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Abstract: Interactive visual tools and related visualization technologies, built to support explorative
data analysis, ultimately lead to sense making and knowledge discovery from large volumes of
raw data. These processes namely rely on human visual perception and cognition, in which human
analysts perceive external representations (system structure, dataset, integral data visualizations)
and form respective internal representations (internal cognitive imprints of external systems) that
enable deeper comprehension of the employed system and the underlying data features. These
internal representations further evolve through continuous interaction with external representations.
They also depend on the individual’s own cognitive pathways. Currently, there has been insufficient
work on understanding how these internal cognitive mechanisms form and function. Hence, we
aim to offer our own interpretations of such processes observed through our daily data exploration
workflows. This is accomplished by following specific explorative data science tasks while working
with diverse interactive visual systems and related notebook style environments that have different
organizational structures and thus may entail different approaches to thinking and shaping sense
making and knowledge generation. In this paper, we deliberate on the cognitive implications
for human analysists when interacting with such a diverse organizational structure of tools and
approaches when performing the essential steps of an explorative visual analysis.
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1. Introduction
1.1. Overview

Visualization research has generally focused on the intelligent and cohesive visual
representation of data and related information to support prompt understanding, sense
making and efficient knowledge discovery from large volumes of raw data [1,2]. In this
respect, the essential aspects guiding the data visualization design are human visual per-
ception and cognition [3,4]. Visual perception (i.e., conceptual information comprehension
through vision) of a given feature (e.g., shape, color, position, and orientation) is nearly
instantaneous, with the process taking as little as 13 milliseconds [5]; cognition (i.e., a men-
tal process of deeper information comprehension), on the other hand, requires thorough
cerebral processing and is thus lagging behind human visual capacities [6,7]. However,
when we talk about the individual contributions of visual perception and cognition to sense
making specific to the data visualization domain, we can say that our visual capacities
form the very basis of and are generally driving our cognitive faculties [8,9]. These two
processes are becoming ever more intertwined with the introduction of interactivity in
the data visualization design [10–13]. This fusion of interactivity and data visualization
modalities, further enriched by analytical computation, is commonly referred to as the
visual analytics (VA) approach [14,15]. The general aim of VA is informed visual data
exploration supporting analytically sound data-centric reasoning and sense making [16,17].

Although interactivity is observed as the core aspect of VA systems, human interaction
with such a system and its features defines the quality and the degree of usefulness of
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a VA system in supporting complex explorative activities [18,19]. In a related work by
Sedig et al. [18], multiple levels of interaction (activities, tasks, actions, and events) and
interactivity (micro- and macro-level) are discussed, whereby interaction is observed as a
process that takes place between a user and a visualization system, while interactivity refers
to the quality of such interaction. This distinction holds importance due to its impact on
the performance of complex cognitive activities (e.g., analytical reasoning, problem solving,
and sense making) given that these are as much driven by the characteristics of tools as
they are by the characteristics of users. As a result, a dynamic coupled cognitive system
is eventually formed (Figure 1), in which the user and the VA system are continuously
affecting and simultaneously being affected by each other [18].
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Hence, when tackling interactive VA systems and human interaction with their in-
tegral interactive data visualizations, the sense making process becomes a bidirectional
loop of seeing and thinking—more specifically, of perception, cognitive encoding, and
retrieval [20,21]. In particular, there is a continuous interplay between external representa-
tions (i.e., data visualizations) and internal representations within humans (i.e., internal
cognitive/mental mechanisms), as further discussed by Liu and Stasko [22]. Such postulate
is in direct agreement with notions from the already discussed work of Sedig et al. [18,23],
who claimed that cognitive processes tend to emerge from a coupling that is formed be-
tween the internal representations (processes of the user) and external representations
(processes at the interface), as seen in Figure 1. Likewise, Kirsh [24] discussed that such
internal representations are in essence an innate human need by which additional repre-
sentations are created to aid human understanding and help us make sense of situations,
diagrams, illustrations, instructions and problems. Additionally, external representations
act as the means for cognitive offloading onto and within the external environment (e.g.,
a VA system), which in principle enables coordinated coupling between internal and ex-
ternal representations [25,26]. This interplay is highly dynamic and constantly evolves
when engaging with interactive visual representations of data, as the process itself implies
immersive data exploration and information discovery within the visualization itself. Ulti-
mately, the purpose of such an interplay is knowledge generation and drawing intelligence
regarding a phenomenon or a process under study.

There is ample evidence on what makes an effective (external) visual representation
of data, in which the collection of best practices may be found within “The Grammar of
Graphics” proposed by Leland Wilkinson [27]. Likewise, there are a number of relevant
studies on the conceptual design of interactive visualization systems, whereby aspects such
as human–computer interfaces, computer-mediated interactive communication, human–
computer interaction, and human-centered interactivity are discussed [28–32]. However,
a smaller proportion of the effort is directed towards a comprehensive understanding
of how internal cognitive mechanisms form and function. These are commonly referred
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to as “mental models” [22,33]—internal cognitive imprints of an external system that
enable deeper comprehension of system’s features—ultimately leading to sense making
and knowledge generation about a system (in this context, a dataset, a data visualization,
or a dashboard). Initial mental models may be driven by individual’s prior experience
and domain knowledge of a system, whereby these further evolve through interaction
with external representations and individual’s own cognitive pathways. Thus, there does
not exist a singular generalizable mental model; however, as Mayr et al. [32] pointed out,
these are expected to thrive on consistency and coherence. The developmental process
of such models in our brains is equally discussed by Liu and Stasko [22], which can be
seen as an extension to the previously introduced dynamic coupled cognitive process by
Sedig et al. [18]. Figure 2 illustrates such an extension, where mental processes triggered by
external visualizations are seen as a driving force to the formation of mental models.
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Figure 2. A schematic representation of an extended dynamic coupled cognitive system, where the
formation of mental models is triggered.

