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Abstract: Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming
a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several
purposes, including gaze monitoring, privacy protection, and user authentication/identification.
Identifying users is an integral part of many applications due to security and privacy concerns. In
this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR
researchers explored machine learning on motion-based data (such as body motion, head tracking, eye
tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task
and many features to train the machine learning model for user identification. We propose a system to
identify users utilizing minimal eye-gaze-based features without designing any identification-specific
tasks. We collected gaze data from an educational VR application and tested our system with two
machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep
learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM).
Our results show that ML and DL models could identify users with over 98% accuracy with only six
simple eye-gaze features. We discuss our results, their implications on security and privacy, and the
limitations of our work.

Keywords: human-centered computing; virtual reality; user identification; security and privacy;
eye tracking

1. Introduction

In recent years, technological advances and the proliferation of Virtual Reality (VR)
devices have gained a massive amount of attention where eye tracking is integrated with
head-mounted displays (HMD) (e.g., HTC Vive Pro Eye, Pico Neo 2 Eye, FOVE 0, or Varjo
VR-3). These VR headsets can be used for various applications such as education [1],
training [2,3], business [4] (e.g., analysis of shopping trends), or collaboration [5]. Past
research [6] has shown that gaze data are unique to each individual and can reveal sensitive
information (e.g., age, gender, race, and body mass index) about that individual. Thus,
we can potentially identify a user from gaze data alone. This poses privacy issues when
eye-gaze data are collected and stored by an application. However, on the positive side,
the ability to identify users based on gaze data opens up new possibilities for interactions
in virtual/augmented reality applications. For example. we can customize the user’s
experience based on the detected user and also improve the security of the system by
frequently authenticating the user by an automated implicit process, which does not
distract the user from the actual VR task at hand. This paper explores machine learning and
deep learning methods on eye gaze data to identify users with a reasonably good accuracy
without any explicit authentication task.

There are various advantages of automatic biometric-based authentication or identifi-
cation. This process eliminates the use of an explicit authentication step, such as entering
a username and password. Additionally, an automatic authentication process can con-
tinuously detect if the original user is still logged in and lock the device if necessary to
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avoid unauthorized access. Furthermore, such a system would improve the usability of
the system by adapting the UI based on the preferences of the detected user, thus allowing
the seamless switching of users in a multi-user environment, such as a classroom where
students need to share VR devices. The content can also be personalized based on the
profile and preferences of the detected user. Thus, our work is a step towards this goal of
developing an automated gaze-based authentication system.

VR applications can also benefit from the knowledge of the user’s identity, especially
for a multi-user VR environment where the VR headset is shared. For example, in an VR
educational application, the system can automatically detect the identity of the student
and track his/her progress or activity for a teacher to monitor. In future, a metaverse [7]
can potentially be used for some of these applications and it would become very critical to
detect the identity of the users in such multi-user social environments.

A traditional non-VR system generally requires a user ID and a password for user
identification. However, such traditional approaches are not ideal for a VR system since
they require typing characters using a virtual keyboard, which is inefficient [8]. Thus,
to avoid such traditional identification methods, AR/VR researchers focused on other
methods for identifying or authenticating users. Microsoft HoloLens 2, an augmented
reality device, has iris-based user authentication. However, it is limited to only 10 users [9],
thereby limiting its shared use for larger groups. Pfeuffer et al. [10] designed a VR task that
can track hand, head, and eye motion data to identify users. Liebers et al. [11] developed
games, applications, and 360-degree movies to collect gaze behavior and head-tracking
data to identify users. Another research study [12] shows that we can identify users without
designing a specific VR task. Their machine-learning-based system collected motion data
from 511 users, observing 360-degree videos within a single session, and it was able to
identify users with 95% accuracy. However, the limitation of their experiment was that all
data recorded from the participants were from a single session of around 10 min duration
and from standing participants. Their method requires long periods of time and resources
to collect user data and extract many features for training the machine learning models.
Our proposed approach can identify users, with over 98% accuracy, even with minimal
features from multiple session from a small set of users (34 to be precise) without any
explicit identification tasks.

In this paper, we propose a machine learning- and deep learning-based system that
can identify users using minimal eye-gaze-based features collected from multiple sessions
from 34 participants, and it can achieve an accuracy of over 98%. The minimal set of
features helps reduce the computation cost and was identified using the recursive feature
elimination algorithm [13]. Additionally, our system does not have any specific task
designed to identify users. We collected the eye-gaze data of users while attending an
educational VR field trip where an avatar explains the objects in the scene (a solar field)
using audio, animations, and text slides. We tested the accuracy of several machine learning
and deep learning algorithms (such as RF, kNN, LSTM, and CNN). We discuss our designs
and the implications of our results. We believe that this approach could be applied to
similar VR applications for identifying users with minimal eye-gaze features.

2. Related Work

To identify users, the most important thing to consider is what type of features or
behaviors are unique to each user. Previous researchers investigated different methods
for identifying users. For example, in the last decade, user’s touch motion behaviors on a
smartphone have been studied to identify users [14–16]. Different user characteristics and
the use for person identification from soft biometrics (such as hair, height, age, gender, skin
tone, facial features, etc.) have been surveyed by previous researchers [17]. Eberz et al. [18]
used body motions as behavioral biometrics for security research. Jeges et al. [19] measured
height using cameras to identify users.

