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Abstract: Extractive text summarization selects a small subset of sentences from a document, which
gives good “coverage” of a document. When given a set of term weights indicating the importance
of the terms, the concept of coverage may be formalized into a combinatorial optimization problem
known as the budgeted maximum coverage problem. Extractive methods in this class are known
to be among the best of classic extractive summarization systems. This paper gives a synopsis
of the software package occams, which is a multilingual extractive single and multi-document
summarization package based on an algorithm giving an optimal approximation to the budgeted
maximum coverage problem. The occams package is written in Python and provides an easy-to-use
modular interface, allowing it to work in conjunction with popular Python NLP packages, such as
nltk, stanza or spacy.
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1. Introduction

Text summaries give a reader an overview of a document or a collection of documents
on the same topic. Summaries are a convenient tool to give an indication of the overall
content and may also inform the reader of details of interest to them. The need for quality
summaries has grown with the dramatic rise of information. Many individual documents
have good-quality summaries; however, these summaries may not focus on the specific
information of interest to a user.

There are two general approaches to address a user’s needs for a summary of one
or more documents: extractive and abstractive. Extractive methods primarily seek to find
good sentences from the source documents that can be concatenated to form a summary;
abstractive methods may use words and phrases that do not appear in the original doc-
uments and try to present them meaningfully for a more human-level summary. In this
paper, we present the software package occams, an extractive summarization system using
a combinatorial optimization approach whose performance is demonstrated to be among
the best extractive methods [1]. For a survey of the summarization problem and classical
extractive summarization methods, see [2,3].

Until recently, abstractive summarization methods lagged behind extractive methods,
as systems could not generate fluent context containing relevant information. One of the
first successful approaches used a recurrent neural network (RNN) along with a pointer
generating network [4]. RNNs were used to encode a document, turning the sequence of
token embeddings into a state vector. Conversely, decoding takes the state vector and
converts it into a sequence of tokens, forming the summary. This approach cleverly
augmented the decoding of the RNN-encoded document with a “copy mechanism” to
include extracted words or even segments of the document.

With the invention of the transformer model [5] later that year, another big change
came about. The transformer model then led to deep pre-trained language models, such as
generative pre-trained transformers (GPT) [6] and bidirectional encoder representations
from transformers (BERT) [7], both of which improved the performance on a range of
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natural language processing tasks, including recognizing relevant content to generate sum-
maries. When these models are coupled as was done in bidirectional and auto-regressive
transformers (BART) [8], sequence-to-sequence models were trained to learn to transform a
document into an abstractive summary. Over the last three years, the models have grown
in size and scope for text summarization and other natural language processing tasks,
including the introduction of sophisticated chatbots, such as ChatGPT [9], which have
the ability to answer questions, summarize, and more generally generate text based on
a prompt (for example, a prompt could be “Summarize the following text with 100 words
or less” https://openai.com/blog/chatgpt, accessed on 8 December 2022).

Despite these great advances, there is still a need for classic extractive summariza-
tion. Abstractive methods suffer from “hallucinations”, factual errors or statements not
supported or readily explained by the original text [10]. Secondly, large language models
can require great computing resources, and most have limited input sizes. Due to these
concerns, an extractive summarization system can provide an alternative or be used in
conjunction with an abstractive system as done by others, e.g., [11].

The primary goal of occams is to provide a state-of-the-art multilingual extractive
summarization method using the first principles of the statistics of natural language in
conjunction with an optimal approximation of a combinatorial covering algorithm. The cov-
ering problem approximates the integer linear programming problem formulation [12].
The previous implementation of the approximation algorithm was reported [13] to give
over 90% of the optimal coverage with an order of magnitude speed up. The current
implementation maintains this coverage approximation and has improved its performance.

The system’s name evokes the principle of Occam’s razor, which can be summarized as
“entities should not be multiplied beyond necessity”. The principle is attributed to William
Ockham (Occam), a 13th-century English Franciscan friar and philosopher (although this
statement of principle occurs later, and the principle itself could be argued to date back to
Aristotle [14]).

We apply this principle first to aim toward an extractive versus abstractive summa-
rization. While neural-based summarization systems have produced great advances in text
summarization, and human-quality abstractive summaries would be preferred, in many
cases, a simple extractive method suffices. In addition to being computationally cheaper,
extractive systems often benefit from greater flexibility and control of input and output
lengths. They can be applied to various multi-document summarization tasks across vari-
ous document genres. As mentioned, abstractive methods suffer from hallucinations and
present a challenge to explain their output. In contrast, an extractive method, by defini-
tion, selects a subset of sentences from the document, so it is easy to find the source of
information used in the generated summary.

The occams package decomposes the extractive summarization task into three steps.

