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Abstract: Mixed-reality (MR) environments, in which virtual objects are overlaid on the real environ-
ment and shared with peers by wearing a transparent optical head-mounted display, are considered
to be well suited for collaborative work. However, no studies have been conducted to provide neuro-
scientific evidence of its effectiveness. In contrast, inter-brain synchronization has been repeatedly
observed in cooperative tasks and can be used as an index of the quality of cooperation. In this
study, we used electroencephalography (EEG) to simultaneously measure the brain activity of pairs
of participants, a technique known as hyperscanning, during a cooperative motor task to investigate
whether inter-brain synchronization would be also observed in a shared MR environment. The partic-
ipants were presented with virtual building blocks to grasp and build up an object cooperatively with
a partner or individually. We found that inter-brain synchronization in the cooperative condition
was stronger than that in the individual condition (F(1, 15) = 4.70, p < 0.05). In addition, there was a
significant correlation between task performance and inter-brain synchronization in the cooperative
condition (rs = 0.523, p < 0.05). Therefore, the shared MR environment was sufficiently effective
to evoke inter-brain synchronization, which reflects the quality of cooperation. This study offers a
promising neuroscientific method to objectively measure the effectiveness of MR technology.

Keywords: inter-brain synchronization; electroencephalograph (EEG); hyperscanning; shared MR
environment; cooperation

1. Introduction

Mixed-reality (MR) environments are considered particularly suitable for collaborative
work [1]. MR offers environments in which physical and digital objects coexist in a user’s
visual perception of the real world using transparent head-mounted displays [2,3]. Al-
though both MR and immersive virtual reality (VR) can display and allow a user to interact
with virtual objects, MR can be superior to immersive VR in that MR can superimpose
a virtual world on the real world, and multiple people in a shared MR space can have a
shared experience of manipulating and observing virtual objects simultaneously. Owing to
these advantages, MR has been applied in a variety of fields for face-to-face and remote
collaborative tasks [4–9]. However, to the best of our knowledge, no studies have been
conducted to obtain neuroscientific evidence that shared MR environments are effective for
cooperative tasks.

Recently, a growing number of studies have employed the hyperscanning technique,
which is a neuroimaging technique used to measure two or more individuals’ brain activ-
ities simultaneously. Previous studies have reported that inter-brain synchronization is
enhanced during cooperative actions [10–14]. Hyperscanning is considered a promising
approach to study social interaction, especially in naturalistic environments, because it
does not presuppose a rigid and well-organized time-controlled experimental environment
(such as an event-related design in an experimental room). Instead, the major analyti-
cal technique used in hyperscanning is to examine inter-brain synchronization among
participants during the experimental session, which can be applied to more naturalistic
experimental settings.
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Owing to its flexibility for application to naturalistic tasks, electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS) are often used for hyperscanning
studies. Previous studies have reported inter-brain neural synchronization between two
or more participants in various cooperative tasks. Yun et al. [15] found that frontal EEG
theta rhythms were synchronized between pairs of participants during a task of mutual
finger-pointing, and this synchronization was more enhanced when their finger movements
were also synchronized. Similar EEG frontal theta synchronization was reported during
ensemble guitar play [16,17]. Kawasaki et al. [18] measured dyads’ EEG activity when they
alternately pronounced letters of the alphabet, and they showed that inter-brain frontal
synchronization was enhanced as behavioral coordination (speech rhythm synchronization)
increased. Similar inter-brain frontal synchronization has also been reported in studies uti-
lizing hemodynamic measures, such as fNIRS and functional magnetic resonance imaging
(fMRI) [19–24]. Several studies have also demonstrated EEG synchronization in other brain
areas, including the sensorimotor area [10] and the temporo-parietal junction (TPJ) [25], in
social interaction tasks. Recently, Dikker et al. [26] reported inter-brain synchronization
over broader brain areas in activities performed by students during real-world high school
classes, which was enhanced when students were more engaged in the class. These findings
suggest that inter-brain synchronization can be used as a measure of the “quality” of social
interaction between individuals during cooperative tasks.

