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Abstract: The use of distributions to model and quantify risk is essential in risk assessment and
management. In this study, the generalized unit half-logistic geometric (GUHLG) distribution is
developed to model bounded insurance data on the unit interval. The corresponding probability
density function plots indicate that the related distribution can handle data that exhibit left-skewed,
right-skewed, symmetric, reversed-J, and bathtub shapes. The hazard rate function also suggests that
the distribution can be applied to analyze data with bathtubs, N-shapes, and increasing failure rates.
Subsequently, the inferential aspects of the proposed model are investigated. In particular, Monte
Carlo simulation exercises are carried out to examine the performance of the estimation method by
using an algorithm to generate random observations from the quantile function. The results of the
simulation suggest that the considered estimation method is efficient. The univariate application of
the distribution and the multivariate application of the associated regression using risk survey data
reveal that the model provides a better fit than the other existing distributions and regression models.
Under the multivariate application, we estimate the parameters of the regression model using both
maximum likelihood and Bayesian estimations. The estimates of the parameters for the two methods
are very close. Diagnostic plots of the Bayesian method using the trace, ergodic, and autocorrelation
plots reveal that the chains converge to a stationary distribution.

Keywords: unit distribution; statistical algorithms; power transformation; risk survey data; quantile
regression; Bayesian estimation

1. Introduction

Risk assessment and management form an integral part of the responsibilities of man-
agers in financial and insurance institutions. Thus, when risk is properly assessed and
managed, financial and insurance companies can better manage the risk of financial losses.
In order to achieve this, quantitative risk analysis is required. This entails probabilistic
methods of handling risk, where the risk is considered random and then quantified using a
distribution. These distributions are utilized by investors to predict asset returns and hedge
their risks. In this regard, the precision of the analysis is heavily centered on the identifica-
tion of an appropriate distribution to model the uncertainty. Failure to do so may result in
the use of an incorrect distribution to quantify the risk, leading to incorrect decisions.

The selection of the correct distribution for risk analysis is not only essential but
also a necessary approach to quantifying and managing risk. This has necessitated the
development of new distributions for risk modelling and assessment. Some of the distribu-
tions that have been developed and used to model financial and insurance data include:
unit half-logistic geometric (UHLG) distribution (see [1]), unit exponentiated Fréchet dis-
tribution (see [2]), new modified Kumaraswamy distribution (see [3]), new beta power
transformed Weibull distribution (see [4]), unit Weibull distribution (see [5]), WT-XW
distribution (see [6]), extended exponential geometric distribution (see [7]), Weibull loss
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distribution (see [8]), unit Gompertz distribution (see [9]) and log-Lindley distribution
(see [10]).

However, every data-generating process comes with its own feature (such as heavy-
tailed, symmetric, asymmetric, or bathtub shape) that characterizes the data generated. This
has made it difficult to use a single distribution in all situations. Hence, the development
of new distributions to quantify uncertainties with minimal loss of information is very
important. Based on this assertion, we are motivated to create a new unit distribution
in the following ways: Develop a unit distribution capable of fitting data that exhibit a
symmetric, left-skewed, right-skewed, increasing, or bathtub probability density function
(PDF); and formulate a quantile regression model to model a bounded response variable
that is symmetric, skewed, or heavy-tailed. Based on this information, our study’s objectives
are fourfold: Develop the generalized UHLG (GUHLG) distribution to model a bounded
response variable; study the statistical properties of the new distribution; formulate a
quantile regression to model relationships between endogenous and exogenous variables;
and demonstrate the application of our models using risk survey data.

The remainder of this paper is organized as follows: The development of the GUHLG
distribution is given in Section 2. Its statistical properties are presented in Section 3. In
Section 4, the maximum likelihood (ML) method is used to estimate the parameters of the
distribution, and Monte Carlo simulations are performed to examine the suitability of the
method. The quantile regression is formulated in Section 5, and simulation studies are
carried out to investigate how well the considered estimates correspond to the parameters
of the regression model. The univariate and multivariate applications of the models are
presented in Section 6. The conclusion of the study is given in Section 7.

2. GUHLG Distribution

The UHLG distribution was recently introduced in [1]. The authors defined a random
variable X as following the UHLG distribution if its cumulative distribution function (CDF)
and PDF are, respectively, given by

FX(x; α) = 1− α(1− x)
α + (2− α)x

, α > 0, x ∈ (0, 1) (1)

and

fX(x; α) =
2α

(α + (2− α)x)2 , x ∈ (0, 1). (2)

Ramadan et al. [1] demonstrated that the PDF exhibits decreasing, increasing, and constant
shapes for 0 < α < 2, α > 2 and α = 2, respectively. In this paper, we present the
GUHLG distribution, a new generalization of the UHLG distribution based on the power
transformation of X. The power transformation is known to improve the flexibility of the
new distribution by enhancing its tail behavior and making it a suitable choice for modelling
data with monotonic and non-monotonic hazard rate functions (HRFs) (see [11–15]). As
a result, if Y = X1/γ with γ > 0, Y is said to follow the GUHLG distribution if its CDF is
defined by

FY(y; α, γ) = P(Y ≤ y) = P(X1/γ ≤ y) = P(X ≤ yγ)

= 1− α(1− yγ)

α + (2− α)yγ
, α > 0, γ > 0, y ∈ (0, 1). (3)

Thus defined, the GUHLG distribution appears to be a special case of the very general
five-parameter Marshall–Olkin beta distribution created by Jose et al. [16]; it corresponds
to the so-called MOBeta(γ, 1, 0,1, α

2 ) distribution. Thanks to this, several theoretical points
established in [16] can be transposed to our paper. However, thanks to the simplicity of our
case, we are able to provide more precise details for some theoretical results, crucial in our
future statistical work (expression of the median, mode, quantiles, etc.). Thus, the GUHLG
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distribution can be viewed as a motivated extension of the work of Ramadan et al. [1] and a
highlight of a special case in the work of Jose et al. [16], with much more on the inferential
aspect.