Eye movements such as saccadic vigor and acceleration cues have been used for
user authentication [20] with reasonably good accuracy. Gaze-based authentication could
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be either explicit or implicit. Explicit gaze-based authentication refers to the use of eye
movements to explicitly verify identity. In this type of authentication, the user has to
first define a password that involves consciously performing certain eye movements.
The user then authenticates by recalling these eye movements and providing them as
input. Examples of such systems include EyePass [21], Eye gesture blink password [22],
and another work by De Luca et al. [23], where the password consists of a series of
gaze gestures. Implicit Gaze-based Authentication refers to the use of eye movements to
implicitly verify identity; it does not require the user to remember a secret, but it is based
on inherent unconscious gaze behavior and can occur actively throughout a session [24–26].
Our proposed machine learning approach is a step towards designing an implicit eye-gaze
based authentication system.

AR/VR researchers have explored a variety of bio-markers based on motion data
(head motion, body motion, eye motion, etc.) for user authentication. Li et al. designed
and implemented a VR task to identify users [27] where the system asked users to nod
their heads in response to an audio clip, and this head motion was then used to identify
users. Lohr et al. [28] designed a framework for an authentication system using 3D eye
movement features. Mustafa et al. [29] found that head pointing motion from Google
cardboard sensors can be used to identify users. Motivated by swipe-based authentication
pattern on mobile devices, Olade et al. [30] introduced a SWIPE authentication system
into VR applications. Their results showed that the SWIPE authentication was effective,
although it was slower than the mobile version. Biometric identification systems in VR
developed by Liebers et al. [11] used gaze behavior and head orientation. Another system
called Gaitlock [31] can authenticate users using their gait signatures obtained from the
on-board inertial measurement units (IMUs) built into AR/VR devices. Pfeuffer et al. [10]
discussed behavioral biometrics in VR to identify people using machine learning classi-
fiers such as SVM and Random Forest with features obtained from head tracking, hand
tracking, and gaze tracking data. However, the overall accuracy they achieved was 40%
across sessions, which was very poor and impractical for real-world applications. Another
study [32] created a continuous biometric identification system for VR applications using
kinesiological movements (head, eye, and hand movements). Their system had a VR task
designed to collect kinesiological data for the machine learning model.

Liebers et al. [33] identified users using biometrics data collected using two specific
VR tasks (bowling and archery). They also explored if normalizing biometric data (arm
length and height) could improve accuracy, and their results suggest that this normalization
leads to a better accuracy (upto 38% in some cases). However, a specific VR task designed
to identify users may not be always required. Miller et al. [12] shows that we can identify
users without designing a specific VR task. They collected motion data from the VR
headset and the controllers while participants watched a 360-degree VR video. Their
experiment design had no intention of identifying users. Their machine-learning-based
system collected motion data from 511 users and were able to identify users with a 95%
accuracy. Some of their features have straightforward spatial meaning. For example, the Y
position of the VR headset was the most important features of their dataset. This feature
corresponds to the user’s height and the classification accuracy decreases by about 10% if
we drop this feature. A major drawback of such systems is that they collected data from a
single session of around 10 min and the experiment required a lot of time and resources
to collect user data for training machine learning models. Another research study [34]
addressed the limitations of this work [12] and claimed that user identification may not be
applicable by collecting data between two VR sessions from two different days. They found
that the accuracy dropped over 50% when machine learning models were trained with
single-session data and then tested it with another session’s data collected one week later.
One possible reason for obtaining lower accuracies could be that they used only machine
learning models and it is possible that machine learning models may not generalize well
with the same but complex relation of features if collected one week later. Furthermore,
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eye-gaze data were also studied for its role in security-related applications [35] such as user
authentication, privacy protection, and gaze monitoring in security-critical tasks.

Reducing the feature set to a minimal set of important features is very critical for
a classification system since it has a significant impact on the time and space cost of
the classification algorithm. Feature selection (FS) is a widely used technique in pattern
recognition applications. By removing irrelevant, noisy, and redundant features from the
original feature space, FS alleviates the problem of overfitting and improves the perfor-
mance of the model. There are three categories of FS algorithms: filters, wrappers, and
embedded methods, based on how they interact with classifiers [36,37]. Support vector
machine recursive feature elimination (SVM-RFE) is an embedded FS algorithm proposed
by Guyon et al. [13]. It uses criteria derived from the coefficients in SVM models to assess
features and recursively removes features that have small criteria. SVM-RFE does not use
the cross-validation accuracy on the training data as the selection criterion; thus, it is (1)
less prone to overfitting; (2) able to make full use of the training data; and (3) much faster,
especially when there are a lot of candidate features. As a result, it has been successfully ap-
plied in many problems, particularly in gene selection [13,38–41]. Our proposed approach
uses this SVM-based recursive feature elimination algorithm to identify a minimal set of
features that are important for user identification.