In this contribution, we start by reflecting on the most prominent theoretical models
regarding sense making and knowledge generation process by which mental models form.
We proceed by looking into a number of studies that focus on the role of interactive visual
data exploration in human cognitive activities and the development of corresponding men-
tal models induced by such interactivity. We conclude by offering our own interpretations
of mental model generation observed through our daily workflows that build on previ-
ously developed models and theories. This is accomplished by interacting with diverse VA
frameworks (i.e., with a predefined analytical dashboard structure, with a “blank canvas”
structure) and related notebook-style environments (i.e., a web-based interactive comput-
ing platform—Jupyter Notebooks). The aim is to deliberate on cognitive implications for
human analysists when interacting with such a diverse organizational structure of tools
and approaches when carrying out the essential steps of an explorative visual data analysis.

1.2. Related Work on Sense Making and Knowledge Generation Process

The sense making process is commonly understood as a deliberate process of con-
structing meaning from information, ultimately leading to generation of knowledge and
insight [34]. The process itself is observed from a number of vantage points throughout
the literature and further spans different disciplines and domains. For instance, Pirolli
and Card [35] investigated a sense-making process specific to human analysts engaged in
intelligence analysis (i.e., accurate and timely analysis of critical socio-cultural information
assisting mitigation of threats and criminal activity). In their study, they aimed to define
a conceptual model of the way raw data is converted into novel intelligence by human
analysts. On a higher level, their sense-making process involved two main sub-processes:
(1) uncovering new data (i.e., “foraging loop”) and (2) making sense of the information
(i.e., “sense making loop”). On a finer level, a multitude of iterative cognitive activities
occurred in between. Starting from searching, filtering, and extracting raw information
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from external data sources to assemble well-organized evidence (“foraging loop”), human
analysts proceeded to the development of a mental model (a conceptualization) for problem
structuring, evidentiary reasoning, and decision making (“sense making loop”). Pirolli and
Card have shown that all of these in-between processes often generated new questions and
hypotheses requiring additional inquiry, making them iterative by nature.

Following, Klein et al. [36] investigated the sense making process as an effort to
understand events in a natural setting (i.e., from the real world). Although not directly
related to the data analytics/visualization domain, their research may have relevance for
linking the data to a suitable context. In this respect, they suggested a “data/frame” based
theory of sense making that describes the relationship between data (observed as signals
or events occurring in a natural setting) and cognitive frames (observed as explanatory
structures—a story, a script, a map) that account for the data and guide the search for more
data. In particular, a cognitive frame may be understood as a mental structure (e.g., a mental
model) that organizes the data, while sense making as the process of fitting information
into that cognitive frame. Klein et al. further documented that the sense making process
may adapt to the circumstance. In some instances, the purpose of sense making may be
problem detection, while in others the purpose may be knowledge discovery. As such
and further aligned with the study of Pirolli and Card, Klein et al. have shown that the
sense-making process is in constant flux. Namely, the data are used to select and alter a
cognitive frame, whereby a cognitive frame is equally used to select and configure the data.
However, they argued that once the initial frame is deemed inadequate, the sense-making
and data exploration processes might suffer significantly. In this, we may draw another
parallel to the data analytics/visualization domain in which the importance of domain
expertise appears to be indisputable for fruitful data exploration, particularly reflected on
defining a suitable cognitive frame within which data is mentally and visually processed
and analyzed.

The above-discussed studies serve as exemplary theoretical explanations on the way
individuals interact with data and related information in general, along with the cognitive
processes they go through to make sense of a system or a situation. Figure 3 illustrates how
these theories correlate and overlap. Following are the selected studies with pronounced
focus on interactive visual data exploration and corresponding mental models (i.e., internal
representation of an external interactive visualization system).
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The work of Liu and Stasko [22] offered a deeper understanding of the role of in-
teractive visualization in human cognitive activities. Namely, they investigated the way
external data visualizations may shape the human analyst’s internal representations of
such data, giving a specific focus to interaction modalities in information visualization
(commonly referred to as InfoVis). Due to its inherent complexity, they suggested that
a mental model specific to an interactive InfoVis system resembles a “cognitive collage”,
where multiple visual cues (e.g., text, images, color and size of data attributes, behavioral
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aspects of visualizations, and spatial organization of an InfoVis interface) overlap and are
equally used in the thinking and reasoning process. These aspects are considered to trigger
a mental simulation, seen as a central working mechanism of mental models. As such, they
considered the familiarity with inner workings of deployed interactive Infovis system as
equally important in mental model formulation, which transcended the simple bidirec-
tional relation between mental models and external visualizations (i.e., data visualizations)
alone. Hence, four high-level dynamics between mental models and external visual cues
are considered: (1) internalization, (2) processing, (3) augmentation, and (4) creation (as
seen in Figure 2). “Internalization” is understood as a familiarity with the used InfoVis
system forming the initial internalized mental model. “Processing” builds on the result-
ing internalized mental models, while considering them as processors of new external
phenomena including data visualizations. “Augmentation” uses such processed mental
models as the basis for reasoning and sense making. “Creation” takes the final mental
models and uses them as drivers for new concepts and innovation, including the design of
novel visual representations. Such dynamics are highly fluid and form an internal-external
coupled system of three main building blocks resulting from continuous interaction with
visualizations: (1) external anchoring, (2) information foraging, and (3) cognitive offloading.
Essentially, “external anchoring” relates to eye fixation and movement led by visual forms
(colors, shapes, spatial arrangement) in an external representation, resulting in the location
of appropriate representational anchor points of interest for internal–external coupling.
“Information foraging” relates to restructuring of the same data by applying a new sort-
ing order or new color mapping to allow for a new perspective on the data during the
process of visual exploration. Finally, “cognitive offloading” relates to creation of stable
representations of internal structures lead by two previous steps, which reduces the overall
cognitive load.