The corresponding PDF and HRF of the GUHLG distribution are, respectively, given by

fY(y; α, γ) =
2αγyγ−1

(α + (2− α)yγ)2 , y ∈ (0, 1) (4)

and

hY(y; α, γ) =
2γyγ−1

(1− yγ)(α + (2− α)yγ)
, y ∈ (0, 1). (5)

It can be observed that as y→ 0, fY(y; α, γ) ∼ hY(y; α, γ) ∼ 2γyγ−1

α . This implies that

lim
y→0

fY(y; α, γ) = lim
y→0

hY(y; α, γ) =


∞ if γ < 1
2
α if γ = 1
0 if γ > 1

.

When y→ 1, we also have fY(y; α, γ) = αγ
2 and hY(y; α, γ)→ ∞. The limiting behavior of

the PDF shows that it can exhibit unimodal, reversed-J, bathtub, symmetric, right-skewed,
and left-skewed shapes, as shown in Figure 1. The limiting behavior of the HRF also
suggests that it can have various shapes, such as bathtub, increasing, and N-shaped, as
also shown in Figure 1. It is worth indicating that the PDF does not exhibit the symmetric,
left-skewed, right-skewed, or bathtub shapes. Furthermore, the HRF lacks an N-shape.
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Figure 1. Plots of the PDF (left) and HRF (right).

3. Some Statistical Properties

This section presents the statistical properties of the GUHLG distribution.

3.1. Distributional Inequalities

Distributional inequalities are relevant in the study of first-order stochastic dominance,
which is useful in the study of decision theory and analysis (see [17]).
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Proposition 1. The CDF of the GUHLG distribution is a decreasing function of the parameters α
and γ.

Proof. For y ∈ (0, 1), since yγ − 1 ≤ 0, we have

∂FY(y; α, γ)

∂α
=

2yγ(yγ − 1)
(α + (2− α)yγ)2 ≤ 0.

This implies that FY(y; α, γ) is decreasing with respect to the parameter α. Furthermore, for
y ∈ (0, 1), since log(y) ≤ 0, we have

∂FY(y; α, γ)

∂γ
=

2αyγ log(y)
(α + (2− α)yγ)2 ≤ 0.

This means that FY(y; α, γ) is decreasing with respect to γ. Hence, the proof of the proposi-
tion is complete.

The following first-order stochastic dominance property follows immediately from the
proposition. If α1 ≤ α2, then we have FY(y; α2, γ) ≤ FY(y; α1, γ). Again, if γ1 ≤ γ2, then
we have FY(y; α, γ2) ≤ FY(y; α, γ1).

3.2. Quantile Function

The quantile function (QF) is used in the computation of measures of shapes and
dispersion when the classical moments do not exist and also for the generation of random
observations from a distribution.

Proposition 2. The QF of the GUHLG distribution is given by

Q(p; α, γ) =

(
αp

2− 2p + αp

)1/γ

, p ∈ (0, 1). (6)

Proof. The QF is obtained by solving the equation FY(y; α, γ) = p with respect to y. Hence,
after some manipulations, solving for y in

1− α(1− yγ)

α + (2− α)yγ
= p,

yields the QF of the GUHLG distribution.

The QF can be used to compute measures of shapes such as the Bowley (B) coefficient
of skewness and the Moor (M) coefficient of kurtosis. The B coefficient of skewness is
given by

B =
Q(0.75; α, γ) + Q(0.25; α, γ)− 2Q(0.5; α, γ)

Q(0.75; α, γ)−Q(0.25; α, γ)

and the M coefficient of kurtosis is specified by

M =
Q(0.375; α, γ)−Q(0.125; α, γ) + Q(0.875; α, γ)−Q(0.625; α, γ)

Q(0.75; α, γ)−Q(0.25; α, γ)
.

The plots of the B skewness and M kurtosis are shown in Figure 2. The B skewness plot
shows that the distribution can be left- or right-skewed. Furthermore, the M kurtosis plot
reveals that the distribution can assume platykurtic or leptokurtic shapes.
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Figure 2. Plots of the B skewness (left) and the M kurtosis (right).

The QF can be used to generate random observations of size n from the GUHLG
distribution using the following algorithm:

1. Set the values of the parameters α and γ.
2. Obtain p as a random observation of a random variable that follows the standard

uniform distribution, U(0, 1).

3. Estimate y =
(

αp
2−2p+αp

)1/γ
.

4. Repeat steps 2 and 3 n times to obtain n values: y1, . . . , yn.

3.3. Moments

The non-central moments of a random variable are useful in estimating measures of
central tendency, shape, and dispersion. They always exist for bounded random variables.
In full generality, the following integral gives the rth non-central moment of a GUHLG
distribution random variable:

µ′r =
∫ 1

0
yr 2αγyγ−1

(α + (2− α)yγ)2 dy.

It is worth noting that µ′r exists in the mathematical sense, and satisfies µ′r ∈ (0, 1]. There
is no straightforward analytical expression for µ′r because of the intricate nature of the
integrated function. However, it can always be numerically calculated by setting the
parameter values. Basically, the mean is obtained as µ = µ′1. The first six moments, standard
deviation (SD), coefficient of variation (CV), coefficient of skewness (CS) and coefficient
of kurtosis (CK) are given in Table 1. The first six moments are estimated numerically
using R software. The values for SD, CV, CS, and CK are computed, respectively, using the
following standard formulas:

SD =
√

µ′2 − µ2, CV =
SD
µ

=

√
µ′2
µ2 − 1,

CS =
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)
3
2

and CK =
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2 .

From Table 1, the values of CS suggest that the distribution can be left- or right-skewed. On
the other hand, the values of CK reveal that the distribution can be platykurtic or leptokurtic.
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Table 1. Moments, SD, CV, CS and CK.