1. The input document or documents (the input text) is segmented into sentences
and terms.

2. Term weights are computed, indicating the relative importance of the terms in the
input text.

3. Given a target summary length in characters or words, an optimal approximation
algorithm is used to maximize the weighted coverage of terms by selecting a subset
of sentences, the sum of whose lengths does not exceed the budgeted target length.

The paper is divided into three main sections according to these three parts. We
then give a short example demonstrating how to use the package to extract a summary,
and conclude with results compared to other summarization systems.

2. Document Segmentation

Document segmentation is a critical part of natural language processing. The quality
of the resulting downstream tasks, summarization included, is affected by this first step.
Document segmentation for extractive summarization consists of splitting the text of a

https://openai.com/blog/chatgpt
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document into sentences and tokenizing those sentences into smaller units of meaning,
typically words. This process is language dependent.

As we will see in more detail in Section 3, occams views a document as a bipartite
graph on the sets of sentences and terms, with adjacency indicating that a given term occurs
in a given sentence. Terms are user specified and can represent more abstract notions,
such as concepts, as originally proposed by [15]. Typically, we form terms as unigrams
or bigrams of tokens, where tokens consist of words, word stems, or word lemmas. One
might also want to apply some kind of text normalization, such as collapsing consecutive
whitespace characters to a single ASCII space, removing punctuation, removing digits,
or lowercasing characters. There is quite a bit of choice in this process.

Included in occams is the subpackage occams.nlp, which deals with these problems.
This subpackage serves two roles for users. First, it defines an abstraction in the form
of the two Python dataclasses Sentence and Document. These dataclasses are a means of
bundling the result of document segmentation such that it is independent of any particular
NLP library’s API. Sentence has two attributes, text and terms; the former, a string, is the
literal text of the sentence, while the latter is a list of the terms which appear in that sentence.
Document also has two attributes: sentences is a list of Sentence objects, and language
is a string indicating the language of the document. Thus, a Document object encodes the
bipartite graph resulting from segmenting the text of a document. The summarizer class,
which we will discuss in Section 3, takes as input a list of Document objects. In this way,
we decouple the APIs of NLP libraries that may be used for the document segmentation
step from the API of the summarizer class, giving users the flexibility to use whatever tools
they wish for the document segmentation step without requiring those tools to be directly
supported by occams.

On the other hand, as we said above, there is quite a bit of choice involved in seg-
menting documents, from the choice of a library, to what constitutes a token, to whether
or how to normalize the text. The second role of the occams.nlp subpackage is to allevi-
ate some of this burden for users who would prefer a more convenient and streamlined
process. We provide a simple DocumentProcessor class, which can be used to trans-
form the text into Document objects. By default, this class uses nltk [16] for document
segmentation: nltk.tokenize.sent_tokenize() to split the document into sentences,
nltk.tokenize.word_tokenize() to form word tokens, and one of nltk’s Porter or Snow-
ball stemmers to produce stemmed word tokens. We choose nltk, as it is the most widely
used Python package for natural language processing, it is computationally efficient,
and gives strong support for most European languages. To provide convenient support
for a broader set of languages, we also include a class that uses stanza [17] for document
segmentation, as stanza supports 70 languages.

These classes have a few options to allow users to control some of the aspects of
the document segmentation noted above. However, they are also meant to be somewhat
opinionated about the process to save users from having to make too many choices. Users
with their own opinions can quite easily segment documents however they wish and
bundle the results into Sentence and Document objects. Finally, occams.nlp contains a
helper function, process_document(), that instantiates a DocumentProcessor object with
its default options and uses it to process text into a Document object. We demonstrate the
user of this wrapper in Section 5.

Now that our text, which may consist of one or more documents, is segmented
into sentences and terms, we can now formulate the text summarization problem as a
combinatorial optimization problem.

3. Extractive Summarization as a Combinatorial Optimization Problem

The mathematical formulation of the problem used in occams is adapted from [12,15]. We
let A = (aij) be the term-sentence incidence matrix of size m by s encoding the relationship
among all of the terms and sentences found in the documents to be summarized so that
aij = 1 if and only if term i appears in sentence j, and 0 otherwise.
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The objective function of the optimization problem credits each unique term a sentence
that contributes to the summary based on its term weight, as discussed in Section 4, which
we denote as w(τ)

i and which represents the relative importance of term i for the topic τ of
the set of documents to be summarized. The constraint for the optimization problem is the
target length L of the summary. Let `j denote the length of sentence j in whatever units are
desired, e.g., words or characters.

The optimization problem can be formalized as follows:

y∗ = argmaxy ∑
i

yiw
(τ)
i

subject to
∑

j
xj`j ≤ L; (1)

yi −∑
j

aijxj ≤ 0; (2)

aijxj − yi ≤ 0; (3)

yi ∈ {0, 1}, xj ∈ {0, 1}. (4)

Inequality (1) says that the sum of the lengths of the sentences selected for the summary
does not exceed the target length L, while inequalities (2)–(4) together say that the set of
terms “covered” by the summary is precisely the union of the sets of terms, which occurs
in the sentences selected for the summary.