Mayr et al. [33] further discussed the conceptualization of mental models in InfoVis,
especially touching on the topic of whether a single or multiple mental models form during
an interaction with an InfoVis system. This notion aligns well with the “cognitive collage”
proposition of Liu and Stasko. Similarly, Mayr et al. postulate that users tend to build a
number of mental models that address the knowledge of the InfoVis tool (“tool mental
model”), the knowledge of the data and their structural and relational characteristics (“data
mental model”), but also mental models of the problem that needs to be solved (“problem
space”). They further stressed that a mental model builds on earlier mental models and
prior experiences with InfoVis systems or similar data sets.

Additionally, the work of Sedig et al. [23] stressed the importance of the organizational
structure of a system in aiding sense making. This further aligns with the notion of a “tool
mental model” from Mayr et al. [33], introduced above. They focused on the sense-making
process when studying complex objects, such as multi-dimensional geometric shapes,
elaborate chemical compounds, or mathematical structures, which are innately composed
of many constituent components with intricate relationships. These are known to trigger
complex cognition that involves complex psychological processes (e.g., reasoning, appre-
hension, memory encoding, and mental modeling) and complex external conditions (e.g.,
dynamic, uncertain, large, heterogeneous, interdependent pieces of information) [23,37,38].
Such studies are relevant from the perspective of how the difficulty of mental manipulation
of complex information may be resolved by coordinated and complementary interactive
interfaces. Sedig et al. stressed that design strategies of visibility and complementarity are
seen as vital for the conceptualization of an effective visualization tool capable of portraying
the essential aspects of complex 4D entities. Here, visibility relates to both the visibility of
actions a user may employ and the visibility of data in the interface. The notion of com-
plementarity, on the other hand, guided the design and selection of interaction techniques
available in the tool. Namely, such interactions should be simple to use and sufficiently
supportive of human sense-making activities. They also need to be complementary and to
enhance the overall usability of the tool once combined. These suggested design principles
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guided the interface design of their developed tool that was further tested using three
interaction techniques—filtering, focus and scoping, and stacking/unstacking.

1.3. Omitted Areas of Investigation

Although highly valuable in enhancing the existing knowledge base on mental mod-
els, sense making, and knowledge discovery, these studies do not reflect on the related
cognitive implications arising from carrying out specific data science tasks (i.e., discover,
integrate, profile, model, report). The studies of Liu and Stasko [22], Mayr et al. [33], and
Sedig et al. [23] discussed above namely focused on analytic evaluation of mental model
creation and sense making while employing selected interaction techniques and features
available in used visualization tools. Some of these techniques and features relate to filter-
ing, sorting, pairwise comparison, focus and scoping, and stacking/unstacking. However,
there are some initial phases integral to all data science workflows that commonly begin
outside of a given visualization tool. These phases are expected to equally trigger additional
mental models, which are not considered in the studies above. These will be discussed in
more detail in Section 2.3 and within the “Results” section.

Likewise, these studies do not consider cognitive implications arising from working
with interactive systems that have a different organizational structure (i.e., predefined visual
dashboards vs. user-defined/customized visual dashboards) and thus entail different ap-
proaches to thinking and shaping the sense making and knowledge generation. The impor-
tance of such considerations was indeed highlighted in the work of Sedig et al. [18,19,23],
specifically in regard to the performance of complex cognitive activities being driven by
both the characteristics of tools and by the characteristics of users, as discussed at the
outset. Consistent with such notions, Mayr et al. [33] disclosed on the creation of mental
models driven by the functionalities of the visualization tools, specifically driven by the
inner workings of the tool and how to perceive the structure of the tool. However, to the
best of our knowledge, no respective work has been carried out on investigations related
to the formation of mental models driven by the different organizational and functional
structure of interactive visual systems. Hence, in the following sections, we will discuss
a number of these noted omitted instances and their relevance to the creation of mental
models leading to sense making and knowledge discovery.

