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Abstract: We present a number of upper and lower bounds for the total variation distances be-
tween the most popular probability distributions. In particular, some estimates of the total variation
distances in the cases of multivariate Gaussian distributions, Poisson distributions, binomial distri-
butions, between a binomial and a Poisson distribution, and also in the case of negative binomial
distributions are given. Next, the estimations of Lévy–Prohorov distance in terms of Wasserstein
metrics are discussed, and Fréchet, Wasserstein and Hellinger distances for multivariate Gaussian
distributions are evaluated. Some novel context-sensitive distances are introduced and a number of
bounds mimicking the classical results from the information theory are proved.
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1. Introduction

Measuring a distance, whether in the sense of a metric or a divergence, between two
probability distributions (PDs) is a fundamental endeavor in machine learning and statis-
tics [1]. We encounter it in clustering, density estimation, generative adversarial networks,
image recognition and just about any field that undertakes a statistical approach towards
data. The most popular case is measuring the distance between multivariate Gaussian
PDs, but other examples such as Poisson, binomial and negative binomial distributions,
etc., frequently appear in applications too. Unfortunately, the available textbooks and
reference books do not present them in a systematic way. Here, we make an attempt
to fill this gap. For this aim, we review the basic facts about the metrics for probability
measures, and provide specific formulae and simplified proofs that could not be easily
found in the literature. Many of these facts may be considered as a scientific folklore known
to experts but not represented in any regular way in the established sources. A tale that
becomes folklore is one that is passed down and whispered around. The second half of
the word, lore, comes from Old English lār, i.e., ‘instruction’. The basic reference for the
topic is [2], and, in recent years, the theory has achieved substantial progress. A selection of
recent publications on stability problems for stochastic models may be found in [3], but not
much attention is devoted to the relationship between different metrics useful in specific
applications. Hopefully, this survey helps to make this treasure more accessible and easy
to handle.

The rest of the paper proceeds as follows: In Section 2, we define the total variation,
Kolmogorov–Smirnov, Jensen–Shannon and geodesic metrics. Section 3 is devoted to the
total variation distance for 1D Gaussian PDs. In Section 4, we survey a variety of different
cases: Poisson, binomial, negative-binomial, etc. In Section 5, the total variation bounds for
multivariate Gaussian PDs are presented, and they are proved in Section 6. In Section 7,
the estimations of Lévy–Prohorov distance in terms of Wasserstein metrics are presented.
The Gaussian case is thoroughly discussed in Section 8. In Section 9, a relatively new topic
of distances between the measures of different dimensions is briefly discussed. Finally,
in Section 10, new context-sensitive metrics are introduced and a number of inequalities
mimicking the classical bounds from information theory are proved.
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2. The Most Popular Distances

The most interesting metrics on the space of probability distributions are the to-
tal variation (TV), Lévy–Prohorov, Wasserstein distances. We will also discuss Fréchet,
Kolmogorov–Smirnov and Hellinger distances. Let us remind readers that, for probability
measures P, Q with densities p, q,

TV(P, Q) = sup
A⊂Rd

|P(A)−Q(A)| = 1
2

∫
Rd
|p(u)− q(u)|du (1)

We need the coupling characterization of the total variation distance. For two distri-
butions, P and Q, a pair (X, Y) of random variables (r.v.) defined on the same probability
space is called a coupling for P and Q if X ∼ P and Y ∼ Q. Note the following fact: there
exists a coupling (X, Y) such that P(X 6= Y) = TV(P, Q). Therefore, for any measurable
function f , we have P( f (X) 6= f (Y)) ≤ TV(X, Y) with equality iff f is reversible.

In a one-dimensional case, the Kolmogorov–Smirnov distance is useful (only for prob-
ability measures on R): Kolm(P, Q) = sup

x∈R
|P(−∞, x)−Q(−∞, x)| ≤ TV(P, Q). Suppose

X ∼ P, Y ∼ Q are two r.v.’s, and Y has a density w.r.t. Lebesgue measure bounded by a
constant C. Then, Kolm(P, Q) ≤ 2

√
CWass1(P, Q). Here, Wass1(P, Q) = inf[E|X − Y| :

X ∼ P, Y ∼ Q].

Let X1, X2 be random variables with the probability density functions p, q, respectively.
Define the Kullback–Leibler (KL) divergence

KL(PX1 ||PX2) =
∫

p log
p
q

. (2)

Example 1. Consider the scale family {ps(x) = 1
s p
( x

s
)
, s ∈ (0, ∞)}. Then,

KL(ps1 ||ps2) = KL(p s1
s2
||p1) = KL(p1||p s2

s1
).

The total variance distance and the Kullback–Leibler (KL) divergence appear naturally
in statistics. Say, for example, in the testing of binary hypothesis H0:X ∼ P versus H1:X ∼
Q, the sum of errors of both types

inf
d
[P(d(X) = H1) + Q(d(X) = H0)] =

∫
min[p, q] = 1− TV(P, Q) (3)

as the infimum over all reasonable decision rules d:X → {H0, H1} or the critical domains W
is achieved for W∗ = {p(x) < q(x)}. Moreover, when minimizing the probability of type-II
error subjected to type-I error constraints, the optimal test guarantees that the probability
of type-II error decays exponentially in view of Sanov’s theorem

lim
n→∞

− ln Q(d(X) = H0)

n
= KL(P||Q). (4)

where n is the sample size. In the case of selecting between M ≥ 2 distributions,

inf
d

max
1≤j≤M

Pj(d(X) 6= j) ≥ 1−
1

M2 ∑M
j,k=1 KL(Pj, Pk) + log 2

M− 1
. (5)

The KL-divergence is not symmetric and does not satisfy the triangle inequality.
However, it gives rise to the so-called Jensen–Shannon metric [4]

JS(P, Q) =
√

D(P||R) + D(Q||R)
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with R = 1
2 (P + Q). It is a lower bound for the total variance distance

0 ≤ JS(P, Q) ≤ TV(P, Q). (6)

The Jensen–Shannon metric is not easy to compute in terms of covariance matrices in
the multi-dimensional Gaussian case.

A natural way to develop a computationally effective distance in the Gaussian case
is to define first a metric between the positively definite matrices. Let λ1, . . . , λd be the
generalized eigenvalues, i.e., the solutions of det(Σ1 − λΣ2) = 0. Define the distance

between the positively definite matrices by d(Σ1, Σ2) =

√
d
∑

j=1
(ln λj)2, and a geodesic metric

between Gaussian PDs X1 ∼N(µ1, Σ1) and X2 ∼N(µ2, Σ2):

d(X1, X2) =
(

δTS−1δ
)1/2

+

(
d

∑
j=1

(ln λj)
2

)1/2

(7)

where δ = µ1 − µ2 and S = 1
2 Σ1 +

1
2 Σ2. Equivalently,

d2(Σ1, Σ2) = tr
[
(ln(Σ−1/2

1 Σ2Σ−1/2
1 ))2

]
. (8)

Remark 1. It may be proved that the set of symmetric positively definite matrices M+(d, R) is a
Riemannian manifold, and (8) is a geodesic distance corresponding to the bilinear form B(X, Y) =
4tr(XY) on the tangent space of symmetric matrices M(d, R).

3. Total Variation Distance between 1D Gaussian PDs

Let Φ and ϕ be the standard normal distribution and its density. Let Xi ∼ N(µi, σ2
i ),

i = 1, 2. Define τ = τ(X1, X2) = TV(N(µ1, σ2
1 ), N(µ2, σ2

2 )). Note that τ depends on the
parameters ∆ = |δ|, with δ = µ1 − µ2, and σ2

1 , σ2
2 .