The above formulation is an NP-hard problem [15]. Still, this binary integer program-
ming problem can be viewed as a budgeted maximum coverage problem, and solved
with provably optimal approximate algorithms [15,18,19] or treated as a problem in the
more general class of sub-modular approximation algorithms [20]. These algorithms are
optimal, in that they are guaranteed to achieve an optimal fraction of the best solution.
The occams package uses an optimal approximation algorithm for the budgeted maximum
coverage problem and a dynamic programming algorithm for the knapsack problem. These
methods were shown empirically to exceed the guaranteed lower bound of approximation
(1− 1/

√
e ≈ 0.39) and achieve about 94% accuracy [13] and are about 14 times faster

than the corresponding integer programming algorithm. The new implementation, which
we present in this paper, achieves or exceeds the same accuracy and has both improved
runtime and memory requirements. (See Appendix A for an example comparing the former
implementation and the current one.)

The algorithms for solving the budgeted maximum coverage problem and the knap-
sack problem have been implemented in occams as a Python extension module for better
performance. Originally, these were written in C and Cython, but the extension module
was recently rewritten in the Rust programming language. We choose Rust because it is a
modern, memory-safe systems programming language that compiles to native machine
code and achieves comparable speed and memory usage to C. Users of occams benefit from
the speed and memory safety of Rust while retaining a familiar Python API.

The algorithm employed for solving the budgeted maximum coverage problem is
a modified greedy algorithm given in [18], which is more efficient. In [18], each step of
the algorithm greedily finds the sentence from those remaining, which maximizes the
normalized marginal weight (the sum of the weights of the new terms it would add to the
solution divided by its cost). If this optimal sentence is affordable with what remains of
the budget, it is added to the solution; otherwise, it is thrown out. This process continues
until every sentence has either been selected for the solution or thrown away. This requires
s iterations, where the i-th iteration maximizes the normalized marginal weight over the
remaining s− i sentences.
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Our modification reverses the order in which weight and cost are considered. Rather
than maximizing the normalized marginal weight over all remaining sentences, we only
consider affordable sentences with what remains of the budget. Our algorithm terminates
when no more sentences can be afforded with the remaining budget and adds new terms not
already in the solution. This requires at most L steps since the length of the sentence is an
integer and at least 1. In practice, typical sentence lengths measured in words or characters
well exceed 1. Our implementation of the greedy algorithm for the budgeted maximum
coverage problem requires space of order O(n) since the incidence matrix is stored as a
sparse matrix and has a running time that is at most O(nL), where n is the number of non
zeros in the term–sentence matrix and L is the budgeted length for the summary.

As well as the budgeted maximum coverage problem, occams also models the sentence
selection problem as a knapsack problem; see [19] for details on the correspondence.
However, our new Rust extension module has an improved implementation of a dynamic
programming algorithm for the knapsack problem from that given in the reference and
implemented in the original C extension module. Items and costs index the dynamic
programming table, whereas previously, it was indexed by items and profits. Using costs
instead of profits to index one dimension of the table has two advantages. First, by the
very nature of the summarization problem, the maximum total knapsack cost, which is
the budgeted summary length, is inherently small. Previously, our knapsack algorithm
suffered from requiring space and time of order O(s2Pmax), where Pmax is the maximum
sum of the weights of the terms of a sentence. Our new implementation requires space and
time of order O(sL), which is typically much smaller and, importantly, independent of the
scaling of the term weights. Second, in the summarization problem, the costs are positive
integers, whereas profits are floating point values. Indexing the table with profits requires
approximating the profits with integers.

Users of occams do not directly interact with the extension module and its functions
implementing the above algorithms. Instead, the occams API provides a high-level interface
to these algorithms in the form of the SummaryExtractor class. This class is responsible for
collecting the required inputs for the summarization problem, converting those inputs to the
more abstract formulation used in the combinatorial optimization algorithms, interacting
with the extension module implementing those algorithms, and finally converting the
results back into concrete, natural language constructs to produce the desired summary.
The input to create an instance of SummaryExtractor is primarily the data discussed in
Sections 2 and 4, namely, (a) documents segmented into sentences and terms in the form of
Document objects, and (b) term weights.

In addition to the base SummaryExtractor class, occams provides several subclass
specializations, each with its baked-in notion of how to compute term weights. These
WeightedSummaryExtractors simplify the setup for a user by computing term weights
automatically from the segmented documents the user provides. We discuss one of these
subclasses, TermFrequencySummaryExtractor, in Section 4.