2. Methodology
2.1. Overview of VA Systems and Data Exploration Environments

For our assessment, we considered two distinct categories of VA systems that may be
classified as scientific and commercial type of systems. The scientific system is an analytical
ensemble solution developed at our institution, specifically designed for interactive visual
exploration of multi- and high-dimensional time series data, including categorical and
functional data [39,40]. The selected commercial system (Microsoft Power BI) is repre-
sentative of interactive visualization software solutions currently available on the market
that are typically used to drive business intelligence [41]. In addition to their different
application classification, these systems are characterized by a diverse internal organiza-
tional structure. This namely means that the scientific system comes with a predefined
(i.e., fixed) analytical dashboard structure (Figure 4) with highly responsive interlinked 2D
analytical visual modules (e.g., histogram, time distribution plot, parallel coordinates plot,
heatmap, etc.). Namely, any user activity (e.g., point click, sequence selection, labelling)
performed within any visual module will instantaneously trigger a corresponding response
in all other visual modules within the concerned dashboard by highlighting the analogous
data point/sequence. Furthermore, the system is equipped with a number of analytical
cockpits attentively tailored to support diverse analytical tasks (e.g., trend analysis, pattern
search, quality check). In contrast, the commercial system has a “blank canvas” structure
without any initial default dashboard organization. Hence, it is expected that a user will
configure his or her own interactive dashboard by dragging and dropping the desired
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visualization (i.e., a chart, a graph) onto a blank canvas and filling it with desired data
items (Figure 5).
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We also considered a type of literate programming tool (e.g., a notebook style envi-
ronment) supporting the visual exploration of data by following a narrative approach that
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allows human analysts to keep track of their data analysis workflow. We have selected
Jupyter notebook with Python [42] as a suitable environment to portray an alternative
way to thinking and engaging with data in comparison to the VA solutions introduced
above (Figure 6). We feel that such contrasting structures will adequately illustrate a variety
of cognitive pathways of human analysists when interacting with differently organized
systems and resulting approaches during an explorative visual analysis.
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2.2. Approach to Conceptualization of Mental Models

The conceptualization of different mental models, as discussed by both Liu and
Stasko [22] and Mayr et al. [33], that proposes a “cognitive collage” concept resulting in
cognitive impressions of the tool (“tool mental model”), the data (“data mental model”),
and the problem that needs to be solved (“problem space”), is a high-level differentiation
that we generally agree with. We equally support the notion that these models are in a
constant flux and that they evolve given new evidence (e.g., detection of outliers, trends,
patterns, correlations). However, we also see the potential for further refinement.

We thus followed the formation of mental models systematically in our work and
evaluated them by applying well established think-aloud and task-oriented techniques
to follow the respective formation of mental models [43,44]. The think-aloud technique
considers the verbalization of thought development and reasoning while performing a task
or engaging with a system. The task-oriented technique follows a human while performing
a defined task. In this context, we have foreseen the engagement with interactive visual
tools and related environments and the performance of common tasks related to a data
science workflow. In our approach, these two techniques are applied concurrently. Figure 7
illustrates our approach in a schematic way.
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Figure 7. A schematic representation of the adopted approach to conceptualization of mental models
towards sense making and knowledge generation [22,33].

In terms of the data, we selected a time series data depicting meteorological conditions
(air temperature, relative humidity, wind speed) representative of the city of Vienna,
Austria [45]. The data denotes 3 years’ worth of records documented on an hourly basis. It
should be noted that we are aware of the fact that the selection of data itself may in part
drive the formation of mental models specific to the domain to which data belongs.

2.3. Envisioned Explorative Tasks

In order to explore the potential cognitive paths to sense making and knowledge
discovery when using diverse interactive visual tools and related visualization tech-
nologies, we followed the essential stages of a data science workflow as introduced by
Kandel et al. [46]. More specifically, we reflected on the following stages: discover (finding
the data), integrate (data restructuring, fitting the data into a desired format), profile (data
structure and quality check), model (advanced analytics), and report (final presentation of
the relevant findings). As the discover stage involves a general search for appropriate data,
either internal or external, this process is observed as unique across all concerned system
applications. Likewise, data wrangling in part follows a similar scheme across system appli-
cations and approaches. The profile and model stages are found to significantly differ across
the selected visual systems; thus, we will reflect on their conceptualization and characteris-
tics from the perspective of each system individually. Finally, the report stage may share a
common approach across systems, whereby we will highlight all deviating instances.

3. Results
3.1. Data Discovery

The data discovery stage essentially happens outside of the given system application.
This stage involves the search for internal (e.g., integral to an ongoing research project or a
host institution) and external raw data sources (e.g., originating from diverse web-based
data repositories). The main challenge here, however, may be restricted data access, in-
adequate data resolution, or poor metadata information (e.g., supporting documentation
of data items). Hence, human analysts need to think about the possible sources of trust-
worthy, freely available data of good quality that can be found, for example, in national or
international open government data catalogues. Once identified, the data are first judged
for relevance and later locally stored or made available within a shared database repository.

On a higher level, data discovery is categorized as the initial step of a “data mental
model”. This stage aligns equally well with the concept of a “foraging loop” from the
study of Pirolli and Card [35] that focuses on seeking, uncovering, and extracting new
data. While refining this high-level categorization, we borrowed the notion of cognitive
frames from the “data/frame” theory by Klein et al. [36]. Hence, we suggest that more
refined mental models generated at this stage may relate to a “data search frame” (i.e.,
searching and locating a space where data may reside) and a “data taxonomy frame”
(i.e., relevance estimation based on data type, resolution, applied aggregation, provided
attributes and parameters).
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3.2. Data Integration