Proposition 1. In the case σ2
1 = σ2

2 = σ2, the total variation distance is computed exactly:
τ(X1, X2) = 2Φ( |µ1−µ2|

2σ )− 1.

Proof. By using a shift, we can assume that µ1 = 0 and µ2 = ∆ > 0. Then, the set
A = {x : p1(x) > p2(x)} is specified as

A = {e−
x2

2σ2 > e−
(x−∆)2

2σ2 } = (−∞, ∆/2).

Hence,

τ(X1, X2) =
1√
2πσ

∫ ∆/2

−∞

(
e−

x2

2σ2 − e−
(x−∆)2

2σ2

)
dx = Φ(b)−Φ(−b) (9)

where b = ∆
2σ . Using the property Φ(−b) = 1−Φ(b) leads to the answer.

Theorem 1.

1
200

min
[
1, max[

|σ2
1 − σ2

2 |
min[σ2

1 , σ2
2 ]

,
40∆

min[σ1, σ2]
]
]
≤ τ ≤

3|σ2
1 − σ2

2 |
2 max[σ2

1 , σ2
2 ]

+
∆

2 max[σ1, σ2]
(10)

The proof is sketched in Section 6. The upper bound is based on the following.
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Proposition 2 (Pinsker’s inequality). Let X1, X2 be random variables with the probability
density functions p, q, and the Kullback–Leibler divergence KL(PX1 ||PX2). Then, for τ(X1, X2) =
TV(X1, X2),

τ(X1, X2) ≤ min[1,
√

KL(PX1 ||PX2)/2]. (11)

Proof of Pinsker’s inequality. We need the following bound:

|x− 1| ≤

√(
4
3
+

2x
3

)
φ(x), φ(x) := x ln x− x + 1 (12)

If P and Q are singular, then KL = ∞ and Pinsker’s inequality holds true. Assume P
and Q are absolutely continuous. In view of (7) and Cauchy–Schwarz inequality,

τ(X, Y) = 1
2

∫
|p− q| = 1

2

∫
q| pq − 1|1{q>0}

≤ 1
2

(∫ ( 4q
3 + 2p

3

))1/2(∫
qφ( p

q )1{q>0}

)1/2

=
(

1
2

∫
p ln( p

q )1{q>0}

)1/2
= (KL(P||Q)/2)1/2

(13)

To check (12), define

g(x) = (x− 1)2 −
(

4
3
+

2x
3

)
φ(x)

Then, g(1) = g′(1) = 0, g′′(x) = − 4φ(x)
3x < 0. Hence,

g(x) = g(1) + g′(1)(x− 1) +
1
2

g′′(ξ)(x− 1)2 = −4φ(ξ)

6ξ
(x− 1)2 ≤ 0.

[Mark S. Pinsker was invited to be the Shannon Lecturer at the 1979 IEEE International
Symposium on Information Theory, but could not obtain permission at that time to travel
to the symposium. However, he was officially recognized by the IEEE Information Theory
Society as the 1979 Shannon Award recipient].

For one-dimensional Gaussian distributions,

KL(PX1 ||PX2) =
1
2

(
σ2

2
σ2

1
− 1 +

∆2

σ2
1
− ln

σ2
2

σ2
1

)
.

In the multi-dimensional Gaussian case,

KL(PX1 ||PX2) =
1
2

(
tr
(

Σ−1
1 Σ2 − I

)
+ δTΣ−1

1 δ− ln det(Σ2Σ−1
1 )
)

(14)

Next, define the Hellinger distance

η(X, Y) =
1√
2

(∫
(
√

pX(u)−
√

pY(u))2du
)1/2

(15)

and note that, for one-dimensional Gaussian distributions,

η(X, Y)2 = 1−
√

2σ1σ2√
σ2

1 + σ2
2

e
− ∆2

4(σ2
1+σ2

2 ) (16)
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For multi-dimensional Gaussian PDs with δ = µ1 − µ2,

η(X, Y)2 = 1− 2d/2det(Σ1)
1/4det(Σ2)

1/4

det(Σ1 + Σ2)1/2 exp

(
−1

8
δT
(

Σ1 + Σ2

2

)−1
δ

)
. (17)

In fact, the following inequalities hold:

τ(X, Y) ≤
√

2η(X, Y) ≤
√

2
√

KL(PX ||PY) ≤
√

2
√

χ2(X, Y) (18)

where χ2(P, Q) =
∫ (p(x)−q(x))2

p(x) dx. These inequalities are not sharp. For example, the

Cauchy–Schwarz inequality immediately implies τ(X, Y) ≤ 1
2

√
χ2(X, Y). There are also

reverse inequalities in some cases.

Proposition 3 (Le Cam’s inequalities). The following inequality holds:

η(X, Y)2 ≤ τ(X, Y) ≤ η(X, Y)
(

2− η(X, Y)2
)1/2

(19)

Proof of Le Cam’s inequalities. From τ(X, Y) = 1
2

∫
|p− q| = 1−

∫
min[p, q] and min[p, q]

≤ √pq, it follows that τ(X, Y) ≥ 1−
∫ √

pq = η2(X, Y). Next,
∫

min[p, q] +
∫

max[p, q] =
2. Therefore, by Cauchy–Schwarz:

(∫ √
pq
)2

=
(∫ √

min[p, q]max[p, q]
)2
≤
∫

min[p, q]
∫

max[p, q]
=
∫

min[p, q](2−
∫

min[p, q])
(20)

Hence, (
1− η(X, Y)2)2 ≤ (1− τ(X, Y))(1 + τ(X, Y))
⇒ τ(X, Y) ≤ η(X, Y)

(
2− η(X, Y)2)1/2.

(21)

Example 2. Let X ∼N(0, Σ1), Y ∼N(0, Σ2) be d-dimensional Gaussian vectors. Suppose that
Σ2 = (1 + ∆)Σ1, where ∆ is small enough. Let r < d and A be r × d semi-orthogonal matrix
AAT = Ir. Define τ := τ(AX, AY). Then,

1
16

∆2r ≤ τ ≤ 1
23/2 ∆

√
r.

Proof. In view of Le Cam’s inequalities, it is enough to evaluate η2. Note that all r eigen-
values of Σ1Σ−1

2 equal (1 + ∆)−1. Thus,

η2 = 1− 4r/4(1 + ∆)r/4

(2 + ∆)r/2 =
1
8

∆2[−r(
r
4
− 1) +

r
2
(

r
2
− 1)] + o(∆2) =

1
16

∆2r + o(∆2). (22)

[Ernst Hellinger was imprisoned in Dachau but released by the interference of influen-
tial friends and emigrated to the US].

4. Bounds on the Total Variation Distance

This section is devoted to the basic examples and partially based on [5]. However, it
includes more proofs and additional details (Figure 1).
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(a) (b)

Figure 1. Exact TV distance and the upper bound for (a) TV(Bin(20, 1
2 ), Bin(20, 1

2 + a)) and (b)
TV(Pois(1), Pois(1 + a)). (a) Note that the upper bound becomes useless for p2 − p1 ≥ 0.07; (b) blue
and orange curves – exact TV distance: the blue curve works for 1 ≤ λ2

λ1
≤ 2 and the orange curve for

2 ≤ λ2
λ1
≤ 4. Note that the linear upper bound (red curve) is not relevant and the square root upper

(green curve) bound becomes useless for λ2
λ1
≥ 4.