(α, γ) = (0.8, 3.5) (α, γ) = (0.2, 0.6) (α, γ) = (2.5, 0.4) (α, γ) = (4.5, 2.3)

µ′1 0.681 0.092 0.322 0.790
µ′2 0.503 0.038 0.195 0.662
µ′3 0.392 0.024 0.140 0.574
µ′4 0.318 0.017 0.109 0.508
µ′5 0.266 0.013 0.090 0.457
µ′6 0.227 0.011 0.076 0.416

SD 0.196 0.172 0.302 0.195
CV 0.288 1.878 0.936 0.247
CS −0.413 2.842 0.675 −1.246
CK 2.446 11.341 2.166 4.026

3.4. Order Statistics

The usefulness of order statistics in the areas of finance and insurance is not new in the
literature. The applications of order statistics in the study of low or high events, last survivor
policies, and exceedances, among others, are essential in finance and insurance. The authors
in [18] employed the concept of order statistics to study the expected utility insurance
premium principle. The authors of [19] studied ruin and deficit under claim arrivals that
exhibit order statistics property. The authors of [20] illustrated how to compute maximum
loss using order statistics. On the other hand, the authors of [21] used the properties of
order statistics to demonstrate their application in fire protection and insurance problems.
The values of the order statistics are obtained when we arrange the observations from the
distribution of Y in ascending order. Let Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n be the order statistics
of the random sample Y1, Y2, . . . , Yn from the GUHLG distribution. Using the expanded
form of the PDF of Yk:n (see [22]), for k = 1, 2, . . . , n, the PDF of Yk:n for the GUHLG
distribution is

fk:n(y; α, γ) = Dk:n

k−1

∑
j=0

(−1)j
(

k− 1
j

)
2αγyγ−1(α(1− yγ))n−k+j

(α + (2− α)yγ)n−k+j+2 , (7)

where

Dk:n =
n!

(k− 1)!(n− k)!
.

The smallest (Y1:n) and largest (Yn:n) order statistics can be used to predict the mini-
mum and maximum occurrence of extreme events, respectively. Hence, their distributions
are of interest for further probabilistic or statistical analysis. Here, the PDF of Y1:n is
given by

f1:n(y; α, γ) = n fY(y; α, γ)[1− FY(y; α, γ)]n−1

=
2nαγyγ−1(α(1− yγ))n−1

(α + (2− α)yγ)n+1

and that of Yn:n is

fn:n(y; α, γ) = n fY(y; α, γ)[FY(y; α, γ)]n−1

=
2nαγyγ−1

(α + (2− α)yγ)2

(
1− α(1− yγ)

α + (2− α)yγ

)n−1

.
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The possible shapes of the distribution can be investigated using the minimum and maxi-
mum (min–max) plots of the order statistics. These plots depend on E(Y1:n) and E(Yn:n).
The min–max plot can be used to describe the possible shapes of the distribution. The
min–max plots of the GUHLG distribution shown in Figure 3 reveal that the GUHLG
distribution can be left- or right-skewed.
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Figure 3. Min–max plots of the GUHLG distribution.

4. Parameter Estimation

In this section, we present how to estimate the parameters of the GUHLG distribu-
tion using the ML method. Suppose that y1, y2, . . . , yn are independent and identically
distributed random observations of size n from the GUHLG distribution representing the
data. The log-likelihood function is then given by

` = n log(2αγ) + (γ− 1)
n

∑
i=1

log(yi)− 2
n

∑
i=1

log(α + (2− α)yγ
i ). (8)

The estimates of the parameters can be obtained by directly maximizing the function in
Equation (8) according to the parameters. Alternatively, the estimates can be obtained
by finding the partial derivatives of the log-likelihood function and solving the resulting
system simultaneously. In this case, we need

∂`

∂α
=

n
α
− 2

n

∑
i=1

1− yγ
i

α + (2− α)yγ
i

(9)

and

∂`

∂γ
=

n
γ
+

n

∑
i=1

log(yi)− 2
n

∑
i=1

(2− α) log(yi)y
γ
i

α + (2− α)yγ
i

. (10)

Equating Equations (9) and (10) to zero and solving them simultaneously gives the ML
estimates of the parameters. However, the solutions of these equations do not have a closed
form. Hence, numerical methods are employed. The random version of the vector of the
ML estimates of the parameters has an approximate bivariate normal distribution with
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zero mean, 0, and variance–covariance J−1 under the mild regularity conditions (see [23]),
where J is the observed information matrix given by

J = −
(

∂2`
∂α2

∂2`
∂α∂γ

∂2`
∂α∂γ

∂2`
∂γ2

)∣∣∣∣∣
(α,γ)=(α̂,γ̂)

.

The elements of J are given by

∂2`

∂α2 = − n
α2 + 2

n

∑
i=1

(1− yγ
i )

2

(α + (2− α)yγ
i )

2
, (11)

∂2`

∂γ2 = − n
γ2 − 2

n

∑
i=1

(
(2− α)(log(yi))

2yγ
i

α + (2− α)yγ
i

−
(2− α)2(log(yi))

2y2γ
i

(α + (2− α)yγ
i )

2

)
(12)

and

∂2`

∂α∂γ
=

∂2`

∂γ∂α
= 2

n

∑
i=1

(
(2− α) log(yi)y

γ
i (1− yγ

i )

(α + (2− α)yγ
i )

2
+

log(yi)y
γ
i

α + (2− α)yγ
i

)
. (13)

The variance–covariance matrix can be used to obtain interval estimates of the parame-
ters. The approximate 100(1− υ)% confidence interval for the parameters are given by

α̂± zυ/2

√
J−1
αα and γ̂± zυ/2

√
J−1
γγ , where zυ/2 is the upper ( υ

2 )th percentile of the standard

normal distribution and J−1
ii and the diagonal elements of J−1 for i = α and γ.