Most of the prior research used eye tracking, hand tracking, head tracking, body
normalization, and many combinations of feature sets to identify users. Based on this
previous research, our initial research question was “do we need to have multi-modal
tracking data (from head, hand and eye gaze etc.) to identify users and which features
are more sensitive for identification?” Very little research has been conducted to find
optimal set of features and the possibility of avoiding multi-modal tracking data for user
identification in VR. This prior study motivated us to see if we can identify users based
on eye-gaze data alone with reasonable accuracies without designing any specific VR task
for user identification. In our experiment, we designed an educational VR environment
mimicking a solar field trip to collect eye gaze data. This task is an example of a real world
classroom scenario requiring no additional tasks for the authentication process itself. Our
work seeks to find the answers to the following research questions:

• RQ1: To what extent could we identify users without designing a specific VR task for
authentication alone?

• RQ2: To what extent can we identify users using minimal features obtained from eye
gaze data in VR?

• RQ3 Which machine learning model works best, in terms of classification accuracy,
with eye-gaze data to identify users?

• RQ4: To handle privacy issue, we need to find which eye-gaze features are more
important for user identification so that sensitive features can be encoded while
sharing gaze data?

3. Educational VR Environment

An educational VR environment was used for data collection. Our VR environment
was a Virtual Energy Center [42] (see Figure 1) used for virtual field trips. We used it as a
VR class to explain the functionality of components necessary for power production. An
avatar explained the process and components using pre-recorded audio instructions, slides,
and animations. All these components work synchronously to explain the subject matter.
Additionally, relevant solar field components were highlighted to help students focus on
the component being discussed.

The environment presented several informational cues (avatar, animations, audio,
and slides) simultaneously that have been found to improve learning. Liang-Yi [43] found
that avatars boost students’ learning. Our environment has a teacher avatar that points at
objects and animations and this helps students in looking at the component being explained.
Such animations have been used in the past to visualize the internal components of an
object [44]. In our environment, animations were used to visualize internal operations of
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solar devices. Audio cues explained several aspects of the solar panel. Text slides were
used to capture key terms of a particular component and mathematical concepts/equations.
Our preliminary tests suggested that these slides were helpful for knowledge retention
since mathematical concepts/equations are not easy to follow if only explained verbally.
Makransky et al. [45] found that multimedia slides increase users’ interest but result in
less learning. In this study, we assume that combining all educational assets may improve
learning in an educational scenario.

(a) (b)

Figure 1. Educational VR environment to explain how a solar field generates power. An avatar
explains different components using audio, animations, and text slides. (a) An avatar describing a
solar panel. (b) An avatar explaining the cooling process.

4. Methodology
4.1. Experimental Design and Data Collection

In our experiment, we designed an educational VR environment mimicking a solar
field trip to collect eye-gaze data. This task is an example of a real-world classroom
scenario requiring no addition tasks for the authentication process itself. The design of
the environment is discussed in the previous section. We collected eye gaze data from
our VR environment to train and test several machine learning models for identifying
users. Four models were tested: random forest (RF), k-nearest-neighbors (kNN), long
short-term memory (LSTM), and convolutional neural network (CNN). An overview of
our experiment is shown in Figure 2.

Figure 2. Workflow of our user-identification system.

Due to COVID-19 risks, participants wore lower face masks in combination with
disposable VR masks. Headsets were disinfected per participant. Participants were briefed
about the study’s process, and they provided signed consent. Subsequently, the participant
was seated at a station, 2 m away from the moderator. They then put on the VR headset
(HTC Vive Pro Eye), and the integrated eye tracker was calibrated by software. Participants
experienced the educational VR experience. The VR session was divided into 4 small
sessions (ranging from 100 s to 282 s), each covering a concept. At the end, we also asked
our participants if they have any feedback about our VR tutorial and which components of
the presentation distracted them or helped them with learning.
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Raw eye-gaze data were collected throughout the experiment and provided by the
SRanipal API of Vive pro eye headset, including timestamps, eye diameter, eye openness,
eye wideness, gaze position, gaze direction, and HTC Vive’s reported eye-gaze origin value
(one 3d vector for each eye). The gaze sampling rate was 120 Hz. Each frame included a
flag used to discard readings reported as invalid by the tracker. For example, closing the
eyes results in invalid gaze direction. Invalid data points were discarded while training the
machine learning model.

4.2. Participants and Apparatus

We recruited 34 study participants (25 male and 9 female) from the university. Their
ages ranged from 19 to 35 years (mean 24.6) and 16 of them had prior experiences with a
VR device. The experiment’s duration for four sessions was around 10 min and the total
duration was about 20 to 25 min, including consent time, eye-tracker calibration, and a
brief chat about their VR experience.

The experiment used a desktop computer (Core i7 6700K, Microsoft Windows 10 Pro,
NVIDIA GeForce GTX 1080, 16 GB RAM ) and Unity 3D v2018.2.21f1 software to implement
VR tasks. Eye gaze data were collected at 120 Hz using Vive Pro Eye. We used scikit-learn,
Recursive Feature Elimination (RFE), TensorFlow, and keras libraries in Python (version
3.8.8) for machine learning scripts.