The main purpose of data integration is to make the acquired raw data usable, ready
for analysis, and to later bring it into a deployed software environment. Hence, this is
the stage where data are brought into a desired format, where different data items from
multiple sources may be integrated/joined together into a single dataset, and where data
restructuring and cleansing takes place. Such data cleaning and restructuring actions
are referred to as the data wrangling process, seen as integral to data integration, and
are commonly carried out using additional software tools independent of interactive
visual tools used for data exploration, such as, for example, Microsoft Excel [47], or tools
specifically designed for data wrangling (e.g., Wrangler [48]), or other programmatic
solutions that build on programming languages such as Python, SQL, and R. Hence, the
initial stage of data wrangling may happen outside of the given system application. This
especially holds true for the scientific system used in this study, which requires the data to
be assembled outside of the tool. Only some simple data wrangling functionalities are given
in the tool, such as removing the missing values. In the case of the commercial system,
a range of built-in features are offered that may aid data preparation. However, such
functionalities are provided within a different interface (Power Query in Microsoft Power
BI) that needs to be initiated separately (outside of the main tool). Hence, analysts may still
resolve to use other more familiar methods for data wrangling, such as those mentioned
above. In contrast, within a notebook style environment, analysts are more inclined to
directly prepare and transform the data using the selected programming language (in the
current case Python) and a number of specially developed library of tools. In this case, data
integration is closely integrated with a data wrangling phase and may be observed as a
unified process.

On a higher level, data integration is categorized as the following step of a “data
mental model”. In respect to the discussed sense making theories and models, this stage
may equally be considered as a part of a “foraging loop” from the study of Pirolli and
Card [35], as it concerns organization and enrichment of gathered data for further pro-
cessing. However, as their study does not necessarily focus on computer-aided analysis
but is more oriented towards a qualitative evaluation (e.g., organizing a large collection
of descriptions of people, addresses, telephone numbers, etc.), we feel the related mental
model should be more explicit. Hence, we may suggest that concerned mental models
relate to a “methodological frame” (i.e., selection of a technique or a procedure for data
wrangling), “data preparation frame” (i.e., data integration/joining, data formatting), and
“data transformation frame” (i.e., data restructuring, cleansing, and enrichment).

3.3. Data Profiling

The data profiling stage is the stage where analysts start exploring the data to under-
stand its structure, distribution, and behavior. The process itself is iterative and changes
with every new discovery. It is also heavily driven by domain knowledge. Commonly,
analysts start by understanding the very nature of the data at hand, which relates to their
tendencies, regularities, correlations, and patterns (i.e., periodical, regular). Following
this, any unusual or irregular occurrences that significantly deviate from the majority of
data points are being recognized, such as outliers (i.e., point-based, sequential, contextual),
extreme values, and unusual patterns (i.e., singular, irregular). Additional quality issues,
such as missing or error values or gaps in the timestamp, are also acknowledged and
corrected if deemed possible given the underlying data.

In general, we can say that the overall intention of the data profiling process is the
same. Hence, the resulting general mental model may be considered as the initial phase of
the “sense making loop” from the study of Pirolli and Card [35], in which analysts start to
conceptualize a cognitive representation of behavioral, structural, and functional aspects of
data. Likewise, we find that all three models (tool, data, and problem) from [22] and [33]
are equally triggered and fused together. However, as the approach to understanding the
structure and quality of the data at hand differs substantially across the evaluated visual
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systems, on a more granular level we could expect a number of mental models that may
overlap or appear as specific to the deployed visual system.

Scientific system: The scientific system is equipped with an analytical cockpit tailored
for data structure and quality check (Figure 8). Analysts can employ numerous inherent
functionalities and interactive visual modules to inspect the completeness of the data
(detection of missing values), threshold breaches, anomalies (outliers, duplicate entries,
time gaps), trends, and derive the basic descriptive statistics of the imported data (e.g.,
number of time stamps, mean, maximum, minimum, standard deviation). Hence, due to
the readily available instruments for an efficient evaluation of potential quality issues, a
general cognitive focus is more on the inspection of the data and its inherent features using
the available interaction techniques and visualizations. Such functionalities are then used
to filter out identified data issues and to prepare the data for further processing. In this
respect, we find that a “cognitive collage” concept [22,33] is indeed a suitable depiction of
the respective mental processes. A starting point is a “functional frame” (i.e., knowledge
about the tool interface and its analytical functions) that is closely intertwined with a
“data problem frame” (i.e., inspection and recognition of data deficiencies), leading to
the “data remediation frame” (i.e., evaluation, amendment, filtering, and preparation for
further processing).
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outliers (purple points) recognized in the data. Other conditions can be selected from the upper
panel (e.g., duplicate entries, trends, value changes), which would then be visualized in the time
series view.