Simulation Studies

In this subsection, Monte Carlo simulation experiments are conducted to investigate
the performance of the ML method in estimating the parameters of the distribution. The
experiments are carried out using small, moderate, and large sample sizes. Random
observations of size n = 20, 60, 100, 250, 500, 800 and 1000 are generated from the GUHLG
distribution using its QF given in Equation (6). The experiments are replicated 5000 times
for each sample size. The following three parameter combinations: I: α = 0.01, γ = 2.6; II:
α = 0.01, γ = 15.3 and III: α = 0.01, γ = 0.8 are used during the simulations. The performance
of the ML method is assessed using the mean estimate (ME), average bias (AB), average
relative bias (ARB), root mean square error (RMSE) and coverage probability (CP) of the
ML estimates. The algorithm for the Monte Carlo simulation is as follows:

1. Generate 5000 random samples of size n = 20, 60, 100, 250, 500, 800 and 1000 from the
GUHLG distribution using the algorithm discussed in Section 3.3.

2. Find the ML estimates of the parameters.
3. Compute the MEs, ABs, ARBs, RMSEs, and CPs of the parameters.
4. Repeat steps 1 to 3 for the three parameter combinations.

The MEs approach the true values of the parameters as the sample size increases. The
ABs, ARBs, and RMSEs decrease as the sample size increases, as shown in Table 2. This
suggests that the consistency property of the ML method has been attained. The CPs of
the parameters are quite high and approach the nominal value of 0.95 as the sample size
increases. Hence, it can be concluded that the ML method estimates the parameters well.
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Table 2. Simulation results.

Parameter n
I: α = 0.01, γ = 2.6 II: α = 0.01, γ = 15.3 III: α = 0.01, γ = 0.8

ME AB ARB RMSE CP ME AB ARB RMSE CP ME AB ARB RMSE CP

α

20 0.013 0.010 0.964 0.017 0.795 0.012 0.009 0.919 0.015 0.782 0.013 0.010 0.964 0.016 0.781
60 0.011 0.005 0.531 0.007 0.877 0.011 0.005 0.522 0.007 0.881 0.011 0.005 0.535 0.007 0.870

100 0.011 0.004 0.418 0.006 0.887 0.011 0.004 0.413 0.006 0.893 0.011 0.004 0.404 0.005 0.905
250 0.010 0.003 0.253 0.003 0.927 0.010 0.003 0.258 0.003 0.926 0.010 0.003 0.253 0.003 0.928
500 0.010 0.002 0.179 0.002 0.943 0.010 0.002 0.181 0.002 0.938 0.010 0.002 0.181 0.002 0.941
800 0.010 0.001 0.145 0.002 0.940 0.010 0.001 0.145 0.002 0.942 0.010 0.001 0.147 0.002 0.939
1000 0.010 0.001 0.130 0.002 0.944 0.010 0.001 0.129 0.002 0.950 0.010 0.001 0.134 0.002 0.942

γ

20 2.769 0.450 0.173 0.599 0.951 16.464 2.742 0.179 3.634 0.952 0.855 0.142 0.177 0.185 0.957
60 2.654 0.246 0.095 0.316 0.948 15.622 1.433 0.094 1.836 0.953 0.819 0.077 0.096 0.098 0.951

100 2.636 0.194 0.075 0.245 0.947 15.506 1.104 0.072 1.393 0.949 0.810 0.057 0.071 0.072 0.951
250 2.613 0.118 0.045 0.147 0.947 15.372 0.690 0.045 0.862 0.952 0.804 0.036 0.045 0.045 0.955
500 2.606 0.081 0.031 0.102 0.953 15.336 0.485 0.032 0.605 0.952 0.802 0.025 0.032 0.032 0.952
800 2.606 0.067 0.026 0.083 0.949 15.340 0.390 0.025 0.485 0.951 0.801 0.021 0.026 0.026 0.947
1000 2.603 0.060 0.023 0.074 0.952 15.313 0.345 0.023 0.430 0.951 0.801 0.019 0.024 0.023 0.949
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5. Quantile Regression

The development of parametric quantile regressions has received much attention
recently due to their robustness when it comes to modelling asymmetric data or data
containing extreme values. The quantile regression is also capable of handling asymmetric
and heavy-tailed response variables defined on the interval (0, 1). The development of
these regressions requires re-parametrization of the PDFs of the distribution in terms
of the quantile to obtain the quantile PDF (see [2,22,24–28]). To formulate the GUHLG
distribution quantile regression model, we first make the parameter α the subject in the
QF of the GUHLG distribution and then substitute it in the CDF and PDF. These give the
quantile CDF and PDF of the GUHLG distribution after simplifications. The quantile CDF
and PDF are, respectively, given by

FY(y; p, µ, γ) = 1− 2µγ(p− 1)(1− yγ)

p(µγ − 1)
[

2µγ(p−1)
p(µγ−1) +

(
2− 2µγ(p−1)

p(µγ−1)

)
yγ
] , y ∈ (0, 1) (14)

and

fY(y; p, µ, γ) =
4γµγ(p− 1)yγ−1

p(µγ − 1)
[

2µγ(p−1)
p(µγ−1) +

(
2− 2µγ(p−1)

p(µγ−1)

)
yγ
]2 , y ∈ (0, 1), (15)

where µ ∈ (0, 1) is the quantile parameter and p ∈ (0, 1). When we substitute
p = 0.10, 0.25, 0.50, 0.75 and 0.90, the 10th, 25th, 50th, 75th and 90th percentile PDFs are
obtained. Figure 4 shows the quantile PDF plots for different quantiles and parameter val-
ues. The quantile PDF shows different shapes such as left-skewed, right-skewed, decreasing,
increasing, symmetric, and bathtub. This is an indication that the regression model formu-
lated from this PDF is flexible enough to handle bounded data with such characteristics.
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Figure 4. Quantile PDF plots.
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Let y1, y2, . . . , yn be random observations from the GUHLG distribution, and x1, x2, . . . , xn
be non-random exogenous variables. Then, the GUHLG quantile regression is obtained
by relating the conditional quantile of the response variable and the exogenous variables
using an appropriate link function in the following manner:

g(µi) = xT
i η, (16)

where η = (η0, η1, . . . , ηk)
T is the vector of the coefficients of the exogenous variables,

xT
i = (1, xi1, xi2, . . . , xik), and g(·) is the desired link function. Although different link

functions exist, such as the logit, probit, and complementary log-log, among others, the
logit link function is used in this study due to the ease of interpretation of the exogenous
variable coefficients. Hence, we have the following regression structure:

logit(µi) = log
(

µi
1− µi

)
= xT

i η. (17)