4.3. Data Pre-Processing

For features with three components (such as left eye gaze origin with X, Y, and Z
components), we separated them as individual features. We also tested other scenarios
such as taking average of X, Y, and Z components or averaging over two eyes, etc. However,
they were discarded since they did not produce good classification accuracy. Thus, we
ended up with 19 features: timestamp, left-eye diameter, right-eye diameter, left-eye
openness, right-eye openness, left-eye wideness, right-eye wideness, left-gaze origin (X, Y,
and Z), right-gaze origin (X, Y, and Z), left-eye gaze direction (X, Y, and Z), and right-eye
gaze direction(X, Y, and Z).

Out of 34 participants, we noticed that 5 participant’s data for left- and right-eye gaze
origins (X, Y, and Z) were missing (about 10% data for each participant). We filled these
missing data values with the average of the available data values for that participant. After
processing raw data, our overall dataset size was 268,0347. The number of data points for
every users was close to each other. Since we had 34 participants, each participantwasis
assigned a user ID from 0 to 33. Each data point in the dataset was labeled with the
corresponding user ID. This labeling is required for supervised classification models.

Since our raw data are numerical with a different range for each feature, we used
normalization with min–max normalization and standardization. Min–max normalizes the
data range to [0, 1] as follows:

Datan = Datai−Datamin
Datamax−Datamin

and data standardization is computed as follows.

Datan =
Datai−Dataavg

standard deviation

We tried each technique separately for the entire dataset of all participants. We
found that classifiers had improved accuracies with standardization. Thus, we chose
standardization for our analysis.

4.4. Feature Selection

After pre-processing raw eye-gaze data, we stacked the data from all sessions of the VR
experience and we applied a Recursive Feature Elimination (RFE) algorithm with default
parameters to select a subset of the most relevant features among all features. We wanted
to minimize our feature set since fewer features would allow machine learning models
to run more efficiently in terms of time and space complexity. We found that X, Y, and Z
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features of left- and right-eye gaze origins were most important (rank from 1 to 6) and other
features such as diameter, openness, and wideness features had lower ranks (7 to 12) (see
Table 1). Thus, we created two feature sets. The first set contains 12 features with ranks
from 1 to 12, and the second set contains features with ranks from 1 to 6 only (as shown in
Table 1). We discarded other features as they had lower ranks.

Table 1. Ranking of 12 features using Recursive Feature Elimination algorithm.

Feature Name Rank Feature Name Rank

Left-eye diameter 8 Left-eye gazeorigin(X) 5
Right-eye diameter 7 Left-eye gazeorigin(Y) 3
Left-eye openness 12 Left-eye gazeorigin(Z) 1

Right-eye openness 10 Right-eye gazeorigin(X) 6
Left-eye wideness 9 Right-eye gazeorigin(Y) 2

Right-eye wideness 11 Right-eye gazeorigin(Z) 4

A correlation matrix of features is shown in Figure 3) with a heatmap. We can see that
for most features, there is a high correlation between the left and the right eye except for
the X component of the gaze’s origin. However, Y and Z are negatively correlated with
each other. Moreover, we used raw data for box plot visualizations (see Figures 4–9) to
see which features are unique for each participant, where each pair’s (left and right eye)
features in the box plot indicates that the centers of the distribution (median value) for most
of the participants are different. Although the centers of the distribution for some features
(e.g., openness and wideness at Figures 5 and 6) for a few participants were similar, the
combination of our feature sets makes individual participants identifiable. According to
recursive feature eliminations, heatmaps, and box-plot visualizations, the most important
features are three-dimensional gaze origins among all features. In addition, we also evaluated
which paired feature of the gaze origin contributed more to identifying users.

Figure 3. Correlation matrix with heatmap indicates that each feature is highly correlated with left and
right eyes but poorly correlated with other features, except gaze origin X for both the left and right eye.
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Figure 4. Left- and right-eye diameter. Most participants have different medians for this paired
feature and their ranks are 7 and 8, respectively (see Table 1).

Figure 5. Left- and right-eye openness. Most participants have similar medians for this paired feature
and their ranks are 12 and 10, respectively (see Table 1).

Figure 6. Left- and right-eye wideness. Most participants have similar medians for this paired feature
and their ranks are 9 and 11, respectively (see Table 1).
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Figure 7. Left- and right-eye gaze origin X. Most participants have different medians for this paired
feature and their ranks are 5 and 6, respectively (see Table 1).

Figure 8. Left- and right-eye gaze origin Y. Most participants have different medians for this paired
feature and their ranks are 3 and 2, respectively (see Table 1).

Figure 9. Left- and right-eye gaze origin Z. Most participants have different medians for this paired
feature and their ranks are 1 and 4, respectively (see Table 1).
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4.5. Classification Models

We considered two machine learning models, such as random forest (RF) and k-nearest-
neighbors (kNN), and two deep learning models called convolutional neural network
(CNN) and long short-term Memory (LSTM) for users identification. We chose to use
RF and kNN based on previous research [12] since they obtained very good results with
these models for multi-class classification using gaze data. We also used two deep learning
models, CNN and LSTM, since traditional machine learning models may not learn complex
patterns of the data in a large dataset with many features and provide poor results. We chose
the CNN model [46,47] since it can learn to extract features from a sequence of observations
and can classify sequential data. Similarly, LSTM model can obtain the spatial and temporal
features of eye-gaze data and provides powerful prediction capabilities [47,48].

