide covered period of study, the neutrality
hypothesis is still valid: there is no causal linkage between the energy market and grain prices?”
and reflects also the motivation of this work.

The article is structured in sections: Section 2 summarizes data features and some pre-
liminary tests, Section 3 lists all applied econometric techniques and the relevant findings,
and Section 4 presents the conclusions and the implications of the results.

2. Data

From the category of agriculture commodities, three main grains are chosen (soybeans
(Soybeans, from January 2021, U.S Gulf Yellow Soybean #2, CIF Rotterdam; December 2007
to December 2020, U.S. No. 2 yellow meal, CIF Rotterdam; previously US origin, nearest
forward) wheat (Wheat (U.S.), no. 2, soft red winter, export price delivered at the US Gulf
port for prompt or 30 days shipment), corn (Corn (U.S.), no. 2, yellow, f.o.b. US Gulf ports)).
Graphical representations of the variables (expressed in real terms [14]) are provided below.
The chosen period of study is January 1982–September 2022. The monthly time series are
extracted from the World Bank [15], consisting of crude oil, natural gas, wheat, corn, and
soybeans prices. To stabilize the variance of the series, the logs (of deflated series) are used
during the analysis. The historical peak of crude oil prices was in July 2008, maintaining
the same increasing tendency even after 2020. After the year 2018, the behavior was more
volatile. The trend of natural gas shows some anticipated peaks compared to that of oil
prices. After the year 2020, there was an increasing trend such as oil prices.

Figure 2 represents graphically the behavior of the three main grains (corn, wheat, and
soybeans) price trend. Corn and wheat prices share similar movements between them, less
with the soybeans price movements. All three grain prices react along the peaks of crude
oil prices. After the year 2022, wheat and soybeans have reached the historical maximum,
but corn has not.

2.1. Descriptive Statistics

In Table 1 there are the summarized descriptive statistics of the series, showcasing
the initial information about volatilities and the distribution of the price series. Inside the
energy market, crude oil is more volatile than natural gas; among grains, soybeans’ price
is more volatile, followed by wheat and corn price, with a high degree of kurtosis and
skewness that will decrease if price logs are considered. Testing for the normality of the
series, the Jarque-Bera test statistics reject the null hypothesis of normality, for all series at
1% significance.
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Table 1. Summary statistics for series.

Variables Mean Std. Error Skewness Kurtosis Min Max Jarque-Bera

Price series

Crude oil 47.650 24.755 0.72466 −0.28023 13.770 130.30 43.85 ***
Natural gas 3.8633 2.1723 1.9082 4.7503 1.4508 15.426 747.2 ***

Wheat 195.45 51.345 1.3727 4.2466 105.89 521.60 514.6 ***
Corn 162.37 48.759 1.0160 0.34770 87.957 328.28 85.53 ***

Soybeans 373.01 93.640 0.81051 −0.02508 227.18 705.03 52.9 ***
Log price series

Crude oil 3.7270 0.530741 −0.00449 −1.1594 2.6225 4.8698 27.05 ***
Natural gas 1.2288 0.4751129 0.60934 −0.15348 0.37209 2.7360 30.36 ***

Wheat 5.2441 0.2462605 0.34188 0.33268 4.6624 6.2569 11.64 ***
Corn 5.0492 0.2799538 0.49160 −0.51240 4.4769 5.7939 24.74 ***

Soybeans 5.8922 0.2397398 0.38740 −0.72974 5.4257 6.5582 22.8 ***

Note: *** respectively for 1% significance. Source: Author’s calculations.

2.2. Multiple Structural Breaks Identification

Bai and Perron [16], as a methodology, considered multiple structural break models
with m breaks (m + 1 breaks).

yt = x′tβ + z′tδ1 + ut, t = 1, . . . ., T1
yt = x′tβ + z′tδ2 + ut, t = T1 + 1, . . . ., T2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yt = x′tβ + z′tδm+1 + ut, t = Tm + 1, . . . .T

(1)

where yt is the variable of interest, xt and zt are the regressors, and β1 and δ1 are the
respective vectors of coefficients, the breakpoints (T1 . . . Tm) are treated as unknown.

Some restrictions are imposed and are defined in a set of small positive numbers
ε : Λε = {(λ1, . . . λm); | λi+1 − λi| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε } for limiting each break date
to be asymptotically different and bounded from the sample’s boundaries where λi gives
the break fraction (Ti/Tm).