4. Term Weighting Methods

The linear objective function of the occams algorithm is the sum of the weights of
the terms covered by an extract summary. These term weights are critical to the quality
of the summary produced. The occams package provides a number of different ways of
computing term weights. Some of these depend only on the counts of the number of
sentences or documents containing each of the terms. Such term weight methods are
collected as members of a Python enum class called TermFrequencyScheme, described in
more detail below. However, we emphasize that users are not limited to these provided
schemes for computing term weights. In the end, users may assign term weights however
they wish and simply hand these term weights to SummaryExtractor, the summarizer base
class, in the form of a dictionary mapping the terms to their weights.

The following are members of the TermFrequencyScheme enumeration:
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1. LOG_COUNTS: The logarithm of the Laplace smoothed number of occurrences of term i;
wi = log(1 + ∑j aij), where aij is 1 if term i occurs in sentence j and 0 otherwise.

2. ENTROPY: The scaled smoothed entropy over the sentences; wi = ci log(1 + ci), where
ci = ∑j aij.

3. POSITIONAL_FIRST: A variation of LOG_COUNTS which gives double weight to the first
sentence in each document, as inspired by [12]. Formally, wi = log(1 + ∑j aij + ∑j∈α aij)
where α is the set of first sentences in the documents.

4. POSITIONAL_DENSE: A variation of POSITIONAL_FIRST which replaces the use of the
first sentence with the first sentence above the median score for the document. For-
mally, wi = log(1 + ∑j aij + ∑j∈β aij) where β is the set of positional dense sentences
described below.

5. POSITIONAL_MEAN: The mean count of the number of times a term occurs in the list of
documents to be summarized. This scheme is inspired by the work of [13].

6. POSITIONAL_MAX: The maximum count of the number of times a term occurs in the
list of documents to be summarized.

7. POSITIONAL_MIN: The minimum count of the number of times a term occurs in the list
of documents to be summarized.

8. CORE_TERMS: The principle left singular vector of the term-sentence matrix. Assuming
A is irreducible, we let u be the left principal singular value of A. u can be chosen to
be non-negative and used to form term weights. The matrix A can be assured to be
irreducible by adding a small constant, currently set to 0.01, to each entry. This scheme,
as well as the next, are inspired by the success of [21,22] as well as the recent paper [23],
which gives a theoretical justification. Specifically, spectral clustering of a graph’s
adjacency matrix will tend to expose the “core–periphery” structure. Computing the
left singular vectors of A will then tend to partition the graph to separate the key
terms from the least essential terms. A scale of this singular vector is added to the
overall term counts, and the logarithm of the entries is used for term weights.

9. CORE_SENTENCE: The principle right singular vector of the term-sentence matrix. As-
suming A is irreducible, we let v be the right principal singular value of A. v can be
chosen to be non-negative and used to form term weights. The entries of v are used
as sentence weights. Sentences above the median value are marked as “core” and
contribute to a log count term weight. The sentence weights are converted to term
weights by computing the matrix–vector product w = Av.

Term weights may be optionally scaled, via an affine transformation, to be between 1
and 100.

We now give more detail and motivation of the POSITIONAL_DENSE scheme. The goal
of this term weight, which is the default for occams, is to produce a robust method that
works at least as well as POSITIONAL_FIRST and will avoid giving double weight to the
first sentence in a document if it has little content. Such low-content sentences in the first
position may arise from an error in sentence splitting or a failure to remove a dateline,
byline, or boilerplate sentence.

The relative importance of a sentence is given by its per-term log-likelihood score.
A sentence is considered “positional dense” if it is the first sentence in a document whose
score is above a specified quantile, currently set to 0.1. If all the sentences in a document
are below the threshold, then no sentence from this document is chosen. (Such a situation
only occurs for multi-document summarization.) If we let pi be the maximum likelihood
estimated probability of term i, then the average likelihood score for a sentence is given by

o(j) =
1
nj

∑
i

log(mpi)aij,

where m is the number of terms in the list of documents and nj = ∑i aij is the number of
terms in sentence j.
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5. A Simple Example

Before we give an evaluation of occams on a few common summarization datasets,
let us illustrate the software with a simple example. We will use the abstract of this paper
as the text to be summarized, about 130 words, and generate an extractive summary of at
most 50 words. The code below generates such a summary.

1 from occams.nlp import TermOrder , process_document
2 from occams.summarize import (
3 SummaryUnits ,
4 TermFrequencyScheme ,
5 extract_summary ,
6 )
7

8 # Set the text to be the abstract for this paper.
9 text = "Extractive text summarization selects a small subset ..."