In this study, we hypothesized that inter-brain synchronization during a cooperative
task would be observed even in a shared MR environment. We investigated the neural
activities of pairs of participants engaged in a cooperative motor task in a shared MR
environment using the EEG hyperscanning technique. To this end, we developed an
MR application in which participants could grasp and move virtual building blocks to
assemble an object to imitate a target object that was simultaneously presented. The
participants performed this task either cooperatively with a partner (cooperative condition)
or individually in parallel with another participant (individual condition). We anticipated
that inter-brain synchronization would be observed between pairs in the cooperative
condition but not in the individual condition.

2. Materials and Methods
2.1. Participants

A total of 32 healthy adult participants, consisting of 16 same-sex pairs (7 female pairs;
14 right-handed pairs and 2 left-handed and right-handed pairs; mean age 22.1, SD ± 0.95,
range 20–24), participated in this experiment. They had normal or corrected-to-normal
vision. The experiment was conducted according to the principles and guidelines of the
Declaration of Helsinki with the approval of the ethics committee of the School of Science
and Technology, Meiji University.

2.2. Experimental Procedures

The pairs of participants sat down face-to-face while wearing head-mounted MR
devices (HoloLens, Microsoft; Figure 1a). The experimental task was to assemble struc-
tures using a set of virtual building blocks as sample objects presented through the MR
device. The task was either performed cooperatively with a partner (cooperative condition;
Figure 1b,d) or separately in parallel with the peer (individual condition; Figure 1c,e),
which served as the control condition. The order of conditions was counterbalanced across
pairs.
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Figure 1. (a) Appearance of the experimental apparatus. The participants wore the head-mounted
MR device and an EEG cap simultaneously. (b) Cooperative condition. The participants sat down
face-to-face with their partner and manipulated virtual building blocks to cooperatively create an
object equivalent to the sample object. (c) Individual condition. The participants performed the
same MR task as in the cooperative condition, but did so behind a virtual wall that hid the partner’s
appearance. (d) The screen capture of the participant’s view in the cooperative task and (e) in the
individual condition. Left and right panels show the perspectives of participants designated as 1P
and 2P, respectively.

All participants were first instructed as to the functionality of the MR device and
learned how to operate it during a practice session in which they assembled an object that
was simpler than the sample object used in the actual task.

The main session started with the experimenter’s verbal instruction. One of the
participants first pressed the “Sample” button presented near the center of the MR visual
area to make the sample object appear. Next, the participant freely pressed the “BlueCube”
(for one member of the pair designated as 1P) or “RedCube” (for the other, designated as
2P) button on the left side of the MR visual area to make a virtual building block (Cube)
appear. The color of the Cube for each participant was determined in advance. The
participants had to build up the same object as the sample object in the place at around
the center of the MR visual area where small white cubes (3 vertical × 5 horizontal × 3
depth) served as a guide. While building up the object in the task, participants were free
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to place blocks anywhere in the workspace and were not limited to stacking them on top
of other blocks. The participants could move the virtual object by pressing it, dragging it
to a guide cube, and then releasing it (as in “drag and drop” interactions using a mouse
cursor in a conventional graphical user interface) while fixating on the object throughout
this movement. The participants were instructed to try to minimize their head movements
during the task.

In the cooperative condition, the pair of participants assembled an object cooperatively.
In so doing, they needed to understand one another’s intentions regarding where to put
their cube to build up the object efficiently. The participants were allowed to converse
minimally during the task. The mean duration of conversation was 3.47 s, with a SD of
±2.59; the mean number of conversations during the task was 4.5, with a SD ± 4.0, and
the average ratio of conversation time to task time was 7.87%, with a SD ± 8.53. In the
individual condition, each participant created an object similarly to that in the cooperative
condition but did so behind a virtual wall that rendered the other participant and their
cubes invisible (Figure 1c). The sample object in the individual condition was presented
to each participant separately and was composed of only blocks of a predetermined color
(blue and red for 1P and 2P, respectively). The shape of the sample object was equivalent in
the two conditions. We consider the individual condition as a control condition because
the participant was able to see their own environment as in the cooperative condition
(e.g., their own hands and the surroundings of the room), whereas they could not see the
other participant’s workspace. Because the participants performed the same tasks as in the
cooperative condition, their motor activity was comparable between the two conditions.