Random Forest (RF): Random forest is an ensemble-learning method that construct
multiple decision trees using subsets of data and votes on the results of multiple decision
trees to obtain the prediction as an output of the model. We used the “Randomized-
SearchCV” library from sklearn to optimize our hyperparameters for random forest, and
we found the optimized parameter, where estimator = 200, max depth = 460, and max
features = ’sqrt’. We plugged these into the model and reported the results.

k-Nearest-Neighbors (kNN): The kNN classifier implements learning based on the
k nearest neighbors where the value of k is dependent on data. We adjusted k values
to overcome overfitting (training error is low and test error is high) with respect to data
variance. We evaluated from 1 to 10 to choose k value and we found that it works best for
k = 5, and the Minkowski metric is the default parameter metric.

Convolutional Neural Network (CNN): We also applied CNN as a deep learning
model, whereas the CNN layers (see Table 2) are used for feature extraction from raw
gaze data. The CNN model comprises two Conv1D layers with the ReLU [49] activation
function and two fully connected dense layers (Table 2). The number of filters was 128 for
the first two Conv1D layers, with a kernel size of 3. We used max pooling as the pooling
operation with pool size 2. After the max pool operation, the output shape was reduced
to (3, 128) and followed by a dropout layer of 40% to deal with overfitting. Then, the last
dense layer was used for classification. We used the Adam optimizer [50] with a learning
rate of 10−3 and categorical cross-entropy as the loss function.

Long Short-Term Memory (LSTM): The long short-term memory (LSTM) network is
a recurrent network that is capable of learning long-term dependencies in eye-gaze data.
We used this LSTM model because it could capture both spatial and temporal features of
eye-gaze data. We adjusted the hyper-parameter of the model where we used a dropout
layer of 40% to deal with overfitting and ReLU as the activation function for the first LSTM
layer and third dense layer. The last dense layer used a softmax activation function to
classify 34 users as output. The model iterated over 50 epochs during training where
the batch size, learning rate, and loss function were the same and taken from the above
CNN model.

Table 2. CNN architecture to identify users.

Layer Type Output Shape 6=Param Dropout Activation

1 Conv1D (12, 128) 512 - ReLU
2 BatchNormalization (12, 128) 512 - -
3 MaxPool (6, 128) 0 - -
4 Conv1D (6, 128) 49,280 - ReLU
5 BatchNormalization (6, 128) 512 - -
6 MaxPool (3, 128) 0 - -
7 Dropout (3, 128) 0 0.4 -
8 Flatten ( 384) 0 - -
9 Dense 64 24,640 - ReLU

10 Dense 34 2210 - softmax
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5. Results

We validated our models with both 12 and 6 feature sets. The highest overall accuracy
for user identification is reported in Table 3. We used a k-fold cross validation method to
evaluate our classifiers as it is a well established and reduces data bias from the dataset [51].
In our dataset, we used 5-fold cross validation in which the process is repeated five times,
where out of five partitions, a single partition was used for validating/testing (20% of data)
and the remaining partitions were used for training (80% of data). Then, we averaged this
value over all five cross-validations to obtain a mean accuracy rating for our classifier. We
also tested another scenario where we trained the model with 70% data and tested the
models with the remaining 30% data. This scenario also produced very similar results.
Thus, we have reported results from our 5-fold cross validation method. We also tested our
classification method with new data where we used data from three sessions for training,
and the remaining fourth session was used for testing. The 5-fold cross validation methods
were not needed in this case since our test case is from a different VR session. We found
that kNN performed over 99% accuracy, while other models performed similarly, with
a best accuracy of over 98% with the 12 feature set and 6 feature set (see Table 3). The
learning history of our DL models on the validation samples show that both CNN and
LSTM converge to higher accuracy and lower losses (see Figure 10 for learning curve of
CNN model).

Table 3. Mean accuracy of CNN, LSTM, random forest (RF), and k-nearest-neighbors (kNN) models
using the data from all sessions.

Model Name CNN LSTM RF kNN

Accuracy with 12 features 98.57% 98.58% 98.96% 99.62%
Accuracy with 6 features 98.29% 98.34% 98.41% 99.46%

(a) (b)

Figure 10. Accuracy and loss value trend for the CNN model during training with the raw dataset.
(a) Accuracy vs. Epoch for the CNN model. (b) Loss vs. Epoch for the CNN model.

We also wanted to test the classifier on new data from different sessions for testing
its generalizability. Thus, we stacked the data from three sessions for training and used
the remaining fourth session data for testing. For both feature sets, the results were very
similar and are shown in Figures 11 and 12. Overall, the best performance was achieved
using RF, kNN, and CNN for all participants with six features for four different sessions
(see Figure 12), while LSTM provided slightly lower results for all sessions. Similarly with
12 features, the best performance was achieved using RF, kNN, and CNN for each session
while LSTM had slightly lower accuracies than other models (see Figure 11).
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Figure 11. Classification accuracy using 12 features. Session used for testing is shown on the x-axis.
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Figure 12. Classification accuracy using 6 features. Session used for testing is shown on the x-axis.