10

11 # Parse the document: split into sentences , tokenize and stem words ,
12 # and form terms as bigrams. This will use nltk for segmentation ,
13 # tokenization , and stemming.
14 document = process_document(text , TermOrder.BIGRAMS , language="english")
15

16 # Summarize the document in at most 50 words , using POSITIONAL_DENSE
17 # term weights.
18 extract = extract_summary(
19 documents =[ document],
20 budget =50,
21 units=SummaryUnits.WORDS ,
22 scheme=TermFrequencyScheme.POSITIONAL_DENSE ,
23 )
24

25 # Print the summary.
26 print(extract.summary ())

The first step is to parse the document, a process which (a) segments the document
as a list of sentences; (b) word tokenizes each sentence and stems the word tokens; and
(c) forms bigrams as overlapping pairs of tokens. This information is collected into the
dataclasses Document and Sentence, which we described in Section 2. For example, the list
of terms in the first sentence is given as follows:

[('extract', 'text'), ('text', 'summar'), ('summar', 'select'),
('select', 'a'), ('a', 'small'), ('small', 'subset'), ('subset', 'of'),
('of', 'sentenc'), ('sentenc', 'from'), ('from', 'a'), ('a', 'document'),
('document', 'which'), ('which', 'give'), ('give', 'a'), ('a', 'good'),
('good', 'coverag'), ('coverag', 'of'), ('of', 'a'), ('a', 'document')].

Note that bigrams are denoted as 2-tuples of Porter stemmed and lower-cased tokens,
which is the default.

Once the document is prepared, we can create an extract of the document by calling
the extract_summary() function. Note that extract_summary() takes a list of documents
as input. Here, we give it a list with only one element, but more generally, a list of any
number of documents may be provided to compute a multi-document summary. We ask
for term weights to be computed with the POSITIONAL_DENSE scheme (which is the default).
This method of computing term weights gives double weight to terms in the first sentence
in each document, which is dense in the sense that its log probability score exceeds the
bottom quantile of 10% (the quantile is computed by numpy.quantile, which uses linear
interpolation to estimate the quantile by default). The resulting Extract object contains
various information about the sentences that were selected. Calling its summary() method
returns those sentences concatenated to form a single string.

For our example, the resulting summary includes the first sentence and one additional
sentence, and has a combined total length exactly matching our budget of 50 words:

Extractive text summarization selects a small subset of sentences from a document
which give a good “coverage” of a document. The occams package is written in
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Python and provides an easy-to-use, modular interface, allowing it to work in
conjunction with popular Python NLP packages, such as nltk, stanza or spacy.

This summary, while not fluent, does give a good indication of the content of the abstract.
The package also includes a command line interface. Assuming the text we wish to

summarize is in the file input.txt, we can reproduce the results of the example above by
running the occams command from a shell.

The CLI offers many of the options available in the Python package. See Appendix B
for the full usage of the program.

6. ROUGE Evaluation of Summaries

The occams package employs py_rouge (https://github.com/Diego999/py-rouge,
accessed on 8 December 2022), a Python implementation of the ROUGE metric for the eval-
uation of summaries with English language data. We also provide support for multilingual
summary evaluation. This is accomplished by processing the summaries with the same
DocumentProcessor class and then computing a ROUGE score based on the overlap of
token n-grams in the machine and human summaries. In this section, we illustrate the
performance of the occams summarizer on several classic summarization datasets.

Table 1 gives results on the Document Understanding Conference 2004 task 2 using
occams with the default term weighting scheme, POSITIONAL_DENSE, (labeled occams) and
compares it to top systems, including the previous version of OCCAMS (labeled OCCAMS_V)
as reported in [1]. The results demonstrate that occams produces summaries among the
best scoring on this widely studied dataset, giving the highest ROUGE-2 score.

Table 1. Document Understanding Conference (DUC) 2004 task 2 results. Bold values indicate the
best (highest) scoring systems.

System R1-Recall R2-Recall

LexRank 35.95 7.47
Greedy-KL 37.98 8.53
CLASSY-04 37.62 8.96

DPP+ 39.79 9.62
OCCAMS_V 38.50 9.76
ICSISumm 38.41 9.78
occams 38.50 10.24

While the DUC 2004 automatic evaluation is noteworthy, it is instructive to note that
when human summaries are compared, their summaries bracket all but two of the systems listed.
For ROUGE-2, the lowest-scoring human summary has a score of about 8.6 and the highest about
10.7. While ROUGE correlates well with content coverage of a summary, it is only a surrogate
for human evaluation. It is helpful to illustrate two summaries, one generated from the occams
and one from an abstractive summarization system, ChatGPT (text generated by ChatGPT, 21
December 2022, OpenAI, https://chat.openai.com/chat: the prompt was “summarize
the following text”, and then when requested, the text was pasted into the chat). Here, we have
both systems summarize document set d30010t from DUC 2004, a set of 10 documents on
the Israeli–Palestinian peace negotiations, the Wye River Accord.