The participants determined whether the task was completed, and the task was ended
upon the participant’s verbally saying “Finished.” The experimental time for each task
was 287.4 s, SD ± 184.8 for the cooperative condition and 294.9 s, SD ± 120.1 for the
individual condition (t(15) = 0.144, p = 0.887). In the cooperative condition, one participant
was predetermined to be responsible to press the “Sample” button at the beginning of the
task to complete the task.

After each condition, the participants answered a questionnaire regarding the task
with a list of items measured with a seven-point Likert scale (from −3 to 3) to confirm that
the cooperative condition indeed required cooperation between the participants and that
there was a difference between the two conditions in terms of cooperation. The questions
asked participants to rate the quality of their cooperation (“I felt we cooperated well”), their
ability to share the space (“I felt we were sharing the space”), and about sharing objects (“I
felt we were sharing the virtual objects”).

2.3. EEG Recordings

EEG signals of both participants in each pair were simultaneously recorded. Signals
were recorded at 16 scalp sites (F5, F3, Fz, F4, F6, C5, C3, Cz, C4, C6, P5, Pz, P6, PO3, POz
and PO4), located according to the extended international 10/20 system. The reference
electrode was placed on the participants’ right earlobes. The EEG signal was amplified and
digitized at 512 Hz with a band-pass filter of 0.5–60 Hz.

Figure 2 shows the layout of the experimental apparatus. The pairs of participants
sat face-to-face, remaining 3 m away from each other. Their EEG signals were recorded
using two individual EEG preamplifiers and amplifiers (g.USBamp, g.tec Inc., Schiedlberg,
Austria) separately. Our method of recording EEG data was similar to that used in the
previous study [27]. A trigger signal was input to both EEG amplifiers by the experimenter’s
button press to record the start and end times of the task to keep the two EEG signals
temporally synchronized.
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Figure 2. Layout of the experimental apparatus. As shown in this figure, two individual EEG signals
were recorded simultaneously during the task.

2.4. Data Analysis
2.4.1. Subjective Ratings

Because the questionnaire data were not normally distributed (Lilliefors test, p < 0.05),
we analyzed the questionnaire data on cooperation, sharing space and sharing objects by
conducting the Wilcoxon signed-rank test between the questionnaire scores and zero to
determine that the cooperative task was indeed cooperative and between the two conditions
to examine whether there was a significant difference in subjective experience between the
cooperative and individual tasks.

2.4.2. EEG Data

All computations for the EEG signals were performed using the MATLAB R2018b
(MathWorks Inc., Natick, MA, USA) environment. First, we extracted EEG data correspond-
ing to the task, based on the trigger signals recorded at the start and end of the task. Then,
for the individual condition, the length of the data was adjusted to be equal for each pair
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by truncating the data with a longer task time of one participant to match the data with
the shorter task time of another. At this stage, we rejected the EEG data of three electrodes
(F4, C6, and Pz) due to measurement errors and large artifacts caused by the participants’
movement.

Second, we preprocessed the extracted data using MATLAB toolbox EEGLAB version
14.1.2b [28]. We applied a low-pass filter at 35 Hz to the EEG signals, and the signals
were divided into 1-s epochs. Epochs with artifacts at any time step were removed with
a rejection threshold of ±100 µV for the remaining 13 electrodes [29–32]. In addition, we
eliminated all epochs during which the participants conversed in the cooperative task by
manually checking the video data. For each pair of participants only epochs that were
accepted for both participants (common epochs) were included in the analysis [26,33].
Overall, epoch rejection rates were 49.6%, SD ± 24.7, for the cooperative condition, and
44.9%, SD ± 30.8, for the individual condition (t(15) = 0.69, p = 0.498).