Proposition 4 (Distances between exponential distributions). (a) Let X ∼ Exp(λ),
Y ∼ Exp(µ), 0 < λ ≤ µ < ∞. Then,

τ(X, Y) =
(

λ

µ

) λ
µ−λ

−
(

λ

µ

) µ
µ−λ

. (23)

(b) Let X = (X1, . . . , Xd), Y = (Y1, . . . , Yd), each with d i.i.d. components Xi ∼ Exp(λ), Yi ∼
Exp(µ). Then,

τ(X, Y) =
∫ ∞

z∗
(λde−λy − µde−µy)

(
√

2y)d−1

(d− 1)!
dy (24)

where z∗ = d
µ−λ ln µ

λ .

Proof. (a) Indeed, the set A = {x > 0 : λe−λx > µe−µx} coincides with the half-axis
(y∗, ∞) with y∗ = 1

µ−λ ln µ
λ . Consequently, τ(X, Y) = e−λy∗ − e−µy∗ . (b) In this case, the

set A = {X : xi > 0,
d
∑

j=1
xj > z∗} with z∗ = d

µ−λ ln µ
λ . Given y > 0, the area of an

(d − 1)-dimensional simplex {x : xi > 0,
d
∑

j=1
xj = y} equals (

√
2y)d−1

(d−1)! . Then, τ(X, Y) =

∫
x∈A[

d
∏
j=1

λe−λxi −
d

∏
j=1

µe−µxi ]dx coincides with (24).

Proposition 5 (Distances between Poisson distributions). Let Xi ∼ Po(λi), where 0 <
λ1 < λ2. Then,

τ(X1, X2) =
∫ λ2

λ1

P(N(u) = l − 1)du ≤ min

[
λ2 − λ1,

√
2
e
(
√

λ2 −
√

λ1)

]
(25)

where N(u) ∼ Po(u) and

l = l(λ1, λ2) = d(λ2 − λ1)(ln(λ2/λ1))
−1e (26)

with dλ1e ≤ l ≤ dλ2e.
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Proof. Let N(t) ∼ Po(t); then, via iterated integration by part,

P(N(t) ≤ n) =
n

∑
k=0

e−t tk

k!
=
∫ ∞

t
e−u un

n!
du =

∫ ∞

t
P(N(u) = n)du. (27)

Hence, Kolm(X1, X2) = τ(X1, X2) = P(X2 ≥ l)− P(X1 ≥ l) =

P(X1 ≤ l − 1)− P(X2 ≤ l − 1) =
∫ λ2

λ1

P(N(u) = l − 1)du

where
l = min[k ∈ Z+ : f (k) ≥ 1] = d(λ2 − λ1)(ln(λ2/λ1))

−1e

and f (k) = P(N(λ2)=k)
P(N(λ1)=k) .

Proposition 6 (Distances between binomial distributions). Xi ∼Bin(n, pi), 0 < p1 <
p2 < 1.

τ(X1, X2) = n
∫ p2

p1

P(Sn−1(u) = l − 1)du ≤
√

e
2

ψ(p2 − p1)

(1− ψ(p2 − p1))2 (28)

where Sn−1(u) ∼Bin(n− 1, u) and ψ(x) = x
√

n+2
2p1(1−p1)

. Finally, define

l =


−n ln(1− p2−p1

1−p1
)

ln(1 + p2−p1
p1

)− ln(1− p2−p1
1−p1

))

 (29)

with dnp1e ≤ l ≤ dnp2e.

Proof. Let us prove the following inequality:

np ≤ −n ln(1− x/q)
ln(1 + x/p)− ln(1− x/q)

≤ n(p + x), 0 < x < q (30)

where p = p1, p + x = p2 and q = 1− p. By concavity of the ln, given p ∈ (0, 1) and
q = 1− p,

f (x) = p ln(1 + x/p) + q ln(1− x/q) ≤ ln 1 = 0, 0 < x < q. (31)

This gives the bound dnp1e ≤ l as follows:

p ln(1 + x/p) + q ln(1− x/q) ≤ 0⇒ np ln(1 + x/p)− np ln(1− x/q) ≤ −n ln(1− x/q)
⇒ np ≤ −n ln(1−x/q)

ln(1+x/p)−ln(1−x/q) .
(32)

On the other hand,

h(x) = (p + x) ln(1 + x/p) + (q− x) ln(1− x/q) ≥ 0, 0 ≤ x ≤ q (33)

as h(0) = 0 and h′(x) = ln(1 + x/p− ln(1− x/q) ≤ 0; this implies the bound l ≤ dnp2e.
Indeed:

(p + x) ln(1 + x/p) + (q− x) ln(1− x/q) ≥ 0⇒
n(p + x) ln(1 + x/p) + n(p + x) ln(1− x/q) ≥ −n ln(1− x/q)
⇒ n(p + x) ≥ −n ln(1−x/q)

ln(1+x/p)−ln(1−x/q) .
(34)
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The rest of the solution goes in parallel with that of Proposition 5. Equation (27) is
replaced with the following relation: if Sn(p) ∼ Bin(n, p); then,

P(Sn(p) ≥ k) = n
∫ p

0
P(Sn−1(u) = k− 1)du (35)

In fact, iterated integration by parts yields the RHS of (35)

= n(n−1)...(n−k+1)
1...k pk(1− p)n−k + n(n−1)...(n−k)

1...(k+1) pk+1(1− p)n−k+1

+ . . . + pn =
(36)

the LHS of (35).

Proposition 7 (Distance between binomial and Poisson distributions). X ∼ Bin(n, p)
and Y ∼ Po(np), 0 < np < 2−

√
2

τ(X, Y) = np[(1− p)n−1 − e−np] (37)

Alternative bound

TV(Bin(n,
λ

n
), Pois(λ)) ≤ 1−

(
1− λ

n

)1/2
. (38)

For the sum of Bernoulli r.v.’s Sn =
n
∑

j=1
Xj with P(Xi = 1) = pi,

τ(Sn, Yn) =
1
2

∞

∑
k=1
|P(Sn = k)− λk

n
k!

e−λn | <
n

∑
i=1

p2
i (39)

where Yn ∼ Po(λn), λn = p1 + p2 + . . . + pn (Le Cam). A stronger result: for Xi ∼ Bernoulli
(pi) and Yi ∼ Po(λi = pi), there exists a coupling s.t.

τ(Xi, Yi) = P(Xi 6= Yi) = pi(1− e−pi ).

The stronger form of (39):

1
32

(
1∧ λ−1

n

) n

∑
j=1

p2
i ≤ τ(Xn, Yn) ≤ λ−1

n

(
1− e−λn

) n

∑
j=1

p2
i . (40)

Proposition 8 (Distance between negative binomial distributions). Let Xi ∼ NegBin
(m, pi), 0 < p1 < p2 < 1

τ(X1, X2) = (m + l − 1)
∫ p2

p1

P(Sm+l−2(u) = m− 1)du (41)

where Sn(u) ∼ Bin(n, u) and

l = d−m
ln(1 + p2−p1

p1
)

ln(1− p2−p1
1−p1

)
e (42)

with dm 1−p2
p2

] ≤ l ≤ [m 1−p1
p1
e.

5. Total Variance Distance in the Multi-Dimensional Gaussian Case

Theorem 2. Let τ = TV(N(µ1, Σ1), N(µ2, Σ2)), and Σ1, Σ2 be positively definite. Let δ =
µ1 − µ2 and Π be a d× (d− 1) matrix whose columns form a basis for the subspace orthogonal
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to δ. Let λ1, . . . , λd−1 denote the eigenvalues of the matrix (ΠTΣ1Π)−1ΠTΣ2Π − Id−1 and

λ =

√
d−1
∑

i=1
λ2

i . In µ1 6= µ2, then

1
200

min[1, ϕ(δ, Σ1, Σ2)] ≤ τ ≤ 9
2

min[1, ϕ(δ, Σ1, Σ2)] (43)

where

ϕ(δ, Σ1, Σ2) = max[
δT(Σ1 − Σ2)δ

δTΣ1δ
,

√
δTδ√

δTΣ1δ
, λ] (44)

In the case of equal means µ1 = µ2, the bound (43) is simplified:

1
100

min[1, λ] ≤ τ ≤ 3
2

min[1, λ]. (45)

Here, λ =

√
d
∑

j=1
λ2

j , λ1, . . . , λd are the eigenvalues of Σ−1
1 Σ2 − Id for positively definite

Σ1, Σ2.
Proof is given in Section 6.