occams:
A defiant Prime Minister Benjamin Ne-
tanyahu said on Saturday that Israel
would continue to build Jewish neighbor-
hoods throughout Jerusalem, including
at a controversial site in the traditionally
Arab sector of the city. An Islamic Jihad
official in the Syrian capital of Damascus

ChatGPT:
The Israeli Cabinet has announced that
it will postpone a vote on whether to rat-
ify the Wye River Accord until the Pales-
tinian Authority cracks down further on
terrorism. The Cabinet also insisted that
Yasser Arafat convene the Palestinian Na-
tional Council to abrogate the Palestinian

https://github.com/Diego999/py-rouge
https://chat.openai.com/chat
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confirmed that the group’s leader Ra-
madan Abdullah Shallah claimed respon-
sibility for Friday’s bombing in an inter-
view with the Paris-based Radio Monte
Carlo. The radical group Islamic Ji-
had claimed responsibility. The militant
Palestinian movement Islamic Holy War
said Saturday that it carried out the sui-
cide bombing in a Jerusalem market on
Friday, which prompted arrests by the
Palestinian Authority overnight.

National Charter, which calls for Israel’s
destruction. The decision follows a mar-
ket bombing in Jerusalem in which two
people were killed and 21 were wounded.
Hamas, which has tried to stop the peace
agreement, claimed responsibility for the
attack. In response, the Israeli Cabinet
suspended ratification of the Wye agree-
ment until “there is verification that the
Palestinian authority is indeed fighting
terrorism”, and announced plans to build
houses in the controversial Jewish settle-
ment of Har Homa in east Jerusalem.

We make a few observations about the two automatically generated summaries. First,
both contain good content and are informative. However, the ChatGPT abstractive sum-
mary flows more naturally than the occams extractive counterpart. The occams summary
satisfies the specified word limit of 100 words, whereas the ChatGPT summary uses
120 words. When the prompt was changed (“please limit the summary size to 100 words”)
to specify that the length should be less than 100 words, ChatGPT generated 80 words. This
is an example of length being more difficult to control with a neural system. On the other
hand, abstracts will generally be more concise than extracts.

Finally, we note that there are two hallucinations in the ChatGPT summary. First,
the summary gives a partial quote:

In response, the Israeli Cabinet suspended ratification of the Wye agreement until
“there is verification that the Palestinian authority is indeed fighting terrorism”, ...

While this reads well and is largely consistent with the text, the word “verification”
does not appear in any quotes from the document set. The closest matches, found by
reading the documents, are the following:

• APW19981106.0520: “The government of Israel will resume the discussion of the
agreement after it verifies that the Palestinian Authority is taking vigorous steps for
a relentless fight against terrorist organizations and their infrastructure”, a Cabinet
statement said.

• APW19981106.0572: The Cabinet said in a statement that it will only reconvene after
“it verifies that the Palestinian Authority takes vigorous steps for an all-out war against
terrorist organizations and their infrastructure”.

Secondly, the ChatGPT summary says the following:

The Cabinet also insisted that Yasser Arafat convene the Palestinian National Coun-
cil to abrogate the Palestinian National Charter, which calls for Israel’s destruction.

However, the original text states the following:

• APW19981106.0520: The Cabinet also demanded clarifications from Palestinian leader
Yasser Arafat on the procedure for removing sections of the PLO charter calling for
Israel’s destruction.

• APW19981106.0572: The Cabinet also demanded clarifications from Palestinian leader
Yasser Arafat on the procedure for revoking clauses in the PLO founding charter
calling for Israel’s destruction.

We note that abrogating (repealing) the entire charter is much stronger language than
removing specific sections of the charter. Additionally, demanding clarifications about
procedures differs from insisting that a council convene.

The second dataset we include is the Multi-News dataset [24]. The default term weight-
ing, POSITIONAL_DENSE, holds up well against the neural abstractive systems as shown in
Table 2, achieving the third highest ROUGE-2-F1 score as of the writing of this paper [25].
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(These ROUGE-F1 scores were computed using the ROUGE package provided by huggingface
(https://huggingface.co/spaces/evaluate-metric/rouge, accessed on 8 December 2022), as
occams’ automatic evaluation is designed to use only ROUGE-R (recall), and summaries are
limited to a bound length, which parallels the occams summarization design, in keeping with the
“Recall Oriented [Understudy for Gisting Evaluation]” origin of this metric). The alternative
approaches are supervised methods; tuning parameters of the currently supported term
weighting methods or full supervised term weights for occams are a logical next step.

Table 2. Multi-news results.