Commercial system: The commercial system offers a few functions that may aid data
inspection, such as a summary distribution chart plotting distinct value distribution of
each data column where basic column quality could be assessed (e.g., null values, outliers).
However, this summary is descriptive only and it provides an overall count of existing
faulty instances with no distinct positioning in the data. Hence, for a more intelligent anal-
ysis of data structure, trends, and distinct localities of any faulty instances, analysts have to
design a custom dashboard (given the “blank canvas” system structure) with visualizations
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that could optimally portray data structure and existing quality features (Figure 9). In this
respect, not only domain knowledge on the data is needed, but also knowledge on data
visualization and representation techniques. Building on the “cognitive collage” concept
and our prior propositions regarding the mental models in the scientific system, we may
say that “functional frame” and “data problem frame” may still be considered as starting
points, while introducing an additional “data visualization frame”. Once the last frame is
set up, the “data remediation frame” may proceed.
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Notebook style environment: In the case of notebooks, all the steps have to be completed
manually (see Figure 6). This requires experience with the notebook framework itself, along
with having a deeper knowledge of relevant libraries (i.e., collections of reusable pieces of
code) and their areas of application. Especifically relevant are the libraries that facilitate
scientific computing and data manipulation (e.g., NumPy, pandas), data quality assessment
(e.g., pydqc), and cater for the generation of diverse (statistical) data visualizations (e.g.,
matplotlib, seaborn). The workflow itself entails gradual code conceptualization and
execution, in which each line of code has to be written, executed, and adjusted if necessary.
This equally relates to data visualization, which is only depicted in the environment once
the line with a corresponding code is run. In addition, new lines of code are needed to
initialize different visualization types (e.g., line chart, histogram, scatter plot). Getting an
overview of the data and its structure is therefore less intuitive compared to the previously
discussed systems. This equally calls for a more complex “cognitive collage” in accordance
with all the steps that need to be taken. Hence, we start with a “functional frame”, but then
proceed to the “programming frame” (e.g., code conceptualization, writing, and execution),
which continuously overlaps with a “data problem frame” and a “data visualization frame”.
All of these steps are setting up the grounds for a “data remediation frame”.

All of the introduced cognitive frames change constantly during the interaction with
the external representations (i.e., tool interface, code, visualizations). They are cognitively
assessed, evaluated, restructured, and enriched based on novel perspectives and discoveries
within the data.
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3.4. Data Modeling

Data modeling stage is the most perception- and cognition-intensive phase. Essentially,
this is a phase of data exploration and modeling, which facilitates perceptual and cognitive
navigation in complex and rich spaces of information. As such, this phase does not
have a concrete task-based structure. Rather, it is navigated by a multitude of analytical
decision points and visual cues within the data, visual system interface, and respective data
visualizations. In this, it may be in part explained by well-established gestalt principles
of visual perception describing the way human brain interprets signals pertaining to
relationships and hierarchy [49,50]. Namely, it is found that a human mind shows a
tendency towards grouping and organizing elements, recognizing patterns, and simplifying
complex imagery in a more predictable way, which is further driven by visual cues like
proximity, similarity, continuity, closure, and order/symmetry. Such properties would
essentially help humans to mentally organize simultaneous stimuli arising from multiple
linked views integral to a VA system, interactivity features (i.e., zooming, filtering, and
refocusing), instantaneous responses across different analytical modules, and diverse data
dimensions and features portrayed in numerous data visualizations. Once organized, such
stimuli may incrementally form meaningful internal representations eventually leading
to a cohesive and integrated understanding of data and its features. In this regard, the
investigations on the importance of complementary and coordinated interactions of a
visualization system in aiding sense making from the work of Sedig et al. [18,19,51] further
come to the foreground. According to Sedig et al., complementary interactions may support
flexibility of user action, which in turn may encourage more autonomous and self-regulated
exploratory processes. Likewise, a good-quality interaction is one that provides diversity,
harmony, flexibility, and appropriateness given a specific problem or system. Hence, a
system that may offer such quality in most of its aspects may be seen as valuable in
supporting a user’s analytical needs and seamlessly facilitating comprehension.

This phase is considered as the essence of the “sense making loop” suggested by Pirolli
and Card [35]. We also find that these are the most dynamic mental models that may not
abide by any permanent scheme or definition. In an effort to provide a potentially suitable
delineation, we will discuss some of the potential cognitive developments given the nature
of the underlying data and deployed visual systems.

Scientific system: Given the predefined structure of the scientific system, analysts are
provided with diverse analytical cockpits (see Figure 4) that support time series analysis (i.e.,
pattern search and comparison, time series diversity, forecasting), multivariate exploration
(i.e., correlations, trends and distributions), and dependencies on multiple variables (i.e.,
multivariate regression). All of these features are highly responsive across all analytical
cockpits, supporting thus the development of both local (native to a single cockpit) and
global (holistic across the whole VA system) mental models. Hence, we suggest that
potential mental models build on the previously introduced “functional frame”, which
may require subsequent partitioning into local and global sub-frames. The local sub-
frame considers perceptions and comprehensions originating from a single visualization,
progressing to complex developments stemming from multiple coordinated visualizations
within an entire analytical cockpit. Such singular and complex developments drive a
“data discovery frame” in which humans construct exemplary mental models going from
an initial, to a transitional, and finally to a conclusive cognitive comprehension of data.
Transitional comprehensions are the ones that are in a constant flux, as these ones change
and adapt based on new discoveries arising from other analytical cockpits and their features.
Conclusive comprehensions result from a global sub-frame (i.e., comprehension of the entire
system, its features, and data) and drive ultimate sense making and knowledge discovery.

Commercial system: As mentioned before, commercial systems generally require a
dashboard to be built by an analyst from the ground up. Such a development is strongly
driven by discipline-specific knowledge (e.g., visualization research, analytics) and data
domain knowledge. Once built, the dashboard may be as elaborate as needed; however, it
commonly resides only on one page. As a result, the local and global sub-frames introduced
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above may in this case take on a different extent, in which local would relate only to
perceptions and comprehensions specific to a single visualization, whereby a global would
relate to a complete dashboard from the entire page. Such perceptions will synchronously
drive the “data discovery frame”, following the same initial, transitional, and conclusive
dynamics as in the case of the scientific system.