The method is based on the [16] least squares principle. For each partition Tj, the
respective least squares estimate of δj is the product of minimizing the squared residuals’

sum ∑m+1
i=1 ∑Ti

t=Ti−1+1(yt − z′tδi)
2. The regression estimators of parameters are linked with

the estimated m-partition
(
δ̂ = δ̂

({
Tj
}))

.
Bai and Perron [16] multiple structural breaks test was used to confirm some known

dates as break dates in series (following the recessions from NBER displayed with the
shadowed vertical bars in Figures 1 and 2). The results are presented in Table 2 as follows:

Table 2. Bai and Perron structural breaks test results.

Known Break Dates W (tau) Results

July 1990 17.36 ** Statistically significant
March 2001 71.09 *** Statistically significant
December 2007 87.25 *** Statistically significant
February 2022 3.01 ** Statistically significant

Note: **, *** respectively for 5 and 1% significance. Source: Author’s calculations.

All the dates included in the table resulted as statistically significant as break dates
for all series. Those dates coincide with the NBER recessions for the period. Break date
identification directs the choice of all the following tests among them, which allows the
presence of multiple (or at least one) structural breaks.



Commodities 2022, 1 171

2.3. Pearson’s Correlation

Pearson’s correlation coefficients between variables for the whole period (subdivided
following the identified structural breaks) are provided in Table 3.

Table 3. Pearson’s correlation coefficients for series.

January 1982 to July 1990

Crude oil Natural gas Wheat Corn Soybeans

Crude oil 1
Natural gas 0.8940 *** 1
Wheat 0.6822 *** 0.6908 *** 1
Corn 0.7614 *** 0.7858 *** 0.8628 *** 1
Soybeans 0.6104 *** 0.6055 *** 0.7495 *** 0.8763 *** 1

July 1990 to March 2001

Crude oil 1
Natural gas 0.4809 *** 1
Wheat −0.2607 *** −0.2556 *** 1
Corn −0.2156 ** −0.1363 0.7281 1
Soybeans −0.2074 ** −0.1072 0.5863 0.7449 1

March 2001 to December 2007

Crude oil 1
Natural gas 0.7096 *** 1
Wheat 0.4221 *** 0.1177 1
Corn 0.2533 ** 0.0690 0.7605 *** 1
Soybeans 0.4293 *** 0.3592 *** 0.7432 *** 0.6327 *** 1

December 2007 to February 2022

Crude oil 1
Natural gas 0.6061 *** 1
Wheat 0.5060 *** 0.3138 *** 1
Corn 0.6067 *** 0.2516 *** 0.7633 *** 1
Soybeans 0.6406 *** 0.4116 *** 0.7379 *** 0.8334 *** 1

February 2022 to September 2022

Crude oil 1
Natural gas −0.0458 1
Wheat 0.6423 * −0.6776 * 1
Corn 0.7425 ** 0.0514 0.5340 1
Soybeans 0.9172 ** 0.0424 0.6315 * 0.8656 *** 1

Note: *, **, *** respectively for 10, 5, and 1% significance. Source: Author’s calculations.

What we can observe clearly is that taking into account the sub-periods created from
the identified structural breaks in series: (1) for the period 1982:01–1990:07 strong positive,
significant correlation was found between grain and oil and natural gas prices; (ii) for
the period 1990:07–2001:03, weak, negative, significant correlation was found between
grain and oil and natural gas prices (not significant for corn and soybeans prices with
natural gas prices); (iii) for the period 2001:03–2007:12 the weak, significant correlation
with crude oil prices persisted (in positive sign this time), while soybeans prices only
were correlated significantly with natural gas prices; (iv) for the period 2007:12–2022:02
strong positive significant correlation with oil prices while with natural gas prices resulted
a weaker correlation; (v) for the period 2022:02–2022:09 (the first months of the conflict
Russia-Ukraine) grain lost the correlation with natural gas prices, and the correlation with
oil prices was increased.
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3. Techniques and Results
3.1. Time Series Stationarity Tests

In order to detect the (non)stationarity of the chosen series, unit root tests that account
for structural breaks are applied. The Zivot-Andrews [17] unit root test (ZA) allows for one
structural break in the time series. One of the model forms is the one applied here, a model
that allows a one-time series level and slope trend change:

∆yt = c + αyt−1 + βt + θDTt + γDUt +
k

∑
j=1

dj∆yt−j + εt, (2)

where DUt in the above equation is a dummy variable respectively at each possible break
date TB, for a mean shift and DTt is the variable for the trend shift.