System R1-F1 R2-F1

PRIMER 49.9 21.1
LongT5 48.2 19.4
occams 44.8 16.0

CTF+DPP 45.8 15.9

We conclude with an example of occams’ support for multilingual summarization
as discussed in Section 2 via nltk [16], ersatz [26], and stanza [17]. The performance
is illustrated using the default term weighting on the MultiLing 2015 multi-document
summarization evaluation (MMS 2015) [27] dataset. For both the stanza and ersatz
options, data are sentence split and tokenized. Terms are formed as bigrams of word
lemmas or stems, and the POSITIONAL_DENSE term weighting scheme is employed. Note
that for the ersatz approach, this multilingual sentence splitter is followed by nltk for
tokenization. Of the 10 languages in the MMS 2015 dataset, nltk supports English, French,
and Spanish. For the remaining languages, tokenization is achieved using nltk English
tokenization. In Table 3, we give the ROUGE-2 Recall results for human-to-human as well
as the system from West Bohemia University (WBU) [28] from MMS 2015 for comparison
with occams. WBU was the highest scoring system in 2015 [27,29].

Overall, the performance of occams varies greatly in Arabic, Chinese, and Romanian.
The variation is largely due to the quality of sentence splitting. As an example, stanza splits
the first 10 documents of MMS 2015 Arabic into only 18 sentences, whereas ersatz finds 89.
Some of the sentences are longer than the 250 word budget and cannot be chosen, as occams
summaries are designed to consistently produce a summary not exceeding the target length.
On the other hand, the ROUGE scores for Chinese are lower for ersatz, as nltk uses white
space to tokenize. So regardless of the quality of the sentence splits, the resulting sentence
will be broken down into tokens poorly. The occams(ersatz) results would improve by
using a Chinese tokenizer, for example, jieba (https://github.com/fxsjy/jieba accessed
on 8 December 2022), or even single-character tokenization.

Table 3. Human-to-human and WBU results from MultiLing 2015 compared with new results for
occams, using ROUGE-2, Recall. WBU was the highest-scoring automatic system in 2015.

Language Human WBU occams (stanza) occams (ersatz)

Arabic 0.192 0.204 0.137 0.187
Chinese 0.333 0.172 0.237 0.133
Czech 0.241 0.212 0.214 0.198

English 0.202 0.183 0.181 0.173
French 0.267 0.272 0.242 0.254
Greek 0.207 0.192 0.205 0.202

Hebrew 0.188 0.216 0.156 0.158
Hindi 0.224 0.140 0.157 0.156

Romanian 0.193 0.194 0.163 0.184
Spanish 0.266 0.242 0.269 0.272

7. Conclusions

In this paper, we introduced occams, a fast, robust, and flexible software package
for multi-lingual, single, and multi-document extractive summarization. occams allows
users to choose their own NLP library for the document segmentation step, but it also

https://huggingface.co/spaces/evaluate-metric/rouge
https://github.com/fxsjy/jieba
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comes with ready-to-go, built-in support for nltk and stanza, the latter of which supports
70 languages. The package provides a number of means of computing term weights; we
gave an overview of one family of these methods and went into detail on the default
term weight method POSITIONAL_DENSE. We explained the budgeted maximum coverage
problem used by occams to model the extractive summarization problem and an optimal
approximation algorithm for solving it. A new Python extension module for occams written
in Rust contains efficient implementations of this optimal approximation algorithm as well
as a dynamic programming algorithm for the knapsack problem.

We gave a simple example showing how to use occams with its default options
to extract a summary from the text. Then, we illustrated the performance of occams
with its default term weighting method on DUC 2004, MultiLing 2015, and Multi-News.
In each case, the approach was shown to be very competitive with the state-of-the-art
methods, including neural-net-based methods, which have more demanding computational
requirements as well as the need for training data. Finally, we illustrated with an example
that while large neural language models generate more fluent summaries, hallucinations
are possible and sometimes subtle. In the near term, extractive summarization provides an
alternative to abstractive summarization and could be used in conjunction with abstractive
methods to facilitate fact checking. User interfaces will need to be adapted to support this
hybrid approach.
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Appendix A. Comparison of OCCAMS Implementations

We present a quick comparison of the earlier C (OCCAMS_V) and newer Rust imple-
mentations of the greedy algorithm for the budgeted maximum coverage problem and the
dynamic programming algorithm for the knapsack problem. To illustrate the difference in
performance on a large problem, we used the text of Moby Dick by Herman Melville. We
treated this as a multidocument summarization problem, where each chapter of the novel
was a single document. Using nltk for the document segmentation step and forming terms
as bigrams of stemmed work tokens, we end up with 8579 sentences and 100,918 terms.

https://www-nlpir.nist.gov/projects/duc/data.html
https://huggingface.co/datasets/multi_news
http://multiling.iit.demokritos.gr/pages/view/1540/task-mms-multi-document-summari
zation-data-and-information
http://multiling.iit.demokritos.gr/pages/view/1624/task-single-document-summarization
http://multiling.iit.demokritos.gr/pages/view/1651/task-headline-generation
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We compare the 2 implementations by asking each of them for extractive summaries of no
more than 500 words.