To obtain the log-likelihood to estimate the parameters of the regression model, we substitute

µi =
exp(xT

i η)

1 + exp(xT
i η)

into the quantile PDF. The log-likelihood function is therefore given by

` =n log(4γ(1− p)) + γ
n

∑
i=1

log(µi) + (γ− 1)
n

∑
i=1

log(yi)−
n

∑
i=1

log(p(1− µ
γ
i ))−

2
n

∑
i=1

log

(
2µ

γ
i (p− 1)

p(µγ
i − 1)

+

(
2−

2µ
γ
i (p− 1)

p(µγ
i − 1)

)
yγ

i

)
. (18)

The estimates of the parameters are obtained by maximizing Equation (18) with respect to
the parameters. Alternatively, we can consider the elements of the score vector obtained by
differentiating Equation (18) with respect to the parameters. They are given by

∂`

∂γ
=

n
γ
+

n

∑
i=1

log(µi) +
n

∑
i=1

log(yi)−
n

∑
i=1

µ
γ
i log(µi)

µ
γ
i − 1

−

2
n

∑
i=1


(

log(µi)−
µ

γ
i log(µi)

(µ
γ
i −1)

)
(1− yγ

i ) + yγ
i

(
p(µγ

i −1)
(p−1)µγ

i
− 1
)

log(yi)

1 + yγ
i

(
p(µγ

i −1)
(p−1)µγ

i
− 1
)

,

∂`

∂ηr
= γ

(
n

∑
i=1

1
µi
−

n

∑
i=1

µ
γ−1
i

µ
γ
i − 1

)
∂µi
∂ηr
− 2γ

n

∑
i=1

 (1− yγ
i )

(
µ

γ
i

µ
γ
i −1

+ 1
)

1 + yγ
i

(
p(µγ

i −1)
(p−1)µγ

i
− 1
)
 ∂µi

∂ηr
,

for r = 1, 2, . . . , k. By taking into account the logit link function, we have

∂µi
∂ηr

= µi(1− µi)xir, i = 1, 2, . . . , n; r = 1, 2, . . . , k.

The estimates of the parameters can be obtained by equating the elements of the score
vector to zero and solving the resulting system of equations simultaneously. The median
regression is fitted by putting p = 0.50 into Equation (18) and then maximizing the
resulting log-likelihood function. The estimates of the standard errors of the parameters
are obtained based on the large sample property of the ML technique. The authors of [29]
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have shown that the observed Fisher information matrix for estimating standard errors of
the parameters is

I(η̂) = −∂`(η|y)
∂ηT∂ηT |η=η̂.

5.1. Residual Analysis

After using the regressions to model datasets, it is imperative to examine whether
the models provide an adequate fit to the data. This can easily be performed by assessing
the behavior of the model’s residuals. In this study, the randomized quantile residuals
(RQRs) of the models are assessed to see if the model provides a good fit to the data. For
any i = 1, 2, . . . , n, the ith RQR is given by

ri = Φ−1(FY(yi; η̂)),

where Φ−1(·) is the inverse CDF (or QF) of the standard normal distribution and η̂ is the
estimated vector of parameters of the model. The RQRs are expected to follow the standard
normal distribution if the model provides good fit to the data (see [30]).

5.2. Monte Carlo Simulations for Regressions

In this subsection, Monte Carlo simulations are performed to investigate how well
the ML method estimates the parameters of the quantile regression. The simulation ex-
ercise is repeated 5000 times for each sample size n = 20, 60, 100, 250, 500, 800 and 1000.
The following parameter combinations are used for the quantile regression simulation:
(η0, η1, η2, γ) = (0.3, 0.2, 0.7, 1.3) and (η0, η1, η2, γ) = (1.3, 0.5, 0.4, 2.5). The following
regression structure is considered:

log
(

µi
1− µi

)
= η0 + η1xi1 + η2xi2

for the simulation. The simulation exercise is performed using the median regression by
substituting p = 0.5. The exogenous variable, xi1, is a binary variable generated from the
Bernoulli distribution with probability 0.5, and xi2 is a continuous variable generated from
the standard normal distribution. These exogenous variables are held as fixed constants
during the simulation. The observations for the endogenous variable are random samples
generated using the inversion method. The performance of the ML method is assessed
using the ME, AB, ARB, RMSE, and CP. The simulation algorithm for the regression is
as follows:

1. Generate the exogenous variables xi1 and xi2 from the Bernoulli and standard normal
distributions, respectively.

2. Generate the endogenous variable yi using

yi =
αiui

2− 2ui + αiui
,

where ui is an observation from standard uniform distribution, αi =
2µ

γ
i (p−1)

p(µγ
i −1)

and

µi =
exp(η0+η1xi1+η2xi2)

1+exp(η0+η1xi1+η2xi2)
.

3. Compute the ML estimates of the parameters of the regression model.
4. Compute the MEs, ABs, ARB, RMSEs and CPs of the parameters.
5. Repeat steps 1 to 4 for the two parameter combinations.
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Tables 3 and 4 present the simulation results for the quantile regression for different
conditional quantiles. The results show that the MEs approach the true parameter value
as the sample size increases. Furthermore, the ABs, ARBs, and RMSEs decrease as the
sample size increases. The CPs are quite high and close to the 0.95 value. Hence, the ML
approach estimates the parameters of the quantile regression for the different conditional
quantiles well.

Table 3. Quantile regression simulation results for (η0, η1, η2, γ) = (0.3, 0.2, 0.7, 1.3).