Third, we employed the total interdependence (TI) [26,33,34] to compute brain-to-
brain synchronization among the pairs during the task. TI is defined in terms of spectral
coherence. In this study, we computed spectral coherence based on the Welch method,
which controls for bias in coherence estimation [31]. For a pair of simultaneously acquired
time series (x_1,y_1),(x_2,y_2),(x_3,y_3), . . . ,(x_n,y_n), TI was computed according to the
formula

TIx,y = − 1
2π

∫ π

−π
ln
(

1 − C2
xy(λ)

)
dλ (1)

where Cxy(λ) is the coherence between the two signals, x and y, at frequency f = λ/2π.
For two Gaussian processes, this formula has been shown to measure the total amount
of mutual information between them. Numerically, for a given sampling frequency fs,
Equation (1) can be recast into an implementable form as given below.

TIx,y = − 2
fs

∑N−1
i=1 ln

(
1 − C2

xy(i∆ f )
)

∆ f (2)

where ∆ f = fs/(2(N − 1)) is the frequency resolution and N is the number of desired
frequency points in the interval between 0 and the Nyquist frequency fs/2.

In this study, TI was estimated by computing the magnitude-squared coherence using
the Welch method for one-on-one paired combinations of the same electrodes (e.g., Fz-Fz)
for two participants. The magnitude-squared coherence was calculated for the frequency
range between 3~20 Hz by tapering non-overlapping 1 s epochs with a Hanning window
and performing the Fourier transform with a frequency resolution of 1 Hz. Therefore,
by calculating the TI values of the two EEG data, their total mutual information resulted
in a range of 0 to 1, where the TI value becomes larger (near 1) with greater inter-brain
synchronization. We believe that this method has two main advantages. First, it is possible
to characterize the synchronization of brain activity between individuals across broad
frequency bands (3–20 Hz), which may reflect the general connectivity without being
bound to a specific frequency band (e.g., theta, alpha, or beta). Second, it can be applied to
data with a high epoch rejection rate because TI can be estimated for a short (1 s, in this
study) accepted epoch [26].

We selected nine electrodes, which were relatively free of noise across the participants,
from the anterior, central, and posterior positions (as in [26,33]). These included three
frontal (Fz, F5, F6), three central (Cz, C3, C4), and three posterior electrodes (POz, P5,
P6). We then performed a repeated-measures two-way ANOVA for TI values with two
conditions (cooperative, individual) and nine electrodes (Fz, F5, F6, Cz, C3, C4, POz, P5,
and P6) as main factors.

In addition, we employed a permutation test approach [35] to further confirm the
significance of the TI values. To yield the control TI values under the null hypothesis,
the common epoch data of one of the dyads were randomly shuffled in time, and the TI
value was calculated (control TI value). We repeated this procedure 1000 times, and the
control TI values that were greater than the experimental TI value were extracted from all
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1000 values, which served as a significance level (p = the number/1000). We also performed
a posthoc paired t-test and calculated the effect size between the cooperative and individual
conditions to confirm the conditional difference.

Additionally, we performed a two-way ANOVA (condition × electrode) for the mean
calculated magnitude-squared coherence in the EEG standard bands (Delta: 3 Hz, Theta:
4~7 Hz, Alpha: 8~13 Hz, Beta: 14~20 Hz).