Accuracy is not the only evaluation metric for classification, as accuracy cannot show
the individual class’s performance. Therefore, we also evaluated the precision, recall, and
F1-score to test for generalizability using 12 features and 6 features separately for each
participant. By applying the ML and DL models with two different feature sets, testing on
four different sessions would produce a large table. Therefore, we reported the results for
the first sessions (see Table 4) only. The results for session II, session III, and session IV also
have similar trends when compared between the 12 feature set and the 6 feature set. From
the Table 4, we can see that the precision, recall, and F1-scores for our model had similar
values with both feature sets for most users, except for a few cases. Participants 2, 12, 13,
15, and 27 had lower precision/recall with six features for a few models. We noticed that
these were the same participants for whom the missing gaze data were replaced with their
average values. For some participants (second-last row of Table 4), only the LSTM model
had lower precision/recall with six features. Thus, we can use the other models only using
six features to obtain a reasonably good precision/recall.
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Table 4. Precision, recall, and F1-score of our models using 12 and 6 feature sets using raw data. We
have shown only session-I to avoid a larger table for all four sessions, even though the results are
very similar for all four sessions.

Sessions Session-I (12 Features) Session-I (6 Features)

Participants Model Precision Recall F1-Score Precision Recall F1-Score

2

RF 0.95 0.88 0.94 0.96 0.89 0.94
kNN 0.92 0.96 0.94 0.79 0.92 0.85
CNN 0.95 0.94 0.95 0.96 0.91 0.93
LSTM 0.88 0.93 0.91 0.90 0.88 0.89

12

RF 0.89 0.93 0.96 0.87 0.96 0.92
kNN 1.0 0.99 0.99 0.98 0.97 0.97
CNN 0.91 1.0 0.95 0.75 1.0 0.86
LSTM 0.90 1.0 0.95 0.89 1.0 0.94

13

RF 0.89 0.67 0.77 0.82 0.34 0.48
kNN 0.56 0.97 0.71 0.63 0.98 0.76
CNN 0.62 0.97 0.76 0.94 0.96 0.95
LSTM 0.58 0.97 0.73 0.89 0.90 0.89

15, 27

RF 0.96 ± 0.1 0.97 ± 0.1 0.96 ± 0.1 0.96 ± 0.1 0.96 ± 0.1 0.96 ± 0.1
kNN 0.96 ± 0.1 0.97 ± 0.1 0.97 ± 0.1 0.96 ± 0.1 0.97 ± 0.1 0.96 ± 0.1
CNN 0.83 ± 0.2 0.93 ± 10 0.90 ± 0.3 0.71 ± 10 0.92 ± 0.10 0.80 ± 0.10
LSTM 0.80 ± 0.10 0.76 ± 0.10 0.80 ± 0.10 0.75 ± 0.10 0.82 ± 0.10 0.79 ± 0.10

3, 5–9,11, 18, 19,
25, 26, 28–30, 32

RF 0.95 ± 0.04 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.94 ± 0.05 0.94 ± 0.05
kNN 0.95 ± 0.04 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.94 ± 0.05 0.94 ± 0.04
CNN 0.95 ± 0.04 0.96 ± 0.03 0.95 ± 0.03 0.97 ± 0.01 0.69 ± 0.10 0.81 ± 0.05
LSTM 0.90 ± 0.05 0.89 ± 0.05 0.89 ± 0.05 0.75 ± 0.10 0.75 ± 0.10 0.75 ± 0.10

0, 1, 4, 10, 14, 16,
17, 20–24, 31, 33

RF 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
kNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
CNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
LSTM 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.96 ± 0.04 0.95 ± 0.05 0.95 ± 0.05

We performed a further analysis of the features in our six feature sets to see which
features are more important for classification. We performed several tests by using a subset
of six features for classification using RF and kNN Models with a 5-fold cross validation,
and we avoided DL models because those models may not generalize well with two/three
features. The results are summarized in Table 5. From these results, we can see that using
only X, Y, or Z values alone (from both eyes) does not produce good accuracies (below
77%). An accuracy of over 94% is achievable with only four features. However, using all
six features produces over 98% accuracy.

Table 5. Accuracy of RF and kNN Models for different combinations of features from the 6-feature
set of all sessions. A checkmark indicates the selected feature.

X (Left and Right Eye) Y (Left and Right Eye) Z (Left and Right Eye) Accuracy (RF) Accuracy (kNN)

X 7 7 77.28 76.98
7 X 7 73.87 74.24
7 7 X 76.75 75.86
X X 7 92.87 94.73
X 7 X 92.14 96.12
7 X X 92.02 93.27
X X X 98.41 99.46
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In addition, we also wanted to see how accurately our models can identify users from
a single session. We considered our smallest session (around 1 min 40 s) to identify users
where we split the dataset into a 70:30 ratio, and we achieved an accuracy around (94 ±
5)% with different models. Moreover, if we take a single session and evaluate it with 5-fold
cross validation, our models provide similar accuracies (see Table 6).