Suppose r � d, and we want to find a low-dimensional projection A ∈ Rr×d, AAT = Ir
of the multidimensional data X ∼N(µ1, Σ1) and Y ∼N(µ2, Σ2) such that TV(AX, AY) →
max. The problem may be reduced to the case µ1 = µ2 = 0, Σ1 = In, Σ2 = Σ, cf. [6]. In
view of (44), it is natural to maximize

min[1,
r

∑
i=1

g(γi)] (46)

where g(x) =
(

1
x − 1

)2
and γi are the eigenvalues of AΣAT . Consider all permutations π

of these eigenvalues. Let

π∗ = argmaxπ

r

∑
i=1

g(λπ(i)), γi = λπ∗(i), i = 1, . . . , r. (47)

Then, rows of matrix A should be selected as the normalized eigenvectors of Σ associ-
ated with the eigenvalues γi.

Remark 2. For zero-mean Gaussian models, this procedure may be repeated mutatis mutandis for
any of the so-called f -divergences D f (P||Q) := EP

[
f
(

dQ
dP

)]
, where f is a convex function such

that f (1) = 0, cf. [6]. The most interesting examples are:

(1) KL-divergence: f (t) = t log t and g(x) = 1
2 (x− log x− 1);

(2) Symmetric KL-divergence: f (t) = (t− 1) log t and g(x) = 1
2 (x + 1

x − 2);

(3) The total variance distance: f (t) = 1
2 |t− 1| and g(x) =

(
1
x − 1

)2
;

(4) The square of Hellinger distance: f (t) = (
√

t− 1)2 and g(x) =
(

x+1
x

)2
;

(5) χ2−divergence: f (t) = (t− 1)2 and g(x) = 1√
x(2−x)

.

For the optimization procedure in (47), the following result is very useful.
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Theorem 3 (Poincaré Separation Theorem). Let Σ be a real symmetric d× d matrix and A
be a semi-orthogonal r× d matrix. The eigenvalues of Σ (sorted in the descending order) and the
eigenvalues of AΣAT denoted by {γi, i = 1, . . . , r} (sorted in the descending order) satisfy

λd−(r−i) ≤ γi ≤ λi, i = 1, . . . , r.

Proposition 9. Let X, Y be two Gaussian PDs with the same covariance matrix: X ∼ N(µ1, Σ),
Y ∼ N(µ2, Σ). Suppose that matrix Σ is non-singular. Then,

τ(X, Y) = 2Φ(||Σ−1/2(µ1 − µ2)||/2)− 1. (48)

Proof. Here, the set A := {x ∈ Rd : p(x|µ1, Σ) > p(x|µ2, Σ)} is a half-space. Indeed,

p(x|µ1, Σ) > p(x|µ2, Σ)⇔ 2xTΣ−1(µ2 − µ1) < µT
2 Σ−1µ2 − µT

1 Σ−1µ1. (49)

After the change of variables x→ x + µ1, we need to evaluate the expression

I := 1
(2π)d/2det(Σ)1/2

∫
Rd 1

(
xTΣ−1δ < 1

2 ||Σ−1/2δ||2
)

×
(

e−xTΣ−1x/2 − e−(x−δ)TΣ−1(x−δ)/2
)

dx.
(50)

Take an orthogonal d× d matrix O such that OΣ−1/2δ = ||Σ−1/2δ||e1 and change the
variables x = Σ1/2OTu. Then,

xTΣ−1δ = ||Σ−1/2δ||u1, xTΣ−1x = uTu,
(x− δ)TΣ−1(x− δ) = uTu + ||Σ−1/2δ||2 − 2||Σ−1/2δ||u1.

(51)

Thus,

I = 1
(2π)d/2

∫
Rd−1 e−vTv/2dv

∫ ||Σ−1/2δ||/2
−∞

(
e−u2

1/2 − e−(u1−||Σ−1/2δ||)2/2
)

du1

= Φ(b)−Φ(−b)
(52)

where b = ||Σ−1/2δ||/2.

6. Proofs for the Multi-Dimensional Gaussian Case

Let Xi ∼ N(µi, Σi), i = 1, 2. W.l.o.g., assume that Σ1, Σ2 are positively definite, and the
general case may be followed from the identity

TV(N(0, Σ1), N(0, Σ2)) = TV(N(0, ΠTΣ1Π), N(0, ΠTΣ2Π)) (53)

where Π is d× r matrix whose columns form an orthogonal basis for range (Σ1,2). Denote
u = (µ1 + µ2)/2, δ = µ1 − µ2 and decompose ∀w ∈ Rd as

w = u + f1(w)δ + f2(w), f2(w)Tδ = 0.

Then,

max[TV( f1(X1), f1(X2)), TV( f2(X1), f2(X2))] ≤ TV(X1, X2)
≤ TV( f1(X1), f1(X2)) + TV( f2(X1), f2(X2))

(54)

All the components are Gaussian and f1(X1) ∼ N
(

1
2 , δTΣ1δ

δTδ

)
, f1(X2) ∼ N

(
− 1

2 , δTΣ2δ
δTδ

)
,

f2(X1) ∼ N(0, PΣ1P), f2(X2) ∼ N(0, PΣ2P), P = Id − δδT

δTδ
. We claim that

1
200 min[1, max[ δT(Σ1−Σ2)δ

2δTΣ1δ
, 40
√

δTδ√
δTΣ1δ

]]

≤ TV( f1(X1), f1(X2)) ≤ 3δT(Σ1−Σ2)δ
2δTΣ1δ

+
√

δTδ

2
√

δTΣ1δ
,

(55)



Analytics 2023, 2 235

1
100

min[1, λ] ≤ TV( f2(X1), f2(X2)) ≤
3
2

λ (56)

where λ =

(
d
∑

j=1
λj

)1/2

and λi are the eigenvalues of Σ−1
1 Σ2 − Id.