3. Results
3.1. Subjective Reports

Figure 3 shows the questionnaire results for both cooperative and individual con-
ditions. The results exhibited significantly greater scores for the cooperative condition
compared to a value of zero. (Z = 4.85, p = 1.26 × 10−6, r = 0.857, for cooperation; Z = 4.52,
p = 6.06 × 10−6, r = 0.799, for sharing space; Z = 4.78, p = 1.76 × 10−6, r = 0.845, for sharing
objects; Wilcoxon signed-rank test), and that rating scores in the cooperative condition
were significantly greater than those in the individual condition (Z = 4.98, p = 6.25 × 10−7,
r = 0.880, for cooperation; Z = 4.93, p = 8.28 × 10−7, r = 0.872, for sharing space; Z = 4.96,
p = 7.23 × 10−7, r = 0.877, for sharing objects; Wilcoxon signed-rank test).

Figure 3. Questionnaire results. Rating scores of all three items (cooperation, sharing space, and
sharing objects) in the cooperative condition were significantly greater than 0, and the scores of
all three items in the cooperative condition were significantly greater than that in the individual
condition (**** p < 0.0001). Note that the values for individual conditions are very low (around −3).

3.2. Inter-Brain Synchronization

We confirmed that TI values were normally distributed (p > 0.05, Lilliefors test).
The results of a repeated-measures two-way ANOVA (condition × electrode) showed a
significant main effect of the condition (F(1, 15) = 4.70, p = 0.047, η2 = 0.238; Figure 4),
but no main effect of specific electrodes (F(8, 120) = 0.519, p = 0.840, η2 = 0.033) nor of
interaction between condition and electrodes (F(8, 120) = 1.24, p = 0.283, η2 = 0.076). We
also examined four frequency bands separately (delta, theta, alpha, and beta) through
a two-way ANOVA (condition × electrode) but found no statistically significant results
(p > 0.1). These results indicate that inter-brain synchronization was significantly higher
in the cooperation condition than in the individual condition, independent of channel
locations and frequency bands.
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Figure 4. TI values for each condition at the respective electrodes of the nine. TI values in the
cooperative condition were significantly greater than those in the individual condition.

We then performed a permutation test and calculated the effect size of the conditional
differences at each electrode. There were strong p-values in the permutation test in the
cooperative condition for several electrodes (p < 0.05, uncorrected; Table 1), although
they did not survive after multiple comparison adjustment (Bonferroni), but not in the
individual condition (p > 0.05, uncorrected). Effect size analyses showed large effects (coop.
> indiv.) at Fz (d = 1.035) and C4 (d = 0.827) and medium effects at other electrodes (C3,
POz, and P6; Table 1). These results confirm that inter-brain synchronization was greater in
the cooperative condition than in the individual condition over broad brain areas.

Table 1. Mean TI values for each condition in all electrodes. * p < 0.05, uncorrected.

Electrode Condition
TI-Value Perm. Test Coop. vs. Indiv.

Mean SD p-Value t-Value p-Value Effect Size
(Cohen’s d)

Fr
on

ta
l

Fz
coop 0.211 0.008 0.014 *

2.551 0.022 * 1.035
indiv 0.201 0.010 0.072

F5
coop 0.205 0.013 0.053

1.103 0.287 0.437
indiv 0.199 0.014 0.081

F6
coop 0.202 0.009 0.06 −1.224 0.240 −0.455
indiv 0.206 0.012 0.106
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Table 1. Cont.

Electrode Condition
TI-Value Perm. Test Coop. vs. Indiv.

Mean SD p-Value t-Value p-Value Effect Size
(Cohen’s d)