Table 6. Mean accuracy of CNN, LSTM, random forest (RF) and k-nearest-neighbors (kNN) models
using the raw data from the shorter session (Session-1) only.

Model Name CNN LSTM RF kNN

Accuracy with 12 features 98.40% 98.27% 98.89% 98.98%
Accuracy with 6 features 98.19% 97.92% 98.34% 94.28%

Furthermore, we tested our models with some extracted features as well to see if
they improve the model’s accuracy. We chose some simple features extracted from gaze
origin, diameter, openness, and wideness of the left and the right eye. For gaze origin
values (X, Y, and Z), we subtracted the X, Y, and Z values from the mean values of X, Y
and Z, respectively. For example, the left-eye gaze origin’s X value was calculated as the
user’s mean value of the left-eye gaze origin’s x-coordinate minus the left-eye gaze origin’s
x-coordinate. A similar approach was used for all other values for the left- and right-gaze
origin values (X, Y, and Z). For the diameter, openness, and wideness of left and right eye,
we used a percentage value, which is the percentage of user’s mean value. For example,
for the left-eye diameter, it was calculated as the user’s left-eye diameter value divided by
user’s mean value of the left-eye diameter. All other values for openness, diameter, and
wideness features, for both the left and the right eye, were calculated similarly. Similarly
to our approach discussed previously, we evaluated our models using 12 and 6 feature
sets. The mean accuracy of each model is shown in Table 7. We also tested how well it
works for the shorter session only (similar to results in Table 6) with extracted features. We
obtained very similar results (shown in Table 8). Similarly to our past approach for testing
the generalizability of our models with extracted features, we trained our model with the
data from three sessions, and the remaining fourth session was used for testing. The results
are reported in Figures 13 and 14. We found that the accuracy dropped for both feature sets
when session-1 was used for testing with our two machine-learning models (Random Forest
and kNN). However, deep learning models still performed better for session-1. Overall,
the best performance achieved was over 98% (for session-3) with both features sets.

Table 7. Mean accuracy of LSTM, CNN, Random Forest (RF) and k-nearest-neighbors (kNN) models
using extracted data features from all sessions.

Model Name LSTM CNN RF kNN

Accuracy with 12 features 94.23% 95.63% 95.3% 92.69%
Accuracy with 6 features 88.31% 91.73% 96.45% 92.32%

Table 8. Mean accuracy of CNN, LSTM, Random Forest (RF), and k-nearest-neighbors (kNN) models
using extracted features from the shorter session (session-1) only.

Model Name CNN LSTM RF kNN

Accuracy with 12 features 98.41% 98.45% 98.83% 99.91%
Accuracy with 6 features 97.60% 98.14% 97.86% 94.28%
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Figure 13. Classification accuracy using 12 features (extracted). The session used for testing is shown
on the x-axis.
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Figure 14. Classification accuracy using 6 features (extracted). The session used for testing is shown
on the x-axis.

6. Discussion

Our results show that our ML and DL models can identify users using both 12 and
6 feature sets (see Table 3) with reasonably good classification accuracies (over 98%). Thus,
for practical applications, we can use six features to classify since it will use less time and
computing resources. This answers our first two research questions: RQ1 and RQ2 (see the
Related Work Section), and we can use gaze data to identify users, using ML or DL models,
with a good accuracy without using any tasks designed specifically for user authentication.
Furthermore, we were able to achieve this with data from only 34 participants. This is
an interesting result compared to prior research [12,29,33,35], since we obtained a similar
accuracy with a much smaller sample size (N = 34) compared to these prior studies (N = 511
for [12] and N = 60 for [34]) although our VR tasks were different. We believe that both ML
and DL models can provide a similar, if not better, performance for a larger sample size.

Our test results on two machine learning models and two deep learning models show
that the classification accuracy was similar for all models. We tested the most promising
models based on our survey of past work and our preliminary studies. However, they all
performed reasonably well, making it difficult to identify a clear winner. Thus, we were not
able to answer our third research question (RQ3) based on our results. We also evaluated
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our ML and DL models using shorter session data to see the performance, and we found
that all of our models provided similar accuracies of around 95% (see Tables 6 and 8). The
session’s duration was 1 min 40 s, and we evaluated models using 5-fold cross validation
for raw features and extracted features.

Out of 19 features, we identified a set of 12 ranked features using the recursive feature
elimination algorithm (see Table 1). We compared our results using these 12 features with a
subset of features that only picks the top six features. Our results (see Table 3) show that
the accuracy was not significantly different between these two cases with raw features.
However, our results with extracted features (see Table 7) show that the system had
significantly improved accuracies with 12 feature sets for the DL models (CNN and LSTM).
The ML models (RF and kNN) had similar accuracies in both cases. We performed further
tests with a subset of these six features (see Table 5) and concluded that this is the minimal
set. The accuracy drops significantly if we take away any more features. This answers
our fourth research question (RQ4). Additionally, we noticed that the precision/recall
was lower with six features for the user (see Table 4, participants 2, 12, 13, 15, and 27)
whose missing gaze-data values were replaced with their average values. Thus, replacing
missing data with average values was not a great idea. Perhaps using interpolated values
between the available data values would have improved this. However, we still need to
test this theory.