DUt =

[
1 t > TB
0 otherwise

; DTt =

[
t− TB t > TB

0 otherwise

The system of hypothesis is as follows:
Ho: α = 0, the series contain a unit root with a drift excluding any structural break,
Ha: α < 0, the series are trend-stationary, with one structural break, at an unknown time.
Behind the ZA unit root procedure, every potential break date is considered, and

respectively, a regression is run. The break date that reaches the minimum of the one-sided
t-statistic for testing α̂ = 1. Since the covered period is large enough, thinking about another
second structural break, is convenient in terms of unbiased unit root test results. Based
on the Perron and Vogelsang’s [18] work, Clemente et al. [19] unit root test (CMR) is also
applied as a validation for the ZA unit root test results (Table 4). Perron and Vogelsang [18]
proposed a remedy to deal with the effect of the presence of structural breaks in series in
the unit root tests results, allowing two forms of changes:

1. The additive outlier (AO) model captures a sudden change,
2. The innovational outlier (IO) model models a gradual shift in the mean of the series.

Table 4. ZA, CMR-IO, CMR-AO unit root tests results.

ZA CMR-IO CMR-AO

Levels 1st Diff. Levels 1st Diff. Levels 1st Diff.

Crude oil −4.339
[2002m2]

−13.353 ***
[2008m7]

−4.599
[1999m1, 2004m1]

−16.147 **
[2008m8, 2008m11]

−5.011
[2000m3, 2004m11]

−8.801 **
[2008m8, 2008m10]

Natural
gas

−4.062
[1994m4]

−14.301 ***
[2006m1]

−5.053
[1999m12, 2008m5]

−6.474 **
[2000m11, 2001m8]

−3.974
[1999m9, 2009m10]

−5.849 **
[1995m12, 2005m11]

Wheat −4.861
[2006m7]

−20.084 ***
[2008m4]

−3.418
[2007m4, 2008m2]

−9.086 **
[2008m2, 2008m12]

−3.218
[2007m10, 2007m12]

−7.513 **
[1986m8, 2007m7]

Corn −3.999
[2006m7]

−17.182 ***
[2008m7]

−3.646
[2006m7, 2013m4]

−9.194 **
[1988m5, 2008m9

−3.899
[2007m3, 2014m1]

−6.524 **
[1988m4, 2008m8]

Soybeans −4.260
[2006m10]

−18.648 ***
[2008m7]

−4.190
[2007m3, 2014m2]

−8.783 **
[1988m5, 2008m9]

−2.827
[2007m12, 2014m1]

−6.810 **
[1988m4, 2008m8]

Note: **, *** respectively for 5 and 1% significance; in brackets are the break dates. Source: Author’s calculations.

T is the sample size, Tb is the breakpoint (1 < Tb < T), and the model is formalized
as follows:

yt = δDTbt + yt−1 + wt, t = 2 . . . T, (3)

with DTbt = 1 for t = Tb + 1, and 0 otherwise, in the context of the null hypothesis H0 of a
unit root. Under the alternative hypothesis Ha:

yt = c + δDUt + wt, t = 2 . . . T, (4)



Commodities 2022, 1 173

where DUt = 1 for t > Tb and 0 otherwise. The test strategy is to estimate the regression:

yt = µ + δDUt + ỹt. (5)

Similar to the Augmented Dickey-Fuller (ADF) model, the below regression estimates
α (if it is significantly less than one for stationary series).

ỹt =
k

∑
i=0

wiDTbt−i + αỹt−1 +
k

∑
i=0

θi∆ỹt−i + et, t = k + 2, . . . , T. (6)

The transformation of the Equation (5) generates the finite AR model:

yt = µ + δDUt + ϑDTbt + αyt−1 +
k

∑
i=0

θi∆yt−1 + et, t = k + 2, . . . , T. (7)

For both AO and IO models the breakpoint Tb and the autoregressive order k are
unknown. Clemente et al. [19] extended the method with a double mean shift, for two
breakpoints (Tb1, Tb2) also providing the critical values for the tests.

The results of ZA, CMR-IO, CMR-AO unit root tests are summarized in Table 4, which
also identifies the breakpoints for the series in level and first difference. All series resulted
nonstationary; integrated of order one, I(1), with both tests. Graphical representations of
CMR-IO and CMR-AO tests are provided in Appendix A (Figures A1 and A2).

3.2. Cointegration Estimation

Identifying the structural change in the data and checking for stationary of the time
series are the preliminary steps needed to test for the presence of cointegration. Cointe-
gration is an econometric technique that traces possible long-term correlations between
time series processes, as introduced by Engle and Granger [20]. The time series resulted in
nonstationary, and to check for more than one cointegrating relationship, the cointegration
Johansen trace test (Table 5) will be used (instead of the Johansen maximum eigenvalue
test). This test (the test is performed sequentially) has the following system of hypotheses:

Table 5. Johansen’s trace test (including exogenous variables and the time dummy variables for each
of the four identified structural breaks) result.