C
en

tr
al

Cz
coop 0.206 0.007 0.029 *

1.248 0.231 0.444
indiv 0.202 0.011 0.116

C3
coop 0.208 0.008 0.036 *

1.299 0.214 0.506
indiv 0.203 0.012 0.096

C4
coop 0.210 0.012 0.021 *

2.248 0.040 * 0.827
indiv 0.194 0.024 0.109

Po
st

er
io

r

POz
coop 0.211 0.017 0.015 *

1.855 0.083 0.717
indiv 0.201 0.012 0.085

P5
coop 0.214 0.047 0.043 *

1.005 0.331 0.374
indiv 0.200 0.023 0.124

P6
coop 0.213 0.018 0.035 *

1.841 0.085 0.814
indiv 0.195 0.024 0.082

3.3. Correlation between Subjective Reports and Inter-Brain Synchronization

We first calculated Spearman’s correlation coefficient between the results of the ques-
tionnaire (subjective reports) and inter-brain synchronization (TI). The results showed a
significant positive correlation between the rating score of “sharing objects” and the TI
value at Fz in the cooperative condition (rs(31) = 0.373, p = 0.036; Figure 5a; Table 2). Addi-
tionally, we found a weak positive correlation between the rating score of “sharing space”
and the TI value at Fz in the cooperative condition (rs(31) = 0.308, p = 0.087; Figure 5b).
There was no other significant correlation between the questionnaire and TI value in other
electrodes nor in the individual condition (rs(31) < 0.3).

Figure 5. (a) Correlation between rating score (sharing objects) and mean TI value at Fz in the
cooperative condition. (b) Correlation between rating score (sharing space) and mean TI value at Fz
in the cooperative condition.
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Table 2. Spearman’s correlation results between TI value and behavioral data. * p < 0.05, uncorrected.

Electrode Condition

TI - Questionnaire Score TI-Task
Performance

Cooperation Sharing Space Sharing Objects
rs p-Value

rs p-Value rs p-Value rs p-Value

Fr
on

ta
l

Fz
Coop 0.005 0.980 0.308 0.087 0.373 0.036 * −0.225 0.401

Indiv −0.254 0.161 −0.091 0.621 −0.133 0.468 0.158 0.558

F5
Coop 0.152 0.407 −0.137 0.455 0.006 0.972 0.523 0.038 *

Indiv 0.055 0.765 0.237 0.191 0.288 0.110 0.029 0.914

F6
Coop 0.119 0.516 0.032 0.862 0.039 0.831 −0.228 0.395

Indiv −0.062 0.736 −0.021 0.909 0.008 0.967 −0.245 0.360

C
en

tr
al

Cz
Coop −0.009 0.960 −0.039 0.834 0.031 0.866 −0.293 0.271

Indiv −0.023 0.902 0.197 0.280 0.130 0.480 –0.032 0.906

C3
Coop 0.128 0.484 0.240 0.186 0.202 0.268 −0.423 0.103

Indiv −0.048 0.794 0.154 0.400 0.035 0.850 −0.068 0.803

C4
Coop −0.157 0.392 −0.222 0.223 0.022 0.904 −0.049 0.858

Indiv 0.003 0.989 0.172 0.346 0.114 0.533 0.068 0.802

Po
st

er
io

r

POz
Coop 0.052 0.777 −0.219 0.229 −0.288 0.110 −0.240 0.370

Indiv −0.108 0.558 0.192 0.291 0.182 0.319 0.123 0.651

P5
Coop 0.170 0.351 −0.185 0.312 −0.178 0.331 0.004 0.987

Indiv −0.250 0.167 −0.019 0.918 −0.101 0.584 0.073 0.787

P6
Coop −0.060 0.745 −0.275 0.128 −0.271 0.134 0.119 0.660

Indiv −0.052 0.779 0.195 0.286 0.064 0.728 −0.014 0.959

We then calculated Spearman’s correlation between task performance (performance
time) and TI value. We found a significant positive correlation at F5 in the cooperative
condition (rs(15) = 0.523; p = 0.038; Figure 6a; Table 2), indicating that the inter-subject
synchronization was higher with increasing performance time (cooperation did not proceed
well). In contrast, we found a marginal negative correlation at C3 in the cooperative
condition, indicating that inter-brain synchronization was higher when the performance
time was shorter (cooperation worked well) (rs(15) = −0.423; p = 0.103; Figure 6b).