Proof of upper bound. It follows from Pinsker’s inequality. Let d = 1 and σ2 ≥ σ1. Then,

for x =
σ2

2
σ2

1
, we have x− 1− ln x ≤ (x− 1)2 and, by Pinsker’s inequality,

TV
(
N(µ1, σ2

1 ), N(µ2, σ2
2 )
)
≤ 1

2

√
σ2

2
σ2

1
− 1− ln σ2

2
σ2

1
+ ∆2

σ2
1

≤ 1
2

√
σ2

2
σ2

1
− 1− ln σ2

2
σ2

1
+ 1

2

√
∆2

σ2
1
≤ 1

2
|σ2

2−σ2
1 |

σ2
1

+ 1
2

∆
σ1

.
(57)

For d > 1, it is enough to obtain the upper bound in the case µ1 = µ2 = 0. Again,
Pinsker’s inequality implies: if λi > − 2

3 ∀i,

4TV(N(0, Σ1), N(0, Σ2))
2 ≤

d

∑
i=1

λi − ln(1 + λi) ≤
d

∑
i=1

λ2
i = λ2 (58)

Sketch of proof for lower bound, cf. [7]. In a 1D case with Xi ∼N(µi, σ2
i ) (µ1 ≤ µ2),

TV(N(µ1, σ2
1 ), N(µ2, σ2

2 )) ≥ P(X2 ≥ µ2)− P(X1 ≥ µ2) =
1
2 −

(
1
2 − P(X1 ∈ (µ1, µ2))

)
= P(X1 ∈ (µ1, µ2))

≥ 1
5 min[1, ∆

σ1
]

(59)

Next,

TV(N(µ1, σ2
1 ), N(µ2, σ2

2 )) ≥
1
2

TV(N(0, σ2
1 ), N(0, σ2

2 )) (60)

Indeed, assume w.l.o.g. µ1 ≤ µ2, σ1 ≤ σ2. Then, ∃c = c(σ1, σ2):

TV(N(0, σ2
1 ), N(0, σ2

2 )) = P(N(0, σ2
2 ) 6∈ [−c, c])− P(N(0, σ2

1 ) 6∈ [−c, c])

Hence,

TV(N(µ1, σ2
1 ), N(µ2, σ2

2 )) ≥ P(N(µ2, σ2
2 ) > c + µ1)− P(N(µ1, σ2

1 ) > c + µ1)
≥ 1

2 TV(N(0, σ2
1 ), N(0, σ2

2 ))
(61)

Thus, it is enough to study the case µ1 = µ2 = 0. Let C = diag(1 + λi). Then,

TV(N(0, Σ1), N(0, Σ2)) = TV(N(0, C−1), N(0, Id))

In the case when there exists i: |λi| > 0.1,

TV(N(0, C−1), N(0, Id)) ≥ TV(N(0, (1 + λi)
−1), N(0, 1)) =

TV(N(0, 1), N(0, 1 + λi)) ≥ P(N(0, 1) ∈ [−1, 1])
−P(N(0, 1.1) ∈ [−1, 1]) > 0.68− 0.66 > 0.01

(62)

Finally, in the case when |λi| ≤ 0.1 ∀i, the result follows from the lower bound

TV(N(0, C−1), N(0, Id)) ≥
λ

6
− λ2

8
− 1

2

(
eλ2 − 1

)
(63)
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The bound (63) > λ
100 if λ < 0.17 and > 0.01 if λ ≥ 0.17 and |λi| < 0.1∀i. We refer

to [7] for the proofs of these facts.

7. Estimation of Lévy–Prokhorov Distance

Let Pi, i = 1, 2, be probability distributions on a metric space W with metric r. Define
the Lévy–Prokhorov distance ρL−P(P1, P2) between P1, P2 as the infimum of numbers ε > 0
such that, for any closed set C ⊂W,

P1(C)− P2(Cε) < ε, P2(C)− P1(Cε) < ε (64)

where Cε stands for the ε-neighborhood of C in metric r. It could be checked that
ρL−P(P1, P2) ≤ τ(P1, P2), i.e., the total variance distance. Equivalently,

ρL−P(P1, P2) = inf
P̄∈P(P1,P2)

inf[ε > 0 : P(r(X1, X2) > ε) < ε] (65)

where P(P1, P2) is the set of all joint P̄ on W ×W with marginals Pi.
Next, define the Wasserstein distance Wr

p(P1, P2) between P1, P2 by

Wr
p(P1, P2) = inf

P̄∈P(P1,P2)
(EP̄[r(X1, X2)

p])1/p. (66)

In the case of Euclidean space with r(x1, x2) = ||x1 − x2||, the index r is omitted.

Total Variation, Wasserstein and Kolmogorov–Smirnov distances defined above are
stronger than weak convergence (i.e., convergence in distribution, which is weak* conver-
gence on the space of probability measures, seen as a dual space). That is, if any of these
metrics go to zero as n→ ∞, then we have weak convergence. However, the converse is
not true. However, weak convergence is metrizable (e.g., by the Lévy–Prokhorov metric).

Theorem 4 (Dobrushin’s bound).

ρL−P(P1, P2) ≤ [Wr
1(P1, P2)]

1/2. (67)

Proof. Suppose that there exists a closed set C for which at least one of the inequalities (64)
fails, say P1(C) ≥ ε + P2(Cε). Then, for any joint P̄ with marginals P1 and P2,

EP̄[r(X1, X2)] ≥ EP̄[1(r(X1, X2) ≥ ε)r(X1, X2)]
≥ εP̄(r(X1, X2) ≥ ε) ≥ εP̄(X1 ∈ C, X2 ∈W \ Cε)
≥ ε[P̄(X1 ∈ C)− P̄(X1 ∈ C, X2 ∈ Cε)]
≥ ε[P̄(X1 ∈ C)− P̄(X2 ∈ Cε)] = ε[P1(X1 ∈ C)− P2(X2 ∈ Cε)] ≥ ε2.

(68)

This leads to (67), as claimed.

The Lévy–Prokhorov distance is quite tricky to compute, whereas the Wasserstein
distance can be found explicitly in a number of cases. Say, in a 1D case W = R1, we have

Theorem 5. For d = 1,

W1(P1, P2) =
∫

R
|F1(x)− F2(x)|dx. (69)

Proof. First, check the upper bound W1(P1, P2) ≤
∫

R |F1(x) − F2(x)|dx. Consider ξ ∼
U[0, 1], Xi = F−1

i (ξ), i = 1, 2. Then, in view of the Fubini theorem,

E[|X1 − X2|] =
∫ 1

0
|F−1

1 (y)− F−1
2 (y)|dy =

∫
R
|F1(x)− F2(x)|dx. (70)

For the proof of the inverse inequality, see [8].
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Proposition 10. For d = 1 and p > 1,

Wp(P1, P2)
p = p(p− 1)

∫ ∞
−∞ dy

∫ ∞
y max[F2(y)− F1(x), 0](x− y)p−2dx

+p(p− 1)
∫ ∞
−∞ dx

∫ ∞
x max[F1(x)− F2(y), 0](y− x)p−2dy.

(71)

Proof. It follows from the identity

E[|X−Y|p] = p(p− 1)
∫ ∞
−∞ dy

∫ ∞
y [F2(y)− F(x, y)](x− y)p−2dx

+p(p− 1)
∫ ∞
−∞ dx

∫ ∞
x [F1(x)− F(x, y)](y− x)p−2dy

(72)

The minimum is achieved for F̄(x, y) = min[F1(x), F2(y)]. For an alternative expres-
sion (see [9]):

Wp(P1, P2)
p =

∫ 1

0
|F−1

1 (t)− F−1
2 (t)|pdt. (73)

Proposition 11. Let (X, Y) ∈ R2d be jointly Gaussian random variables (RVs) with E[X] =
µX , E[Y] = µY. Then, the Frechet-1 distance

ρF1(X, Y) := E

[
d
∑

j=1
|Xj −Yj|

]
=

d
∑

j=1

[
(µX

j − µY
j )

(
1− 2Φ(−

(µX
j −µY

j )

σ̂j
)

)
+ 2σ̂j ϕ(−

(µX
j −µY

j )

σ̂j
)

]
.