OCCAMS_V implemented the greedy algorithm for the budgeted maximum coverage
problem by closely following the algorithm as given in [18]. While this formulation of the
algorithm was useful there for proving an optimality bound, it is not computationally effi-
cient. The poor performance is primarily due to the terminating condition as we indicated
in Section 3. On this problem from Moby Dick, the main loop has 8579 iterations. Our new
implementation, on the other hand, terminates as soon as the remaining budget is strictly
less than the shortest remaining unused sentence. For this problem and budget, it ends
up terminating after only 69 iterations. When combined with a few other improvements
that benefit the new implementation, we measured the run time speedup factor of the Rust
version over that of OCCAMS_V on this problem instance to be greater than 700.

In occams, we also use a dynamic programming algorithm for the knapsack problem.
The current Rust-based reformulation uses a dynamic program, in which one dimension
of the table is indexed by the length of the summary instead of the coverage score of the
summary as was done in the C implementation. The advantage of this approach is that
the length of a summary is often bounded by a small integer, e.g., 100 or 250 words or
perhaps 250 or 665 characters. This means the table used in the dynamic program can
be smaller so that the algorithm requires less memory and runs faster. Applied to the
summarization problem derived from Moby Dick, the resulting table has 501 columns in
the new implementation compared to 367,525 columns in the OCCAMS_V, or a factor of 733
times smaller (since the tables have the same number of rows).

While these comparisons on this large example are extreme, in practice, the Rust
version is demonstrated to be faster and require less memory on all summarization prob-
lems tested.

Appendix B. Command Line Interface

The package includes a command occams with two subcommands, one for summa-
rizing documents and one for comparing generated summaries to model summaries by
computing ROUGE scores. The usage for the main program and each subcommand follows.

1 $ occams --help
2 usage: occams [-h] {summarize ,rouge} ...
3

4 positional arguments:
5 {summarize ,rouge} the subcommand to run
6 summarize extract a summary from one or more documents
7 rouge Score a generated summary against model summaries with
8 Rouge
9

10 optional arguments:
11 -h, --help show this help message and~exit
12

13

14 $ occams summarize --help
15 usage: occams summarize [-h] [-p PATHS [PATHS ...]] -b BUDGET
16 (--words | --chars) (-1 | -2) [-M MAX_SENTENCES]
17 [-m MIN_LENGTH] [-w WRAP] [--list -sentences]
18 [-t TERM_WEIGHTS] [--highlight] [--lang LANG]
19 [--download] [-H [HUMAN_SUMMARIES ...]] [--profile]
20

21 optional arguments:
22 -h, --help show this help message and exit
23 -p PATHS [PATHS ...], --paths PATHS [PATHS ...]
24 the paths of files or directories to summarize
25 -b BUDGET , --budget BUDGET
26 the length of the summary to produce
27 --words measure sentence and summary lengths in words
28 --chars measure sentence and summary lengths in characters
29 -1, --unigrams form terms as unigrams of tokens
30 -2, --bigrams form terms as bigrams of tokens
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31 -M MAX_SENTENCES , --max -sentences MAX_SENTENCES
32 set upper bound on the number of sentences used by

the
33 summarizer
34 -m MIN_LENGTH , --min -length MIN_LENGTH
35 set lower bound on the length of a sentence
36 -w WRAP , --wrap WRAP wrap summary to the given width
37 --list -sentences Write each extracted summary sentence on its own line
38 -t TERM_WEIGHTS , --term -weights TERM_WEIGHTS
39 specify the method of computing frequency term

weights
40 --highlight print the full text of the documents , highlighting

the
41 summary sentences
42 --lang LANG set the language of the input text (default: english)
43 --download download any missing language model files if not
44 present
45 -H [HUMAN_SUMMARIES ...], --human -summaries [HUMAN_SUMMARIES ...]
46 compare extracted summary to human summaries with
47 Rouge
48 --profile display execution times for summary~extraction
49

50

51 $ occams rouge --help
52 usage: occams rouge [-h] -b BUDGET (--words | --chars) [--max -n MAX_N]
53 [--lang LANG] [--download]
54 summary models [models ...]
55

56 positional arguments:
57 summary the peer summary to score
58 models model summaries to use when scoring the peer~summary
59

60 optional arguments:
61 -h, --help show this help message and exit
62 -b BUDGET , --budget BUDGET
63 the length of the summary to produce
64 --words measure sentence and summary lengths in words
65 --chars measure sentence and summary lengths in characters
66 --max -n MAX_N compute Rouge -n scores for n in 1.. MAX_N (default: 4)
67 --lang LANG set the language of the input text (default: english)
68 --download download any missing language model files if not
69 present

Appendix C. Terms of Use

We plan to release the software using one of the standard open-source licenses,
e.g., MIT. In the meantime, we are open to requests to share the code.
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