Notebook style environment: Simply put, in the case of notebooks, perceptions and com-
prehensions are built sequentially, following a programmatically chronological order (i.e.,
from loading the libraries and data, to data restructuring and cleansing, and finally to visual
exploration and sense making). However, this chronological order is commonly disrupted
in practice due to new discoveries in the data that call for new batches of code considering
different analytical techniques, data variables, and data visualizations. Hence, if we try to
apply a concept of local and global sub-frames to a notebook-style environment, the local
dimension becomes more intricate and multi-dimensional. Namely, the local dimension
would reflect on both programming and data visualization, due to their tight dependencies,
and on every single instance of it. All instances would form a “data discovery frame”. Only
after all those instances are carried out would global perceptions and comprehensions take
place, ultimately leading to sense making and knowledge discovery.

3.5. Data Reporting

The reporting stage is the concluding stage in a data-driven sense-making and knowl-
edge discovery process. This stage considers the presentation and communication of
derived insights to different types of audiences. The importance of this stage stems from
the need to ensure transparency and trustworthiness of communicated facts and knowl-
edge [52]. Given that such information should inform the often non-technical stakeholders
about a given issue and a possible course of action for remediation, the means of public
diffusion of scientific knowledge should be able to bridge the gap between science and the
public understanding and acceptance of scientific facts. Oftentimes, this is done through
storytelling, supporting systematic visual dialogue, incremental information processing,
and avoiding cognitive strain. In the case of both the scientific system and notebooks, this is
done outside of the system application. Specifically, selected visualizations stemming from
the data exploration and modeling phase are exported as individual imagery, which are
then assembled in a desired software tool. It should be noted, however, that the resulting
imagery in both cases are a static derivative of the original interactive visualization. In con-
trast, commercial systems generally support interactive storytelling in which a compelling
sequential narrative displaying selected contextual visualizations can be created.

The report stage is recognized as a final fragment of the “sense making loop” suggested
by Pirolli and Card [35]. As the communication during reporting stage may reflect on
different contextual challenges (i.e., communicating assumptions made during analysis,
communicating final findings of the analysis), an additional cognitive frame pertaining to
“contextual communication” should be introduced. Such a frame would primarily consider
the target audience (e.g., domain experts, non-professionals) and the type of information to
be communicated. In turn, this would govern the level and amount of detail and supporting
information within a data visualization; along the way, the encoding of data attributes (i.e.,
colors, size, and type of graph) as visual elements is carried out.

4. Discussion

During all investigated stages of a data science workflow (i.e., discover, integrate,
profile, model, and report) users tend to construct a number of mental models respective
of the subtasks that the principal stage entails. Specific to the stage itself, these subtasks
and their respective mental models may either be analogous across different visualization
systems (as suggested in this study), or may significantly differ across the considered
systems. In this section we aim to provide a synthesis across all investigated stages of a
data science workflow and the used visualization systems, rather than looking at each of
these systems independently, as in the section above.
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The two initial stages—discover and integrate—appear to be generally comparable
across deployed systems, whereby both stages can be placed within a “foraging loop” [35]
and are found to be integral to a “data mental model” [33], when observed on a higher
level. However, in practice, central to these stages are a number of subtasks that require
different strands of thinking, reasoning, and discovery, and thus require a more refined
categorization. Figure 10 illustrates these higher and the suggested refined levels of
categorization for both data discovery and data integration stages. In this figure, we can
observe how these stages may be interpreted within the existing theoretical frameworks
and related research, and how these may be further mediated by additional cognitive
processes, dubbed “cognitive frames” as per [36], and their respective mental models.
These respective mental models follow a linear progression due to their portrayal of tasks
with a logical subsequent execution.
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Figure 10. A schematic representation of higher and refined levels of categorization for data discovery
and data integration stages, following the established theories in sense making, related research, and
the need for amendments [33,35].

Looking at the data profiling stage, the objective is generally the same—understanding
the nature of the data and resolving any potential deficiencies. On a higher level, this stage
is classified as the initial phase of the “sense making loop” [35] and is further associated with
all three mental models from [33]—tool, data, and problem. However, it was found that the
intermediate mental models related to the subtasks depend in part on the logical, temporal,
and hierarchical progression of the cognitive needs and processes given the data problem
(e.g., missing or error values, gaps in timestamp, etc.), but also given the organizational
structure and unique features of different visualization systems. Such properties are found
to affect the complexity under which a data problem or a data anomaly is detected and are
likely to impact the user’s efficiency towards an effective resolution. Hence, the resulting
mental models appear more intricate in those systems where a user is tasked with building
and organizing his or her own analytical environment (i.e., commercial system, notebooks),
as seen in Figure 11. In this case, a more circular process is observed, where subtasks and
respective mental models are highly iterative due to their interlinked nature.

We proceed to the most perception- and cognition-intensive phase, which is the data
modeling stage. This stage represents the core of the “sense making loop” [35]. As in
the profiling stage, the association with all three mental models from [33]—tool, data,
and problem—is observed. On a refined level, the most prominent mental models relate
to the “functional frame” and the “data discovery frame”, which further trigger initial,
transitional, and conclusive cognitive comprehension of data. The first two phases of
comprehension (initial and transitional) are in a constant flux and evolve with any new
visual/cognitive impulse originating from external representations, while the conclusive
phase results from the ultimate comprehension of the entire system and its data, eventually
leading to sense making and knowledge generation. What differs across systems is the
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way that these manifest during data exploration and modeling. This is due to the intricacy
of the data modeling stage, which is strongly driven by the organizational structure of
the selected systems, further driving local and global cognitive sub-frames, as discussed
in the previous section. In the case of scientific and commercial types of systems, the
resulting cognitive perceptions and activities are driven by the way in which a human
mind cognitively organizes simultaneous stimuli arising from multiple interlinked and
responsive visualizations, their integral interactivity features (i.e., zooming, filtering, and
refocusing), and diverse data dimensions and data features (i.e., position, size, color, shape).
In case of selected notebook environment, the resulting cognitive perceptions and activities
are driven by its inherent programmatic approach and the need to execute a number of
batches of code of differing functions (data loading, data restructuring and cleansing,
generation of data visualizations). Figure 12 illustrates these convoluted relationships.