(74)

where σ̂j =
(
(σX

j )2 + (σY
j )

2 − 2Cov(Xj, Yj)
)1/2

, ϕ and Φ are PDF and CDF of the standard

Gaussian RV. Note that, in the case µX = µY, the first term in (74) vanishes, and the second
term gives

ρF1(X, Y) =

√
2
π

d

∑
j=1

σ̂j. (75)

We also present expressions for the Frechet-3 and Frechet-4 distances

ρF3(X, Y) =

(
d
∑

j=1
|Xj −Yj|3

)1/3

=
( d

∑
j=1

(µX
j − µY

j )
3
(

1− 2Φ(−
(µX

j −µY
j )

σ̂j
)

)
+6(µX

j − µY
j )

2σ̂j ϕ(−
(µX

j −µY
j )

σ̂j
) + 3(σ̂j)

2(µX
j − µY

j )
[
1− 2Φ(−

(µX
j −µY

j )

σ̂j
)−

2
(µX

j −µY
j )

σ̂j
ϕ(−

(µX
j −µY

j )

σ̂j
)
]
+ 2(σ̂j)

3 ϕ(−
(µX

j −µY
j )

σ̂j
)

[(
(µX

j −µY
j )

σ̂j

)2
+ 2

])1/3

ρF4(X, Y) =

(
d
∑

j=1
|Xj −Yj|4

)1/4

=

(
d
∑

j=1
(µX

j − µY
j )

4 + 6(µX
j − µY

j )
2(σ̂j)

2 + 3(σ̂j)
4

)1/4

.

(76)

All of these expressions are minimized when Cov(Xj, Yj), j = 1, . . . , d are maximal. However,
this fact does not lead immediately to the explicit expressions for Wasserstein’s metrics. The problem
here is that the joint covariance matrix ΣX,Y should be positively definite. Thus, the straightforward
choice Corr(Xj, Yj) = 1 is not always possible; see Theorem 6 below and [10].

[Maurice René Fréchet (1878–1973), a French mathematician, worked in topology, func-
tional analysis, probability theory and statistics. He was the first to introduce the concept
of a metric space (1906) and prove the representation theorem in L2 (1907). However, in
both cases, the credit was given to other people: Hausdorff and Riesz. Some sources claim
that he discovered the Cramér–Rao inequality before anybody else, but such a claim was
impossible to verify since lecture notes of his class appeared to be lost. Fréchet worked in
several places in France before moving to Paris in 1928. In 1941, he succeeded Borel at the
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Chair of Calculus of Probabilities and Mathematical Physics in Sorbonne. In 1956, he was
elected to the French Academy of Sciences, at the age of 78, which was rather unusual. He
influenced and mentored a number of young mathematicians, notably Fortet and Loève.
He was an enthusiast of Esperanto; some of his papers were published in this language].

8. Wasserstein Distance in the Gaussian Case

In the Gaussian case, it is convenient to use the following extension of Dobrushin’s
bound for p = 2:

ρL−P(P1, P2) ≤ [Wp(P1, P2)]
p/2, p ≥ 1. (77)

Theorem 6. Let Xi ∼N(µi, Σ2
i ), i = 1, 2, be d-dimensional Gaussian RVs. For simplicity, assume

that both matrices Σ2
1 and Σ2

2 are non-singular (In the general case, the statement holds with
Σ−1

1 understood as Moore–Penrose inversion). Then, the L2−Wasserstein distance W2(X1, X2) =
W2(N(µ1, Σ2

1), N(µ2, Σ2
2)) equals

W2(X1, X2) =
[
||µ1 − µ2||2 + tr(Σ2

1) + tr(Σ2
2)− 2tr[(Σ1Σ2

2Σ1)
1/2]

]1/2
(78)

where (Σ1Σ2
2Σ1)

1/2 stands for the positively definite matrix square-root. The value (78) is achieved
when X2 = µ2 + A(X1 − µ1) where A = Σ−1

1 (Σ1Σ2
2Σ1)

1/2Σ−1
1 .

Corollary 1. Let µ1 = µ2 = 0. Then, for d = 1, W2(X1, X2) = |σ1 − σ2|. For d = 2,

W2(X1, X2) =

[
tr(Σ2

1) + tr(Σ2
2)− 2[tr(Σ2

1Σ2
2) + 2

√
det(Σ1Σ2)]

1/2
]1/2

. (79)

Note that the expression in (79) vanishes when Σ2
1 = Σ2

2.

Example 3. (a) Let X ∼ N(0, Σ2
X), Y ∼ N(0, Σ2

Y) where Σ2
X = σ2

XId and Σ2
Y = σ2

YId. Then,
W2(X, Y) =

√
d|σX − σY|.

(b) Let d = 2, X ∼ N(0, Σ2
X), Y ∼ N(0, Σ2

Y), where Σ2
X = σ2

XI2, Σ2
Y = σ2

Y

(
1 ρ
ρ 1

)
and

ρ ∈ (−1, 1). Then,

W2(X, Y) = 21/2
(

σ2
X + σ2

Y − σXσY

[
2 + 2(1− ρ2)1/2

]1/2
)1/2

.

(c) Let d = 2, X ∼ N(0, Σ2
X), Y ∼ N(0, Σ2

Y), where Σ2
X = σ2

X

(
1 ρ1
ρ1 1

)
, Σ2

Y = σ2
Y

(
1 ρ2
ρ2 1

)
and ρ1, ρ2 ∈ (−1, 1). Then,

W2(X, Y) = 21/2
(

σ2
X + σ2

Y − σXσY

[
2 + 2ρ1ρ2 + 2(1− ρ2

1)
1/2(1− ρ2

2)
1/2
]1/2

)1/2
.

Note that, in the case ρ1 = ρ2, W2(X, Y) =
√

2|σX − σY| as in (a).

Proof. First, reduce to the case µ1 = µ2 = 0 by using the identity W2
2 (X1, X2) = ||µ1 −

µ2||2 + W2
2 (ξ1, ξ2) with ξi = Xi − µi. Note that the infimum in (19) is always attained on

Gaussian measures as W2(X1, X2) is expressed in terms of the covariance matrix Σ2 = Σ2
X,Y

only (cf. (81) below). Let us write the covariance matrix in the block form

Σ2 =

(
Σ2

1 K
KT Σ2

2

)
=

(
Σ1 0

KTΣ−1
1 I

)(
I 0
0 S

)(
Σ1 Σ−1

1 K
0 I

)
(80)
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where the so-called Shur’s complement S = Σ2
2 − KTΣ−2

1 K. The problem is reduced to
finding the matrix K in (80) that minimizes the expression∫

Rd×Rd
||x− y||2dPX,Y(x, y) = tr(Σ2

1) + tr(Σ2
2)− 2tr(K) (81)

subject to a constraint that the matrix Σ2 in (80) is positively definite. The goal is to check
that the minimum (81) is achieved when the Shur’s complement S in (80) equals 0. Consider
the fiber σ−1(S), i.e., the set of all matrices K such that σ(K) := Σ2

Y − KT(Σ2
X)
−1K = S. It is

enough to check that the maximum value of tr(K) on this fiber equals

max
F∈σ−1(S)

tr(K) = tr
[
(ΣY(Σ2

X − S)ΣY)
1/2
]
. (82)

Since the matrix S is positively defined, it is easy to check that the fiber S = 0 should
be selected. In order to establish (82), represent the positively definite matrix Σ2

Y − S in
the form Σ2

Y − S = UD2
r UT , where the diagonal matrix D2

r = diag(λ2
1, . . . , λ2

r , 0, . . . , 0) and
λi > 0. Next, U = (Ur|Ud−r) is the orthogonal matrix of the corresponding eigenvectors.
We obtain the following r× r identity:

(Σ−1
X KUrD−1

r )T(Σ−1
X KUrD−1

r ) = Ir. (83)

It means that Σ−1
X KUrD−1

r = Or, an ’orthogonal’ d× r matrix, with OT
r Or = Ir, and

K = ΣXOrDrUT
r . The matrix Or parametrises the fiber σ−1(S). As a result, we have an

optimization problem
tr(OT M)→ max, M = ΣXUrDr (84)

in a matrix-valued argument Or, subject to the constraint OT
r Or = Ir. A straightforward

computation gives the answer tr[(MT M)1/2], which is equivalent to (82). Technical details
can be found in [11,12].