Parameter n ME AB ARB RMSE CP

η0

20 0.200 0.220 0.734 0.249 0.999

60 0.275 0.166 0.553 0.200 0.999

100 0.274 0.120 0.399 0.146 0.999

250 0.276 0.090 0.301 0.113 0.959

500 0.302 0.071 0.235 0.087 0.956

800 0.305 0.056 0.186 0.069 0.952

1000 0.297 0.055 0.182 0.068 0.931

η1

20 0.324 0.314 1.571 0.425 0.980

60 0.248 0.214 1.069 0.265 0.984

100 0.235 0.184 0.920 0.226 0.978

250 0.213 0.129 0.647 0.157 0.981

500 0.196 0.099 0.494 0.119 0.984

800 0.197 0.075 0.373 0.094 0.962

1000 0.203 0.073 0.364 0.090 0.955

η2

20 0.704 0.254 0.363 0.325 0.933

60 0.696 0.156 0.223 0.197 0.928

100 0.698 0.115 0.164 0.144 0.946

250 0.704 0.072 0.102 0.089 0.947

500 0.699 0.051 0.072 0.063 0.941

800 0.701 0.040 0.057 0.049 0.962

1000 0.699 0.036 0.052 0.046 0.940

γ

20 2.468 0.911 0.506 1.177 0.925

60 1.962 0.385 0.214 0.489 0.935

100 1.836 0.215 0.120 0.268 0.966

250 1.851 0.134 0.074 0.169 0.969

500 1.842 0.113 0.063 0.138 0.965

800 1.812 0.089 0.050 0.112 0.934

1000 1.806 0.079 0.044 0.101 0.928
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Table 4. Quantile regression simulation results for (η0, η1, η2, γ) = (1.3, 0.5, 0.4, 2.5).

Parameter n ME AB ARB RMSE CP

η0

20 1.323 0.302 0.233 0.381 0.965

60 1.262 0.191 0.147 0.242 0.963

100 1.329 0.168 0.129 0.207 0.957

250 1.277 0.099 0.076 0.125 0.962

500 1.298 0.076 0.058 0.096 0.932

800 1.303 0.057 0.044 0.072 0.951

1000 1.304 0.052 0.040 0.066 0.943

η1

20 0.630 0.490 0.980 0.601 0.955

60 0.520 0.295 0.589 0.360 0.962

100 0.514 0.240 0.480 0.296 0.966

250 0.503 0.144 0.289 0.183 0.952

500 0.502 0.108 0.217 0.136 0.942

800 0.495 0.083 0.166 0.102 0.961

1000 0.496 0.076 0.153 0.096 0.946

η2

20 0.433 0.268 0.670 0.325 0.943

60 0.407 0.160 0.401 0.202 0.936

100 0.400 0.120 0.299 0.151 0.943

250 0.399 0.075 0.188 0.095 0.946

500 0.399 0.049 0.123 0.062 0.955

800 0.400 0.042 0.104 0.052 0.948

1000 0.402 0.037 0.093 0.047 0.946

γ

20 3.548 1.848 0.739 2.363 0.843

60 2.787 0.562 0.225 0.685 0.997

100 2.653 0.556 0.222 0.711 0.942

250 2.521 0.302 0.121 0.381 0.929

500 2.536 0.189 0.076 0.240 0.965

800 2.488 0.165 0.066 0.203 0.953

1000 2.519 0.142 0.057 0.180 0.946

6. Application

In this section, the univariate and multivariate applications of the developed distribu-
tion are illustrated.

6.1. Univariate Application

In this subsection, the univariate application of the GUHLG distribution is illustrated
using insurance data. The data denote the firm cost (firm-specific ratio of premiums plus
uninsured losses divided by total assets) reported by 73 managers out of 374 questionnaires
sent to managers in large U.S.-based organizations. The data were first reported by Schmit
and Roth [31]. Researchers, such as those in [1,2,32], studied the data by dividing it by 100
to rescale it on the unit interval. The GUHLG distribution is fitted to the data, and its per-
formance is compared to that of the UHLG distribution, beta distribution, Kumaraswamy
distribution, unit power Weibull (UPW) distribution (see [33]), log-XLindley (LXL) distri-
bution (see [34]), log-Bilal (LB) distribution (see [35]), unit Burr XII (UBXII) distribution
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(see [36]), unit Burr III (UBIII) distribution (see [37]), unit Weibull (UW) distribution (see [5])
and exponentiated Topp-Leone (ETL) distribution (see [38]). The comparison benchmarks
are the −2`, Akaike information criterion (AIC), AIC difference (∆AIC), Akaike weights
(ω), Bayesian information criterion (BIC) and Kolmogorov–Smirnov (KS) statistic. The
∆AIC is estimated using ∆AIC = AICi −AICmin, i = 1, 2, . . . , R, where R is the number of
distributions to be compared. The best distribution has ∆AIC = 0. The difference in the
performance of the distributions is considered significant if ∆AIC > 2. The Akaike weights
are computed using the following formula:

ω =
exp(−∆AIC/2)

∑R
i=1 exp(−∆AICi/2)

.

We recall that the Akaike weight of a distribution is interpreted as the likelihood that the
distribution is the best given the data and the other distributions under consideration. The
higher the weight, the better the distribution. We consider distributions with ω > 0.9 as
the best. Furthermore, the distribution with the smallest values of −2`, AIC, BIC and KS
is considered the best. Figure 5 displays the kernel density, boxplot, and violin plots of
the data. The plots clearly show that the data are right-skewed and contain some outliers.
The ML estimates of the parameters and their standard errors, AIC, ∆AIC, ω, BIC and KS
values are given in Table 5. The GUHLG distribution has the smallest values of −2`, AIC,
BIC and KS. It has ∆AIC = 0 and ω = 0.9518. Thus, the GUHLG distribution provides the
best fit to the data.

We further explore how well the GUHLG distribution fits the given data using the
probability–probability (P-P) plots in Figure 6. These plots further suggest that the GUHLG
distribution provides the best fit to the data.