Analytics 2022, 1, FOR PEER REVIEW 17 
 

 

 
Figure 11. A schematic representation of higher and refined levels of categorization for the data 
profiling stage, following the established theories in sense making, related research, and the need 
for amendments. In the case of the refined levels of categorization, the phases marked in bold in the 
commercial system and notebooks pertain to additional mental models that are triggered by the 
organizational structure and features of these systems [33,35]. 

We proceed to the most perception- and cognition-intensive phase, which is the data 
modeling stage. This stage represents the core of the “sense making loop” [35]. As in the 
profiling stage, the association with all three mental models from [33]—tool, data, and 
problem—is observed. On a refined level, the most prominent mental models relate to the 
“functional frame” and the “data discovery frame”, which further trigger initial, 
transitional, and conclusive cognitive comprehension of data. The first two phases of 
comprehension (initial and transitional) are in a constant flux and evolve with any new 
visual/cognitive impulse originating from external representations, while the conclusive 
phase results from the ultimate comprehension of the entire system and its data, 
eventually leading to sense making and knowledge generation. What differs across 
systems is the way that these manifest during data exploration and modeling. This is due 
to the intricacy of the data modeling stage, which is strongly driven by the organizational 
structure of the selected systems, further driving local and global cognitive sub-frames, as 
discussed in the previous section. In the case of scientific and commercial types of systems, 
the resulting cognitive perceptions and activities are driven by the way in which a human 
mind cognitively organizes simultaneous stimuli arising from multiple interlinked and 
responsive visualizations, their integral interactivity features (i.e., zooming, filtering, and 
refocusing), and diverse data dimensions and data features (i.e., position, size, color, 
shape). In case of selected notebook environment, the resulting cognitive perceptions and 
activities are driven by its inherent programmatic approach and the need to execute a 
number of batches of code of differing functions (data loading, data restructuring and 
cleansing, generation of data visualizations). Figure 12 illustrates these convoluted 
relationships.  

Figure 11. A schematic representation of higher and refined levels of categorization for the data
profiling stage, following the established theories in sense making, related research, and the need
for amendments. In the case of the refined levels of categorization, the phases marked in bold in
the commercial system and notebooks pertain to additional mental models that are triggered by the
organizational structure and features of these systems [33,35].
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sense making and knowledge discovery as triggered by individual visuals representations (v(1) . . . (n)),
entire interactive dashboards, or a narrative, given the distinct visualization system used and its
inherent organizational structure [33,35].

The final stage of a “sense making loop” is the reporting to the external audience.
Here, a distinct cognitive frame of “contextual communication” accounts for specifics that
govern the visual and contextual nature of communicated knowledge. Such a cognitive
frame generally applies to all systems under study. What differs across systems is the
communication medium. In scientific system and notebook environments, this is a static
derivative of the original interactive visualization, whereby the commercial system supports
interactive storytelling.

5. Conclusions

In this paper, we introduced a number of relevant theories and studies regarding sense
making and knowledge generation and offered our own perspectives on those processes
applied to a visual analytics domain. Specifically, we observed our daily workflows
and elaborated on possible ways in which analysts may build up knowledge and make
sense of the visual system and the data. In particular, we tried to explain how such
external representations and associated features and tasks might shape an analyst’s internal
representations, commonly referred to as mental models, while interacting with different
visual systems and related environments. In general, our aim was to contribute to the
existing body of knowledge on formation of mental models and visual reasoning, while
equally initiating a new discourse on task-specific refinements.

We suggested a number of respective cognitive phases that helped address the evo-
lution of thought and reason by following the essential stages of a data science workflow.
Such an approach has not been considered before. In this, we focused on crucial inter-
mediate steps that happen in each of the stages, rather than providing some high-level
differentiations. We found that each of these steps triggered a distinct mental model.
Some of the mental models are more routine driven, becoming more of a constant in an
analyst’s workflow, such as the data discovery stage. Others appear to be more thought
provoking. Furthermore, these models may be reorganized once a system with a different
internal structure is deployed. As expected, the most dynamic restructuring happened
during the data exploration phase, which was equally found to be the most perception- and
cognition-intensive phase. Altogether, our observations further corroborated the nature of
relationships between mental models and external visualizations being highly fluid and
constantly evolving, as discussed in existing literature.

Our study focused on time series data originating from the climate domain. We feel
that this may in part influence the formation of mental models for some of the cognitive
phases introduced in this paper. Especially relevant may be the type of the data (e.g.,
numerical, categorical) and the domain to which data belongs, as this would influence
the search for applicable features and behavior within a data exploration phase, along
the interaction with different data visualizations appropriate for depicting that particular
data type. Hence, in our future efforts, we plan to expand our research to other domains
towards a more comprehensive analysis.
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