Remark 3. For general zero means RVs X, Y ∈ Rd with the covariance matrices Σ2
i , i = 1, 2, the

following inequality holds [13]:

tr(Σ2
1) + tr(Σ2

2)− 2tr[(Σ1Σ2
2Σ1)

1/2] ≤ E[||X− Y||2] ≤ tr(Σ2
1) + tr(Σ2

2) + 2tr[(Σ1Σ2
2Σ1)

1/2]. (85)

9. Distance between Distributions of Different Dimensions

For m ≤ d, define a set of matrices with orthonormal rows:

O(m, d) = {V ∈ Rm×d : VVT = Im} (86)

and a set of affine maps ϕ : Rd → Rm such that ϕV,b(x) = Vx + b.

Definition 1. For any measures µ ∈ M(Rm) and ν ∈ M(Rd), the embeddings of µ into Rd

are the set of d-dimensional measures Φ+(µ, d) := {α ∈ M(Rn) : ϕV,β(α) = µ} for some
V ∈ O(m, d), b ∈ Rm, and the projections of ν onto Rm are the set of m-dimensional measures
Φ−(ν, m) := {β ∈ M(Rm) : ϕV,β(ν) = β} for some V ∈ O(m, d), b ∈ Rm.

Given a metric κ between measures of the same dimension, define the projection dis-
tance d−(µ, ν) := infβ∈Φ−(ν,m) κ(µ, β) and the embedding distance d+(µ, ν) := infα∈Φ+(µ,d)
κ(α, ν). It may be proved [14] that d+(µ, ν) = d−(µ, ν); denote the common value by
d̂(µ, ν).
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Example 4. Let us compute Wasserstein distance between one-dimensional X ∼ N(µ1, σ2) and
d-dimensional Y ∼ N(µ2, Σ). Denote by λ1 ≥ λ2 ≥ . . . ≥ λd the eigenvalues of Σ. Then,

Ŵ2(X, Y) =


σ−
√

λ1 i f σ >
√

λ1

0 i f
√

λd ≤ σ ≤
√

λ1√
λd − σ i f σ <

√
λd.

(87)

Indeed, in view of Theorem 6, write

(W−2 (X, Y))2 = min
||x||2=1,b∈R

[
||µ1 − xTµ2 − b||22

+tr(σ2 + xTΣx− 2σ
√

xTΣx)
]
= min
||x||2=1

(σ−
√

xTΣx)2,
(88)

and (87) follows.

Example 5 (Wasserstein-2 distance between Dirac measure on Rm and a discrete mea-
sure on Rd). Let y ∈ Rm and µ1 ∈M(Rm) be the Dirac measure with µ1(y) = 1, i.e., all mass
centered at y. Let x1, . . . , xk ∈ Rd be distinct points, p1, . . . , pk ≥ 0, p1 + . . . + pk = 0, and let
µ2 ∈M(Rd) be the discrete measure of point masses with µ2(xi) = pi, i = 1, . . . , k. We seek the
Wasserstein distance Ŵ2(µ1, µ2) in a closed-form solution. Suppose m ≤ d; then,

(W−2 (µ1, µ2))
2 = inf

V∈O(m,d)
inf

b∈Rm

k
∑

i=1
pi||Vxi + b− y||22

= inf
V∈O(m,d)

k
∑

i=1
pi||Vxi −

k
∑

i=1
piVxi||22 = inf

V∈O(m,d)
tr(VCVT)

(89)

noting that the second infimum is attained by b = y−
k
∑

i=1
piVxi and defining C in the last infimum

to be

C :=
k

∑
i=1

pi

(
xi −

k

∑
i=1

pixi

)(
xi −

k

∑
i=1

pixi

)T

∈ Rd×d. (90)

Let the eigenvalue decomposition of the symmetric positively semidefinite matrix C be C =
QΛQT with Λ = diag(λ1, . . . , λd), λ1 ≥ . . . ≥ λd ≥ 0. Then,

inf
V∈O(m,d)

tr(VCVT) =
m−1

∑
i=0

λd−i (91)

and is attained when V ∈ O(m, d) has row vectors given by the last m columns of Q ∈ O(d).

Note that the geodesic distance (7) and (8) between Gaussian PDs (or corresponding
covariance matrices) is equivalent to the formula for the Fisher information metric for the
multivariate normal model [15]. Indeed, the multivariate normal model is a differentiable
manifold, equipped with the Fisher information as a Riemannian metric; this may be used
in statistical inference.

Example 6. Consider i.i.d. random variables Zl , . . . , Zn to be bi-variately normally distributed
with diagonal covariance matrices, i.e., we focus on the manifold Mdiag = {N(µ, Λ) : µ ∈
R2, Λ diagonal}. In this manifold, consider the submodel M∗diag = {N(µ, σ2I) : µ ∈ R2, σ2 ∈
R+} corresponding to the hypothesis H0 : σ2

1 = σ2
2 . First, consider the standard statistical

estimates Z̄ for the mean and s1, s2 for the variances. If σ̄2 denotes the geodesic estimate of the
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common variance, the squared distance between the initial estimate and the geodesic estimate under
the hypothesis H0 is given by

n
2

(ln
σ̄2

s2
1

)2

+

(
ln

σ̄2

s2
2

)2
 (92)

which is minimized by σ̄2 = s1s2. Hence, instead of the arithmetic mean of the initial standard
variation estimates, we use as an estimate the geometric mean of these quantities.

Finally, we present the distance between the symmetric positively definite matrices of

different dimensions. Let m ≤ d, A is m×m and B =

(
B11 B12
B21 B22

)
is d× d; here, B11 is a

m×m block. Then, the distance is defined as follows:

d2(A, B) :=

(
m

∑
j=1

(
max[0, ln λj(A−1B11)]

)2
)1/2

. (93)

In order to estimate the distance (93), after the simultaneous diagonalization of matri-
ces A and B, the following classical result is useful:

Theorem 7 (Cauchy interlacing inequalities). Let B =

(
B11 B12
B21 B22

)
be a d× d symmetric

positively definite matrix with eigenvalues λ1(B) ≤ . . . ≤ λd(B) and m×m block B11. Then,

λj(B) ≤ λj(B11) ≤ λj+d−m(B), j = 1, . . . , m. (94)

10. Context-Sensitive Probability Metrics

The weighted entropy and other weighted probabilistic quantities generated a sub-
stantial amount of literature (see [16,17] and the references therein). The purpose was to
introduce a disparity between outcomes of the same probability: in the case of a standard
entropy, such outcomes contribute the same amount of information/uncertainty, which
is appropriate in context-free situations. However, imagine two equally rare medical con-
ditions, occurring with probability p� 1, one of which carries a major health risk while
the other is just a peculiarity. Formally, they provide the same amount of information:
− log p, but the value of this information can be very different. The applications of the
weighted entropy to the clinical trials are in the process of active development (see [18]
and the literature cited therein). In addition, the contribution to the distance (say, from
a fixed distribution Q) related to these outcomes, is the same in any conventional sense.
The weighted metrics, or weight functions, are supposed to fulfill the task of samples
graduation, at least to a certain extent.