Figure 6. (a) Correlation between performance time and mean TI value at F5 in the cooperative
condition. (b) Correlation between performance time and mean TI value at C3 in the cooperative
condition.
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Finally, there was no correlation between the results of the questionnaire and task
performance (p > 0.1).

4. Discussion

We investigated inter-brain synchronization of two individuals performing a cooper-
ative motor task in a shared MR environment using EEG hyperscanning. The subjective
reports showed that the rating scores of the questionnaire items (cooperation, sharing space,
and sharing objects) were significantly greater than zero in the cooperative condition and
were significantly greater in the cooperative condition than in the individual condition. In
terms of brain activity, we found that inter-brain synchronization in the cooperative task
was stronger than that in the individual task. In addition, a significant correlation between
inter-brain synchronization and the subjective report (sharing objects) and objective mea-
sure (performance time) was found in the cooperative condition. These results indicate that
the cooperative task in the MR environment was sufficiently effective to evoke inter-brain
synchronization, which can be regarded as showing that the dyads cooperated well in the
task.

These results show that inter-brain synchronization during the cooperative task was
stronger than that during the individual task. Dikker et al. [26] and Bevilacqua et al. [33]
used TI values averaged over broad brain areas, rather than in a highly localized manner,
including occipital (O1, O2), frontal (F3, F4), and parietal electrodes (P7, P8), to investi-
gate the general differences in inter-brain synchronization between conditions. Similar to
their results, we found significant inter-brain synchronization in the cooperative condition.
Moreover, the correlation analyses showed that the participants’ subjective reports were
correlated with inter-brain synchronization. Thus, it is reasonable that the cooperative
task fostered cooperation between dyads. Therefore, we postulate that inter-brain synchro-
nization could be associated with the quality of cooperation, and hence with a sense of
‘unity’ [36,37] or “we-mode” cognition [38], between dyads during the cooperative task in
the shared MR environment.

Previous studies have reported that inter-brain neural synchronization occurred in
the frontal regions of subjects’ brain during various types of cooperative tasks, including
cooperative motor tasks [15,20,23,39–41], ensemble guitar playing or singing [16,42], face-
to-face dialog [21], teacher-student interaction [43,44], mutual gaze [19,24], and cooperative
creative tasks [45]. These previous studies have reported the results of brain activities when
subjects collaborated in a real-world face-to-face environment. In contrast, the present
study is the first to report inter-brain synchronization even in an MR environment, which
is similar to studies on real-world collaboration. Although the exact cognitive abilities
required for these tasks may vary, the frontal region would likely play critical roles in
executive functions, or higher-level cognitive control, such as problem-solving, working
memory, inhibition and decision making [46–48]. In the cooperative task in this study, the
participants were often required not only to plan their actions to place the virtual objects,
but also to carefully observe their partner’s actions to assemble the target object effectively.
This would require the participants to generate an entire action plan, to decide when or
whether to move, to track the current status against the final goal, and communicate with
the peer if necessary (although the conversation was restricted to be minimal). All of these
require executive function of the frontal cortex and were most effective when those plans
or intentions were shared between the dyads throughout the task, which was eventually
reflected in inter-brain frontal synchronization.

It is also reasonable that the brain activities over the frontal region may reflect the
function of understanding the thoughts of others, as the medial prefrontal cortex (mPFC)
is considered to be one of core regions of mentalizing, or “theory of mind” (ToM) [49–51].
ToM is the ability to infer other’s mental states, such as their thoughts and beliefs, which
provides a framework for effective social interaction. Many studies have reported that
the mPFC is involved in ToM processing during interactive tasks [51–53]. Therefore, inter-
brain synchronization over the frontal region may reflect mutual mentalizing of others’
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thoughts, especially when the dyads did not cooperate well and had to infer their partner’s
intention more deliberately, as suggested by our correlation results that frontal inter-brain
synchronization (F5) was significantly correlated with performance time.