Rank Critical Value at 5% LRtrace

0 192.89 272.8045
1 156.00 190.2569
2 124.24 115.8103 *
3 94.15 76.7200

Note: * selected rank; optimal lag length p = 2 (AIC). Source: Author’s calculations.

Ho: at most zero cointegrating vector,
Ha: at most m-cointegrating vectors.
Johansen [21] (in)directly promotes the trace test as the most reliable with the argument

that the maximum eigenvalue test depends on the initial value from which the test starts
(the results from the test sequences may be affected).

As can be seen in the Johansen trace test, there is a cointegration of rank two between
the variables for the whole period (a VECM analysis will be provided to explore the
long-run relationships and to formalize them through equations). There are two linear
combinations among the series in the long run. If there are shocks affecting individual
series movements in the short run, they would converge with time in the long run.
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3.3. The Vector Error Correction Model Approach Results

The VECM will be used as a convenient first approach (series are stationary in first
difference, cointegrated) to get the first information about causality in the short and long run
among variables. VECM model offers estimation in a system context providing information
for interrelationships among series, thus reducing the bias endogeneity’s risk. The rank
of cointegration includes addressing the problem of spurious regressions among non-
stationary time series [22].

The system of the equations will be (without including the time dummy variables for
each structural break for simplicity):

∆Wheatt = α+ ∑k−1
i=1 βi∆Wheatt−i + ∑k−1

j=1 γj∆Cornt−j + ∑k−1
m=1 δm∆Soybeanst−m

+∑k−1
n=1 ϕn∆Oilt−n + ∑k−1

p=1 φp∆Gast−p + λ1ECTt−1 + u1t

∆Cornt = σ+ ∑k−1
i=1 βi∆Wheatt−i + ∑k−1

j=1 γj∆Cornt−j + ∑k−1
m=1 δm∆Soybeanst−m

+∑k−1
n=1 ϕn∆Oilt−n + ∑k−1

p=1 φp∆Gast−p + λ2ECTt−1 + u2t

∆Soybeanst = ϑ +∑k−1
i=1 βi∆Wheatt−i + ∑k−1

j=1 γj∆Cornt−j

+∑k−1
m=1 δm∆Soybeanst−m + ∑k−1

n=1 ϕn∆Oilt−n + ∑k−1
p=1 φp∆Gast−p

+λ3ECTt−1 + u3t
∆Oilt = υ+ ∑k−1

i=1 βi∆Wheatt−i + ∑k−1
j=1 γj∆Cornt−j + ∑k−1

m=1 δm∆Soybeanst−m

+∑k−1
n=1 ϕn∆Oilt−n + ∑k−1

p=1 φp∆Gast−p + λ4ECTt−1 + u1t

∆Gast = ρ+ ∑k−1
i=1 βi∆Wheatt−i + ∑k−1

j=1 γj∆Cornt−j

+∑k−1
m=1 δm∆Soybeanst−m + ∑k−1

n=1 ϕn∆Oilt−n
+∑k−1

p=1 φp∆Gast−p + λ5ECTt−1 + u1t

(8)

The estimated cointegrating equations are included in Appendix A, Table A1, for-
malizing the long-run relationships among grain and energy commodity prices. Since the
series are in logs, the coefficients in each of the cointegrating equations are interpreted
as elasticity coefficients. For the first cointegrating equation, the ECT is negative and
statistically significant, meaning that there is a long-run equilibrium where the series return
after a short-run deviation or shock.

In the wheat price equation: a 1% change in the soybeans price, crude oil price, and
natural gas price brings respectively a positive change of 0.85% and 0.54%, and a negative
change of 0.58%; only the first three breaks are statistically significant (first cointegrating
equation); 1% change in the corn price, crude oil price, and natural gas price brings a
positive change of 0.72%, a negative change of 0.075, and a positive change of 0.01%,
respectively; only break1 and break2 resulted statistically significant.

In the corn price equation: a 1% change in the soybeans price, crude oil price, and
natural gas price brings respectively a positive change of 1.18% and 0.85%, and a negative
change of 0.79%; only break1 and break3 resulted statistically significant.

In the soybeans price equation: a 1% change in the corn price, crude oil price, and
natural gas price brings respectively a positive change of 0.87%, a negative change of 0.72%,
and a positive change of 0.678%; only break1 and break3 resulted statistically significant.

In the crude oil price equation: a 1% change in the wheat price, corn price, and
soybeans price brings respectively a negative change of 12%, a positive change of 8.83%,
and a negative one of 0.174%, only break1 and break2 resulted statistically significant.

In the natural gas price equation: a 1% change in the wheat price, corn price, and
soybeans price brings respectively a negative change of 13%, a positive change of 8.2% and
1.3%; only break1 and break2 resulted statistically significant.