Let the weight function or graduation ϕ > 0 on the phase space X be given. Define
the total weighted variation (TWV) distance

τϕ(P1, P2) =
1
2

(
sup

A
[
∫

A
ϕdP1 −

∫
A

ϕdP2] + sup
A

[
∫

A
ϕdP2 −

∫
A

ϕdP1]

)
. (95)

Similarly, define the weighted Hellinger distance. Let p1, p2 be the densities of P1, P2
w.r.t. to a measure ν. Then,

ηϕ(P1, P2) :=
1√
2

(∫
ϕ(
√

p1 −
√

p2)
2dν

)1/2
. (96)
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Lemma 1. Let p1, p2 be the densities of P1, P2 w.r.t. to a measure ν. Then, τϕ(P1, P2) is a distance
and

τϕ(P1, P2) =
1
2

∫
ϕ|p1 − p2|dν (97)

Proof. The triangular inequality and other properties of the distance follow immediately.
Next, ∫

p1>p2
ϕ(p1 − p2) =

1
2 (
∫

ϕp1 −
∫

ϕp2) +
1
2

∫
ϕ|p1 − p2|dν∫

p2>p1
ϕ(p2 − p1) =

1
2 (
∫

ϕp2 −
∫

ϕp1) +
1
2

∫
ϕ|p1 − p2|dν

(98)

Summing up these equalities implies (97).

Let
∫

ϕp1dν ≥
∫

ϕp2dν. Then, by the weighted Gibbs inequality [16], KLϕ(P1||P2) :=∫
ϕp1 log p1

p2
≥ 0.

Theorem 8 (Weighted Pinsker’s inequality).

1
2

∫
ϕ|p1 − p2| ≤

√
KLϕ(P1||P2)/2

√∫
ϕp1. (99)

Proof. Define the function G(x) = x log x− x + 1. The following bound holds, cf. (12):

G(x) = x log x− x + 1 ≥ 3
2
(x− 1)2

x + 2
, x > 0. (100)

Now, by the Cauchy–Schwarz inequality,(∫
ϕp2| p1

p2
− 1|

)2
≤
∫

ϕ
(

p1
p2
−1)2

p1
p2
+2

p2
∫

ϕ
(

p1
p2

+ 2
)

p2

≤ 3
∫

ϕ
(

p1
p2
−1)2

p1
p2
+2

p2
∫

ϕp1 ≤ 2
∫

ϕG( p1
p2
)p2
∫

ϕp1 ≤ KLϕ(P1||P2)
∫

ϕp1.
(101)

Theorem 9 (Weighted Le Cam’s inequality).

τϕ(P1, P2) ≥ ηϕ(P1, P2)
2. (102)

Proof. In view of inequality

1
2
|p1 − p2| =

1
2

p1 +
1
2

p2 −min[p1, p2] ≥
1
2

p1 +
1
2

p2 −
√

p1 p2,

one obtains

τϕ(P1, P2) ≥
1
2

∫
ϕp1 +

1
2

∫
ϕp2 −

∫
ϕ
√

p1 p2 = ηϕ(P1, P2)
2. (103)

Next, we relate TWV distance to the sum of sensitive errors of both types in statistical
estimation. Let C be the critical domain for the checking the hypothesis H1:P1 versus
the alternative H2:P2. Define by αϕ =

∫
C ϕp1 and βϕ =

∫
X\C ϕp2 the weighted error

probabilities of the I and II types.

Lemma 2. Let d = dC be the decision rule with the critical domain C. Then,

inf
d
[αϕ + βϕ] =

1
2

[∫
ϕdP1 +

∫
ϕdP2

]
− τϕ(P1, P2). (104)
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Proof. Denote C∗ = {x : p2(x) > p1(x)}. Then, the result follows from the equality ∀C∫
C ϕdP1 +

∫
X\C ϕdP2 = 1

2 [
∫

ϕdP1 +
∫

ϕdP2]

+
∫

ϕ|p1 − p2|[1(x ∈ C ∩ X \ C∗)− 1(x ∈ C ∩ C∗)].
(105)

Theorem 10 (Weighted Fano’s inequality). Let P1, . . . , PM, M ≥ 2 be probability distribu-
tions such that Pj � Pk, ∀j, k. Then,

inf
d

max
1≤j≤M

∫
ϕ(x)1(d(x) 6= j)dPj(x) ≥ log(M)

log(M−1)
1
M

M
∑

j=1

∫
ϕpj

− 1
log(M−1)

[
1

M2

M
∑

j,k=1
KLϕ(Pj, Pk) + log 2 1

M

M
∑

j=1

∫
ϕpj

] (106)

where the infimum is taken over all tests with values in {1, . . . , M}.

Proof. Let Z ∈ {1, . . . , M} be a random variable such that P(Z = i) = 1
M and let X ∼ PZ.

Note that PZ is a mixture distribution so that, for any measure ν such that PZ � ν, we have
dPZ
dν = 1

M

M
∑

k=1

dPj
dν and so

P(Z = j|X = x) = dPj(x)

(
M

∑
k=1

dPk(x)

)−1

.

It implies by Jensen’s inequality applied to the convex function − log x

∫
ϕ(x)

M
∑

j=1
P(Z = j|X = x) log P(Z = j|X = x)dPX(x)

≤ 1
M2

M
∑

j,k=1

∫
ϕ log

(
dPj
dPk

)
dPj − log(M) 1

M

M
∑

j=1

∫
ϕpj

=
M
∑

j,k=1
KLϕ(Pj, Pk)− log(M) 1

M

M
∑

j=1

∫
ϕpj.

(107)

On the other hand, denote by qj =
P(Z=j|X)

P(Z 6=d(X)|X)
and h(x) = x log x + (1− x) log(1− x).

Note that h(x) ≥ − log 2 and by Jensen’s inequality ∑j 6=d(X) qj log qj ≥ − log(M− 1). The
following inequality holds:

M
∑

j=1
P(Z = j|X) log P(Z = j|X)

= (1− P(Z 6= d(X)|X)) log(1− P(Z 6= d(X)|X)) + ∑
j 6=d(X)

P(Z = j|X) log P(Z = j|X)

= h(P(Z = d(X)|X)) + P(Z 6= d(X)|X) ∑
j 6=d(X)

qj log qj

≥ − log 2− log(M− 1)P(d(X) 6= Z|X).
(108)

Integration of (108) yields

∫
ϕ(x)

M
∑

j=1
P(Z = j|X = x) log P(Z = j|X = x)dPX(x)

≥
(
− log 2 1

M

M
∑

j=1

∫
ϕpj − log(M− 1) max

1≤j≤M

∫
ϕ(x)1(d(x) 6= j)dPj

)
.

(109)

Combining (107) and (109) proves (106).
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11. Conclusions

The contribution of the current paper is summarized in the Table 1 below. The objects
1–8 belong to the treasures of probability theory and statistics, and we present a number of
examples and additional facts that are not easy to find in the literature. The objects 9–10, as
well as the distances between distributions of different dimensions, appeared quite recently.
They are not fully studied and quite rarely used in applied research. Finally, objects 11–12
have been recently introduced by the author and his collaborators. This is the field of the
current and future research.

Table 1. The main metrics and divergencies.

Number Name Reference Comment

1 Kullback–Leibler (2) Divergence but not a distance

2 Total variation (TV) (1) Bounded by Pinsker’s
inequality

3 Kolmogorov–Smirnov p. 2 Specific for 1D case

4 Hellinger (16) Bounded by Le Cam’s
inequality

5 Lévy–Prohorov (1) Metrization of the weak
convergence

6 Fréchet (8, 80) Requires the joint distribution

7 Wasserstein (69) Marginal distributions only

8 χ2 p. 5 Divergence but not a distance

9 Jensen–Shannon (6) Constructed from
Kullback–Leibler

10 Geodesic (8) Specific for Gaussian case

11 Weighted TV (97) Context sensitive

12 Weighted Hellinger (98) Context sensitive
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