Mutual action observation is another factor that helps to explain inter-brain synchro-
nization, which involves the mirror neuron system (MNS), as the cooperative task allowed
the participants to see their peers’ movements. The MNS consists of brain regions that
activate not only when an individual performs an action, but also when they observe
someone else performing the same action, which includes fronto-parietal sensorimotor
cortices, allowing us to understand the intentions of other people’s movements and how
they feel at that moment [37,54–56]. In this study, pairs of participants performed a coop-
erative task, sitting face-to-face in the MR environment so that they could see each other.
During the task, they had opportunities to observe their partner’s movement to place their
blocks; thus, similar brain activities between the performer’s motor-related regions and the
observer’s MNS-related regions were observed. Marginal negative correlation between TI
value and performance time (r = −0.423) found at C3 in our experiment, which indicates
that inter-brain synchronization in the motor area was enhanced when the participants
cooperated well and finished the task earlier, which might be a reflection of MNS activ-
ity. This interpretation is also consistent with previous findings that showed inter-brain
synchronization during mutual motor tasks [10].

In the present study, task performance was not correlated with subjective reports
(feelings of cooperation, sharing space, and objects). This indicates that task performance
may not be related to the subjective quality of cooperation in a simple manner. One reason
for this may be that the speed of motor execution differed from pair to pair; therefore,
even if the degree of subjective feeling of cooperation was high, performance time was
not necessarily reduced. Performance time may be somewhat related to participants’
familiarity with MR-like technologies. Because MR is a relatively novel technology, none of
the participants had previously experienced MR, whereas some of them who had experience
with VR may have had an advantage in the MR environment.

Finally, the limitations of this study should be noted. First, although the number
of participants was comparable to that in other hyperscanning studies, the small sample
size might have weakened the statistical power. Nevertheless, considering the strong
conditional difference in the subjective measure (questionnaire) in our experiment, we
could expect a strong conditional effect also in neural activities, which was indeed observed
in terms of TI values (effect size d = 1.04, at Fz). The sample size (N = 16) was also justified
by the power analysis. Second, the rejection rate of epochs was relatively high (>40%),
although similar values have often been reported in previous real-world hyperscanning
studies. This is mainly because of the difficulty of attaching EEG electrode simultaneously
with MR device and less tolerability to motion artifacts. The use of more flexible and
motion-tolerable electrodes in mobile EEG devices (such as patch-type EEG sensors) may
overcome this problem in future studies. Conversation is another factor in artifacts during a
collaborative activity, but it is important in the interaction between dyads when performing
a cooperative task. In this experiment, the average ratio of conversation time to task
time was relatively short. Moreover, on average, 90% of the data were unaffected by the
conversation (also note that we removed all epochs during conversation from the analyses).
Therefore, we believe that noisy epochs caused by conversation and body movements were
successfully rejected in the data preprocessing stage. It would be beneficial to incorporate
multiscale PCA [57] and signal decomposition methods [58] to remove noise from EEG
signals in future studies. Third, our experiment targeted inter-brain synchronization of the
dyads. However, applying the hyperscanning technique to more than three participants
is definitely important to investigate the neural underpinnings of cooperative behavior
further. Cooperation has been proven effective in enhancing work outcomes in many
fields and in different age groups [59]. Cooperative learning is also emerging as a new
educational form in companies and schools, which promotes group knowledge generation,
improves the ability to solve complex problems, and encourages learners to participate
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in learning [60]. The MR technology used in our experiment can be applied to group
interaction; thus, group-level inter-brain synchronization in a shared MR environment
should be further investigated in future research.

5. Conclusions

To the best of our knowledge, this study is the first to apply the EEG hyperscanning
technique to investigate inter-brain synchronization during a cooperative task in a shared
MR environment. Our results successfully showed that inter-brain synchronization was
also observed in a shared MR environment during the cooperative task. These results
suggest that measures of inter-brain synchronization can reflect the quality of cooperation
in a shared MR environment. This study offers a promising neuroscientific method to
objectively measure the effectiveness of VR and MR.
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