For individual VECM models, their respective diagnostic statistics are presented in
Table A2 in the Appendix A. There is no autocorrelation at 5% significance at lag order
2 using the Lagrange- multiplier test, and the eigen stability condition is checked.
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3.4. Toda Yamamoto Linear Causality Test

Toda-Yamamoto [23] developed a method that allows the existence of a Granger causal
relationship between the variables to be estimated with the VAR (k+dmax) model with an
augmented lag. Since our time series are I(1), the TY causality test method will be used,
allowing us to work with the level values of the series. After determining the lag length (k)
and maximum integration degree (dmax) of the model, a VAR (k+dmax) model is created,
and the test is performed. The equations of the Toda-Yamamoto [23] causality test are
as follows:

Yt = βo +
k+dmax

∑
i=1

β1iYt−1 +
k+dmax

∑
i=1

β2iXt−1 + ε1t,

Xt = αo +
k+dmax

∑
i=1

α1iXt−1 +
k+dmax

∑
i=1

α2iYt−1 + ε2t .
(9)

The hypotheses tested using a Wald statistic are as follows:

Ho : ∑k+dmax
i=1 β2i= 0, Xt−1 does not Granger cause Yt,

Ha : ∑k+dmax
i=1 β2i 6= 0, Xt−1 does Granger cause Yt,

Ho : ∑k+dmax
i=1 α2i = 0, Yt−1 does not Granger cause Xt,

Ha : ∑k+dmax
i=1 α2i 6= 0, Yt−1 does Granger cause xt.

(10)

The rejection of the null hypothesis gives us information about the Granger causality
between the series. In our case, the Toda Yamamoto time domain causality test is performed,
including time dummy variables for all four breaks identified before, to account for them.
As seen in Table 6, it results in the lack of direct linear causality relationships from the
energy market (oil and natural gas prices) to grain prices (wheat, corn, and soybeans),
considering also the presence of structural breaks in the period of study. Only, a Granger
causality only from crude oil to soybeans prices was detected at 10% significance.

Table 6. Toda-Yamamoto causality test for the series.

chi2 Results

Crude Oil ; Wheat 0.97478

lack of linear Granger
causality

Wheat ; Crude Oil 0.60606
Crude Oil ; Corn 0.30415
Corn ; Crude Oil 0.86714
Crude Oil ; Soybeans 4.7469 *
Soybeans ; Crude Oil 1.2936

Natural gas ; Wheat 1.6682

lack of linear Granger
causality

Wheat ; Natural gas 0.74992
Natural gas ; Corn 1.3345
Corn ; Natural gas 0.788
Natural gas ; Soybeans 1.4962
Soybeans ; Natural gas 3.6855

Note: In parenthesis are the p-values; * respectively for 10% significance; ; lack of Granger causality null
hypothesis. Source: Author’s calculations.

3.5. Hatemi-J Asymmetric Causality Test

Hatemi-J [24] asymmetric causality test evaluates the causality relationship between
the variables by separating the changes of the variables into positive and negative compo-
nents. The test was developed because the assumption of symmetric causality tests that the
effect of positive and negative shocks in the series is the same is insufficient to explain the
existence of a causal relationship between the variables. The random walk model created to
distinguish the negative and positive shocks of Hatemi-J [24] y1t and y2t series is as follows:

y1t = y1,t−1 + ε1t = y1,0 + ∑t
i=1 ε1i,

y2t = y2,t−1 + ε2t = y2,0 + ∑t
i=1 ε2i,

(11)
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where t = 1, 2, . . . , T specified in the model, y1,0 and y2,0 are the initial values, ε1i and ε2i
are the white noise error terms. In the test, negative and positive shocks are expressed
as follows:

ε−1i = min(ε1i, 0), ε−2i = min(ε2i, 0),
ε+1i = max(ε1i, 0), ε+2i = max(ε2i, 0).

(12)

Thus, we find ε1t = ε+1t + ε−1t, and ε2t = ε+2t + ε−2t; the equations are rearranged as follows:

y1t = y1,t−1 + ε1t = y1,0 + ∑t
i=1
(
ε+1t + ε−1t

)
,

y2t = y2,t−1 + ε2t = y2,0 + ∑t
i=1
(
ε+2t + ε−2t

)
.

(13)

When the negative and positive shocks in the series are considered cumulatively:

y−1t = ∑t
i=1 ε−1i, y+1t = ∑t

i=1 ε+2i,
y−2t = ∑t

i=1 ε−1i , y+2t = ∑t
i=1 ε+2i.