To ascertain whether the ML estimates of the parameters of the GUHLG distribution
are unique and represent the true maxima, we plot the profile log-likelihood plots of the
parameters in Figure 7. This figure reveals that the estimates are unique and true maxima.
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Table 5. Estimates, information criteria and goodness-of-fit statistics.

Distribution α γ λ −2` AIC ∆AIC ω BIC KS (p Value)

GUHLG
0.038 1.432 −187.265 −183.265 0.000 0.952 −178.684

0.063
(0.019) (0.161) (0.937)

UHLG
0.132 −179.071 −177.071 6.194 0.043 −174.780

0.119
(0.025) (0.252)

Beta
0.613 3.798 −152.235 −148.235 35.030 <0.001 −143.654

0.181
(0.086) (0.715) (0.017)

Kumaraswamy
0.665 3.441 −157.308 −153.308 29.957 <0.001 −148.727

0.154
(0.072) (0.621) (0.064)

UBIII
0.234 1.532 −123.663 −119.663 63.602 <0.001 −115.082

0.318
(0.052) (0.297) (7.477× 10−7)

UG
0.150 0.605 −174.298 −170.298 12.967 0.002 −165.717

0.131
(0.055) (0.076) (0.162)

UW
0.0655 2.353 −176.201 −172.201 11.064 0.004 −167.620

0.093
(0.020) (0.214) (0.552)

ETL
0.654 1.961 −153.906 −149.906 33.358 <0.001 −145.325

0.165
(0.080) (0.322) (0.037)

LXL
0.500 −129.518 −127.518 55.746 <0.001 −125.228

0.304
(0.044) (2.883× 10−6)

LB
3.164 −149.953 −147.953 35.312 <0.001 −145.662

0.264
(0.282) (7.515× 10−5)

UPW
500.000 0.700 0.001 −165.738 −159.738 23.526 <0.001 −152.867

0.126
(9.669× 10−8) (0.054) (7.558× 10−4) (0.196)

UBXII
0.348 2.841 −93.013 −89.013 94.252 <0.001 −84.432

0.338
(0.063) (0.421) (1.169× 10−7)
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Figure 6. P-P plots of fitted distributions.
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6.2. Multivariate Application

In this subsection, the multivariate application of the GUHLG quantile regression is
illustrated. We demonstrate both the frequentist and Bayesian approaches to fitting the
regression model to the given data.
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6.2.1. Frequentist Approach

The ML estimation approach is used here to study the effects of the exogenous vari-
ables on the conditional median of the endogenous variable. The exogenous variables are:

• ASSUME: Ratio of per occurrence retention levels to total assets.
• CAP: The firm’s use of captive (1 if yes and 0 if no).
• SIZELOG: Logarithm of the firm’s total asset value.
• INDCOST: Industry average of premiums plus uninsured losses divided by total

assets (a measure of the firm’s industry risk).
• CENTRAL: Importance of local managers in choosing local retention levels.
• SOPH: Importance of analytical tools in making risk management decisions.

The effects of these exogenous variables on the response variable have been studied by a
number of researchers. Recent studies on these variables include: [1,2,32]. More precisely, the
authors of [1] fitted the UHLG median regression, the authors of [2] fitted the unit exponen-
tiated Fréchet (UEF) median regression, and the authors of [32] used the unit Weibull (UW)
median regression to investigate the relationship between the variables. The authors of [2]
recently showed that UEF median regression (AIC = −222.2699, BIC = −201.6400) provided
a better fit to the data than the UW median regression (AIC = −206.2200, BIC = −187.9000),
Kumaraswamy median regression (AIC= −181.6500, BIC= −163.3300) and beta mean re-
gression (AIC = −159.4500, BIC = −141.3610). The authors of [1] also revealed that the
UHLG median regression (AIC = −192.3414, BIC = −176.3081) performs better than the LB
median regression (AIC = −151.4600, BIC = −135.4200), Kumaraswamy median regression,
and the beta mean regression. Here, we examine the relationship using the following
regression structure:

log
(

µi
1− µi

)
=η0 + η1ASSUME + η2CAP + η3SIZELOG + η4INDCOST+

η5CENTRAL + η6SOPH.

The exploratory analysis of the response variable shown in Figure 5 suggests that regression
models capable of handling extremely skewed data should be used to study the relationship.
Hence, our justification for using such a proposed model. Table 6 presents the estimates
of the parameters and information criteria for the GUHLG median and UHLG median
regressions. The GUHLG median regression outperforms the models studied in [1,2,32].
The GUHLG median regression provided a very good fit to the data. The GUHLG median
regression is therefore the best model and provides a significantly better fit to the data
compared to the UHLG median regression. We assess the adequacy of the fitted regression
models using the P-P (top row) and quantile–quantile (Q-Q) (bottom row) plots of the RQR.
The P-P and Q-Q plots in Figure 8 give an indication that the GUHLG median regression
provides adequate fit to the data. Although the Q-Q plot shows some outliers, since a larger
portion of the residuals are within the simulated envelopes, the model is adequate. Using
the best model (GUHLG median), we observe that the variables that significantly influence
the firm’s cost are the SIZELOG and INDCOST.
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Table 6. Estimates of the regression parameters and information criteria.