The most important features (see Table 1) were gaze origins for the left eye (X, Y, and
Z) and the right eye (X, Y, and Z). This feature measures the point in each eye from which
the gaze originates. In the conventions of Unity, the game engine with which the virtual
reality experience was developed, the Y axis is vertical, the Z axis is forward–backward,
and the X axis is left–right. Some of these measures have straightforward spatial meanings,
e.g., the y-axis captures how high the tracked object (eye in our case) is from the ground,
which is dependent on the height of the user. The x and z axis values will depend on the
facial geometry of the user, which defines the distance between their eyes and how far the
eye tracker sits from their eyes. Thus, these features are good bio-markers for identifying
users. Furthermore, the gaze-origin values are not dependent on VR environment features.
Thus, this approach would be applicable to any VR scenario requiring user identification.

According to precision, recall, and F1-score, we see that random forest, kNN, CNN,
and LSTM models can identify users, even though a few participants had lower precision
and recall score (see Table 4). We further investigated their data to find the cause. We
noticed that there were some individual features, such as gaze origin’s X, Y, and Z values,
with similar values for a few participants. However, their combination did not match with
the other participants. However, it is possible that the combination of a few participants
may have matched with the other participants. This factor can lead to a lower precision
and recall for those participants.

Our experiment had some limitations. Our results might be biased with respect
to gender as we had gender imbalances in the participants [52]. The age range of our
participants was from 19 to 35. Further research is needed to test our system for younger
kids (under 19) and older adults (over 35). Our participant pool was 34, and this could
have a minor effect on our results. We still obtained over 98% accuracy, and we believe that
adding more participants would not induce a significant impact for DL models. However,
ML models may perform better with more data. Additionally, since eye-gaze origins
depend on the height and facial geometry of the user, the system would fail to correctly
identify users with similar height and facial geometry. We may not have encountered such
a case in our experiment. Further research is needed to test this with a larger group of
participants. Another limitation is that we did not test our approach with a variety of
VR environments, such as a fast-paced VR game (e.g., a car racing game or a first-person
shooter game). Our environment was a slow-paced educational experience with no abrupt
changes. A fast-paced VR environment could lead to rapid eye movements and cause
cybersickness [53]. However, we believe that our approach would still work in these
fast-paced environments if we train our machine learning models using data from this
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new environment, provided that the data possess the key features needed for identification
(see Table 1).

As privacy is an important concern when sharing VR systems or eye gaze data, in
our study, eye-tracking data were collected from participants who provided permission
for using their data within a standard informed consent model. The data were completely
anonymized. However, given that demographic information may be discerned from
gaze data [6], great caution must be taken when handling it, especially if it has been
gathered from minors (school students). If such a VR-based system is used for a real
classroom, one must ensure that the students understand the meaning of eye tracking
(perhaps by having them review example visualizations) and obtain permission from
students (and their parents, for minors) to track or record their eye gaze. Miller et al. [12]
suggested that researchers and manufacturers follow some rules when sharing gaze data.
Researchers should follow standard practices in releasing research datasets or sharing VR
data by removing information that can identify participants. More et al. [34] found that
classification with user tracking can be reduced significantly by encoding positional data as
velocity data. We believe that instead of encoding all features, only important or sensitive
features should be encoded to reduce identifiability while retaining useful information for
other research applications. Moreover, special care has to be taken for any longer-term
storage to provide security, address legal requirements, and avoid any misuse of gaze data.

7. Conclusions and Future Work

In this paper, we explored a novel approach for user identification using minimal eye-
gaze features from multiple sessions without designing any explicit user identification task.
Out of the 19 eye-gaze features collected, we were able to identify 12 important features
(ranked 1 to 12) using the Recursive Feature Elimination algorithm [13]. We compared our
results using these 12 features with a subset of features that only picks the top six features.
We used both the raw and extracted eye-gaze features for our analysis. Our results show
that our DL and ML models produced over 98% accuracy with only six features from the
raw feature set. Our further analysis of these six features shows that this is the minimal
set since removing any more features reduces the accuracy significantly. Furthermore,
we found that with the optimal feature set (6 features), the DL models could also classify
new data (from another session) with over 92% accuracy with the extracted feature set.
Consequently, special care has to be taken when sharing gaze data to avoid privacy issues
since it can be used to identify users. We have identified a set of six gaze-data features that
is the most important for identifying users, and one should encode these features to reduce
the probability of user identification from the shared gaze data.

The gaze-origin data collected from HTC Vive’s eye-tracking API turned out to be
very important features that seem dependent on the VR content being used. In future, it
will be interesting to see if we will obtain a a similar accuracy with other environments and
with more users. Moreover, it will be interesting to extend this work for a real-time user
identification system across multiple sessions and including a gap of a few days between
the VR sessions.
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