(14)

It resulted (Table 7) in an asymmetric causality relationship from positive (negative)
changes in wheat prices to positive (negative) changes in crude oil prices at 10%, and from
negative changes in soybeans prices to negative changes in crude oil prices at 10%. The rest
of the pairs lack the presence of asymmetric Granger causality relationships, a result that is
in line with the findings from the Toda-Yamamoto time domain Granger causality test.

Table 7. Asymmetric causality Hatemi-J test results.

Direction of Causality Wald Statistics 10% CV 5% CV 1% CV

Crude oil (+) to Wheat (+) 3.118 4.534 6.459 9.367
Crude oil (−) to Wheat (−) 0.588 4.917 6.706 9.804

Wheat (+) to Crude oil (+) 4.604 * 4.455 5.893 9.042
Wheat (−) to Crude oil (−) 5.298 * 4.691 6.172 10.542

Crude oil (+) to Corn (+) 1.402 4.313 5.763 11.806
Crude oil (−) to Corn (−) 0.060 4.869 6.371 11.122

Corn (+) to Crude oil (+) 1.751 4.693 6.409 12.727
Corn (−) to Crude oil (−) 1.331 4.686 5.795 9.259

Crude oil (+) to Soybeans (+) 0.033 4.448 5.976 11.238
Crude oil (−) to Soybeans (−) 2.265 4.951 6.289 9.584

Soybeans (+) to Crude oil (+) 2.197 4.930 7.063 12.447
Soybeans (−) to Crude oil (−) 5.561 * 4.916 6.472 12.762

Natural gas (+) to Wheat (+) 0.059 2.946 4.043 7.687
Natural gas (−) to Wheat (−) 0.149 2.915 3.906 7.015

Wheat (+) to Natural gas (+) 0.003 2.790 4.151 6.882
Wheat (−) to Natural gas (−) 0.290 2.816 3.926 6.489

Natural gas (+) to Corn (+) 0.493 2.817 4.116 8.153
Natural gas (−) to Corn (−) 0.207 4.722 6.300 10.052

Corn (+) to Natural gas (+) 1.173 2.746 3.747 6.953
Corn (−) to Natural gas (−) 0.947 4.642 6.046 10.413

Natural gas (+) to Soybeans (+) 0.006 2.283 3.333 7.672
Natural gas (−) to Soybeans (−) 0.852 2.770 4.195 7.636

Soybeans (+) to Natural gas (+) 0.998 2.527 3.670 9.051
Soybeans (−) to Natural gas (−) 0.171 2.711 3.729 6.609

Note: * denote the significance at 10% significance levels respectively. CV denotes the critical value; (+) and (−)
represent positive and negative changes. Source: Author’s calculations.

4. Conclusions and Implications

This article explored the relationships between energy market prices and agricultural
commodity prices. Monthly data for wheat, corn, soybeans, crude oil, and natural gas prices
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for the period from January 1982 to September 2022 were used to explore the potential
cointegrating relationships between the variables. Since the presence of cointegration
was traced, a VECM analysis was performed to formalize initially through equations the
variables’ historical relationships. To identify the causality relationship between grain,
crude oil, and natural gas prices, the Toda-Yamamoto time domain causality test and
Hatemi-J asymmetric causality test were performed to complete the analysis. The choice
for the causality tests is motivated to explore not only linear causality but also asymmetric
causality among variables.

Cointegration of rank two was found among the variables (also considering time
dummy variables for the four, identified structural breaks). There are long-run relationships
between variables, empirically found using the Johansen’s trace test. This result gives us
useful information about long-run relationships between grain and oil and natural gas
prices. The co-movement between the series is clearer during peaks in energy market prices.

Using the VECM approach, some error correction terms were found negative and
statistically significant, showing long-run causality relationships in the respective equations.
Using the TY time domain causality test, no causal relationships from the energy market
(oil and natural gas prices) to grain prices (wheat, corn, and soybeans) resulted.

Also, from Hatemi-J causality test, it resulted in only an asymmetric causality rela-
tionship from positive (negative) changes in wheat prices to positive (negative) changes in
crude oil prices at 10%, and from negative changes in soybeans prices to negative changes
in crude oil prices at 10%.