Parameter
GUHLG Median UHLG Median

Estimates Standard Error p Value Estimates Standard Error p-Value

η0 3.985 1.211 0.001 4.128 2.067 0.046
η1 −0.012 0.012 0.310 −0.012 0.022 0.580
η2 −0.053 0.223 0.814 0.018 0.404 0.965
η3 −0.909 0.125 <0.001 −0.918 0.208 <0.001
η4 2.343 0.623 <0.001 2.145 0.909 0.018
η5 −0.137 0.084 0.103 −0.092 0.151 0.544
η6 0.009 0.020 0.635 0.005 0.036 0.895
γ 2.203 0.227 <0.001

−2` = −244.962 −2` = −206.341
AIC = −228.962 AIC = −192.341
BIC = −210.639 BIC = −176.308

●●
●●●●●●●●

●●●●●●●●●●●●
●●

●●
●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

GUHLG Median Regression

Observed probability

E
xp

ec
te

d 
pr

ob
ab

ili
ty

●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

UHLG Median Regression

Observed probability

E
xp

ec
te

d 
pr

ob
ab

ili
ty

−2 −1 0 1 2

−
2

0
1

2
3

4

GUHLG Median Regression

Theoretical Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

● ●

● ● ● ● ● ● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

● ● ●
●

● ●

●15

10

−2 −1 0 1 2

−
1

0
1

2
3

UHLG Median Regression

Theoretical Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

● ●

● ● ● ● ● ● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

● ●
● ●

● ●

●15

10

Figure 8. P-P and Q-Q plots of the RQR.

6.2.2. Bayesian Approach

In this subsection, we illustrate how to fit the GUHLG median regression using the
Bayesian method. To proceed with the Bayesian analysis, we first need to establish the prior
distributions of the parameters of the regression model. The prior distribution used for the
parameter γ is the non-informative gamma distribution, while that of η is the informative
normal distribution. Hence, the prior distributions are:

P(γ) ∼ Gamma(a1, b1) =
ba1

1 γa1−1

Γ(a1)
exp(−b1γ), a1 > 0, b1 > 0, γ > 0

and

P(ηT) ∼ N(a2, b2) =
1√

2πb2
exp

(
−
(ηj − a2)

2

2b2

)
, ηj ∈ R, a2 ∈ R, b2 > 0, j = 1, 2, . . . , 6.

For more information on the impact of prior distributions on the Bayesian estimates,
see [39–41]. The joint PDF of the prior distributions is

P(γ, ηT) = P(γ)P(ηT).
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Thus, the joint posterior distribution of the parameters is

P(γ, ηT|y) ∝
n

∏
i=1

fY(yi; p, µi, γ)× P(γ, ηT),

where ∏n
i=1 fY(yi; p, µi, γ) is the likelihood function of the quantile GUHLG distribution.

Since, the joint posterior distribution is not tractable, we employ the Markov chain Monte
Carlo (MCMC) algorithm to draw posterior samples from which the marginal distributions
are inferred. For the parameter γ, we use the hyperparameter values a1 = b1 = 0.001 and,
for η, we use the hyperparameter values a2 = 0 and b2 = 0.001. The analysis is carried out
using three independent chains, each with 600,000 values and a burn-in of 150,000. The
thinning interval used is 50, and the sample size per chain is 9000. The R2jags package
(see [42]) is used to perform the analysis. The potential reduction scale factor (R̂), the
effective sample size (neff), trace plots, ergodic mean plots, and autocorrelation plots are
used to examine the chains’ convergence to stationary distribution. The Bayesian estimates
of the parameters, as well as their standard deviation (SD), naive standard error (SE), R̂,
and neff, are shown in Table 7. We observe that the Bayesian estimates are quite close to
the ML estimates. The estimated deviance information criterion (DIC) is −227.0000, which
is very close to the estimated AIC value using the ML method. The neff is greater than
400, and R̂ is approximately 1. This implies that the MCMC algorithm has converged to a
stationary distribution.

Table 7. Estimates of the regression parameters and information criteria.

Parameter Estimate SD Naïve SE 2.5% 25% 50% 75% 97.7% R̂ neff

η0 3.968 1.292 0.008 1.428 3.110 3.966 4.835 6.4835 1.001 15,000
η1 −0.011 0.016 0.000 −0.040 −0.021 −0.011 −0.001 0.022 1.001 27,000
η2 −0.046 0.240 0.002 −0.509 −0.208 −0.049 0.116 0.430 1.001 27,000
η3 −0.908 0.132 0.001 −1.168 −0.997 −0.908 −0.819 −0.651 1.001 27,000
η4 2.373 0.657 0.004 1.111 1.927 2.368 2.806 3.690 1.001 27,000
η5 −0.130 0.090 0.001 −0.305 −0.190 −0.131 −0.069 0.050 1.001 7000
η6 0.009 0.021 0.000 −0.033 −0.006 0.009 0.023 0.050 1.001 14,000
γ 2.078 0.225 0.001 1.654 1.924 2.071 2.227 2.537 1.001 27,000

The convergence of the MCMC algorithm is further explored using trace plots. Figure 9
reveals that this algorithm converges with no periodicity.

The ergodic mean plots shown in Figure 10 affirm the convergence of the MCMC
algorithm. From these plots, the ergodic mean stabilizes as the chain progresses.

The autocorrelation plots displayed in Figure 11 show a fast decay, which gives an
indication that the chains are well mixed and converge to a stationary distribution.
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Figure 9. Trace plots of the parameters.
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7. Conclusions

The GUHLG distribution was studied and then employed to formulate quantile re-
gressions. Some statistical properties, such as distributional inequalities, quantile measures,
moments, and order statistics, were derived. The PDF plots suggest that the distribution
is capable of modelling data that may have the following characteristics: left-skewed,
right-skewed, symmetric, increasing, or bathtub-shaped PDFs. The HRF plots showed that
the distribution is capable of modelling data with bathtub, increasing, or N-shaped failure
rates. The univariate application of the model using risk survey data revealed that it can
provide a better parametric fit than other existing bounded distributions. This is because it
has the lowest information criterion and goodness-of-fit statistics. Hence, it offers minimal
loss of information compared to the other distributions. The multivariate application using
the developed quantile regression model showed that the new regression model provides a
better fit to the risk survey data than other regression models that have already been used
to model the data. Finally, we illustrated the multivariate application using frequentist and
Bayesian methods. The estimates of the parameters from the two methods were quite close.
Diagnostic checks of the Bayesian method showed that the MCMC algorithm converges to
a stationary distribution. Our future extension of this research is to develop an R package
for the univariate and multivariate models.
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