The work is in line with other similar works, proving the neutrality hypothesis: there is
no linear and asymmetric causal linkage between the energy market and grain prices. The
work contribution consists of a wide period of study (January 1982–September 2022), also
considering natural gas prices from the energy market (not only crude oil prices as done
usually). This last consideration was motivated by the increasing role of natural gas as an
energy source, along with crude oil for food production and the recent developments in the
respective markets, the Covid-19 period, and the first month of the Russia-Ukraine conflict.
The main implication from the results is that explaining the increasing trend of grain prices
is also useful to follow and consider the trend of biofuel production that can put upward
pressure on food prices. In assessing the driving factors for grain prices, producers must
consider a more complex picture, with not only crude oil and/or natural gas as the main
drivers. This should be also the attention of policymakers in designing reforms and actions
in the case of inflated prices in the energy and grain markets: limiting domestic prices rise
(cutting taxes or implementing direct price subsidies) or allowing the international high
prices to pass through (in a calibrated way) the domestic economy, keeping the protection
of the most in need households a priority (directly affected by record food prices), along
with providing them targeted transfers.

Also, a different nature should be considered of the causality between the energy
and grain market: a non-linear one. Having a quantitative tool to measure the dynamic
relationship between the energy market and grain prices will be helpful at producers’ and
traders’ levels to better forecast their business operations and at the governmental level for
food price policy adjustments.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: FAO Food Price Index. Available online: https://www.fao.org/
worldfoodsituation/foodpricesindex/en/ (25 October 2022); World Bank, Commodity Markets
Outlook, monthly prices Available online: https://www.worldbank.org/en/research/commodity-
markets (25 October 2022).

Conflicts of Interest: The author declares no conflict of interest.

https://www.fao.org/worldfoodsituation/foodpricesindex/en/
https://www.fao.org/worldfoodsituation/foodpricesindex/en/
https://www.worldbank.org/en/research/commodity-markets
https://www.worldbank.org/en/research/commodity-markets


Commodities 2022, 1 178

Appendix A

Commodities 2022, 1, FOR PEER REVIEW 12 
 

in crude oil prices at 10%, and from negative changes in soybeans prices to negative 

changes in crude oil prices at 10%.  

The work is in line with other similar works, proving the neutrality hypothesis: there 

is no linear and asymmetric causal linkage between the energy market and grain prices. 

The work contribution consists of a wide period of study (January 1982 – September 2022), 

also considering natural gas prices from the energy market (not only crude oil prices as 

done usually). This last consideration was motivated by the increasing role of natural gas 

as an energy source, along with crude oil for food production and the recent develop-

ments in the respective markets, the Covid-19 period, and the first month of the Russia-

Ukraine conflict. The main implication from the results is that explaining the increasing 

trend of grain prices is also useful to follow and consider the trend of biofuel production 

that can put upward pressure on food prices. In assessing the driving factors for grain 

prices, producers must consider a more complex picture, with not only crude oil and/or 

natural gas as the main drivers. This should be also the attention of policymakers in de-

signing reforms and actions in the case of inflated prices in the energy and grain markets: 

limiting domestic prices rise (cutting taxes or implementing direct price subsidies) or al-

lowing the international high prices to pass through (in a calibrated way) the domestic 

economy, keeping the protection of the most in need households a priority (directly af-

fected by record food prices), along with providing them targeted transfers. 

Also, a different nature should be considered of the causality between the energy and 

grain market: a non-linear one. Having a quantitative tool to measure the dynamic rela-

tionship between the energy market and grain prices will be helpful at producers’ and 

traders’ levels to better forecast their business operations and at the governmental level 

for food price policy adjustments.  

Funding: This research received no external funding. 

Data Availability Statement: FAO Food Price Index. Available online: https://www.fao.org/world-

foodsituation/foodpricesindex/en/ (25 October 2022); World Bank, Commodity Markets Outlook, 

monthly prices Available online: https://www.worldbank.org/en/research/commodity-markets (25 

October 2022). 

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A 

   
(a) (b) (c) 

  
(d) (e) 

Figure A1. CMR-AO unit root test results: (a) wheat, (b) corn, (c) soybeans, (d) crude oil, (e) natural 

gas. Source: World Bank data, author’s elaboration. 
Figure A1. CMR-AO unit root test results: (a) wheat, (b) corn, (c) soybeans, (d) crude oil, (e) natural
gas. Source: World Bank data, author’s elaboration.

Commodities 2022, 1, FOR PEER REVIEW 13 
 

   
(a) (b) (c) 

  
(d) (e) 

Figure A2. CMR-IO unit root test results: (a) wheat, (b) corn, (c) soybeans, (d) crude oil, (e) natural 

gas. Source: World Bank data, author’s elaboration. 

Table A1. VECM analysis results. 

ECTs D_Wheat D_Corn D_Soybeans D_Crude_oil D_Natural_gas 

ECT1 -0.096 *** 0.067 *** -0.003 -0.045 *** -0.0116 *** 

ECT2 0.026 0.073 0.04 0.040 0.125 

Cointegrating equations 
𝐸𝐶𝑇1 = 𝑊ℎ𝑒𝑎𝑡 − 0.85𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑠 − 0.54𝑂𝑖𝑙 + 0.578𝐺𝑎𝑠 − 0.04𝐵𝑟𝑒𝑎𝑘1 − 0.20𝐵𝑟𝑒𝑎𝑘2 + 0.6𝐵𝑟𝑒𝑎𝑘3 − 0.08𝐵𝑟𝑒𝑎𝑘4 + 0.95 

(0.000)         (0.000)  (0.000)     (0.55)        (0.03)        (0.000)      (0.68) 
𝐸𝐶𝑇2 = 𝐶𝑜𝑟𝑛 − 1.18𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑠 − 0.85𝑂𝑖𝑙 + 0.79𝐺𝑎𝑠 − 0.22𝐵𝑟𝑒𝑎𝑘1 − 0.09𝐵𝑟𝑒𝑎𝑘2 + 0.85𝐵𝑟𝑒𝑎𝑘3 − 0.29𝐵𝑟𝑒𝑎𝑘4 + 4.004 

(0.000)         (0.000)   (0.000)   (0.01)        (0.38)        (0.000)       (0.25) 
𝐸𝐶𝑇1 = 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑠 − 0.87𝐶𝑜𝑟𝑛 + 0.72𝑂𝑖𝑙 − 0.678𝐺𝑎𝑠 + 0.19𝐵𝑟𝑒𝑎𝑘1 + 0.08𝐵𝑟𝑒𝑎𝑘2 − 0.72𝐵𝑟𝑒𝑎𝑘3 + 0.24𝐵𝑟𝑒𝑎𝑘4 − 3.39 

(0.000)     (0.000)   (0.000)      (0.007)      (0.38)         (0.000)      (0.25) 
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Figure A2. CMR-IO unit root test results: (a) wheat, (b) corn, (c) soybeans, (d) crude oil, (e) natural
gas. Source: World Bank data, author’s elaboration.
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Table A1. VECM analysis results.

ECTs D_Wheat D_Corn D_Soybeans D_Crude_oil D_Natural_gas

ECT1 −0.096 *** 0.067 *** −0.003 −0.045 *** −0.0116 ***
ECT2 0.026 0.073 0.04 0.040 0.125

Cointegrating equations
ECT1 = Wheat− 0.85Soybeans− 0.54Oil + 0.578Gas− 0.04Break1− 0.20Break2 + 0.6Break3− 0.08Break4 + 0.95

(0.000) (0.000) (0.000) (0.55) (0.03) (0.000) (0.68)
ECT2 = Corn− 1.18Soybeans− 0.85Oil + 0.79Gas− 0.22Break1− 0.09Break2 + 0.85Break3− 0.29Break4 + 4.004

(0.000) (0.000) (0.000) (0.01) (0.38) (0.000) (0.25)
ECT1 = Soybeans− 0.87Corn + 0.72Oil − 0.678Gas + 0.19Break1 + 0.08Break2− 0.72Break3 + 0.24Break4− 3.39

(0.000) (0.000) (0.000) (0.007) (0.38) (0.000) (0.25)
ECT2 = Wheat− 0.72Corn + 0.07Oil + 0.01Gas + 0.11Break1− 0.13Break2− 0.01Break3 + 0.12Break4− 1.92

(0.000) (0.24) (0.85) (0.007) (0.023) (0.827) (0.35)
ECT1 = Oil + 12Wheat− 8.83Corn + 0.174Soybeans + 1.42Break1− 1.57Break2− 0.29Break3 + 1.49Break4− 23

(0.000) (0.000) (0.93) (0.010) (0.003) (0.64) (0.35)
ECT2 = Gas + 13Wheat− 8.2Corn− 1.3Soybeans + 1.2Break1− 1.80Break2 + 0.76Break3 + 1.23Break4− 20

(0.000) (0.000) (0.51) (0.03) (0.001) (0.25) (0.46)

Note: *** denote the significance at 1% significance levels respectively; in parenthesis are the p-values; Breaks as in
Table 2. Source: Author’s calculations.

Table A2. VECMs robustness tests results.

LM Test JB Test Eigenvalue Stability Condition

1

97.6066

27.466 *** checked
2 53.119 *** checked
3 182.110 *** checked
4 1970.155 *** checked
5 311.418 *** checked

Note: *** denotes 1% significance level; Lagrange-multiplier LM test, null hypothesis accepted: no autocorrelation
at lag order 2 Jarque-Bera test, Ho is rejected: residuals are not symmetric and have an excess kurtosis (Not
passing a test for normality at least asymptotically has no implications on the validity of either tests or estimators
in VECMs). Source: Author’s calculations.
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