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Abstract: Background: Hypertension is frequently studied in epidemiological studies that have been
conducted using retrospective observational data, either as an outcome or a variable. However,
there are few validation studies investigating the accuracy of hypertension phenotyping algorithms
in aggregated electronic health record (EHR) data. Methods: Utilizing a centralized repository of
inpatient EHR data from Singapore for the period of 20192020, a new algorithm that incorporates
both diagnostic codes and medication details (Diag+Med) was devised. This algorithm was in-
tended to supplement and improve the diagnostic code-only model (Diag-Only) for the classification
of hypertension. We computed various metrics (sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV)) to assess the algorithm’s effectiveness in identifying
hypertension on 2813 chart-reviewed records. This pool was composed of two patient cohorts: a
random sampling of all inpatient admissions (Random Cohort) and a targeted group with atrial
fibrillation diagnoses (AF Cohort). Results: The Diag+Med algorithm was more sensitive at detecting
hypertension patients in both cohorts compared to the Diag-Only algorithm (83.8 and 87.6% vs.
68.2 and 66.5% in the Random and AF Cohorts, respectively). These improvements in sensitivity
came at minimal costs in terms of PPV reductions (88.2 and 90.3% vs. 91.4 and 94.2%, respectively).
Conclusion: The combined use of diagnosis codes and specific antihypertension medication exposure
patterns facilitates a more accurate capture of patients with hypertension in a database of aggregated
EHRs from diverse healthcare institutions in Singapore. The results presented here allow for the bias
correction of risk estimates derived from observational studies involving hypertension.

Keywords: hypertension; misclassification bias; clinical phenotyping; electronic health record;
rule-based algorithm

1. Introduction

Hypertension remains a leading risk factor for cardiovascular disease and premature
death worldwide [1]. Hypertension is, thus, an important primary outcome and covariate
in epidemiological studies, which are increasingly being conducted on electronic health
records (EHRs). In such studies, accurately identifying patients with hypertension is a
necessary first step.

However, repurposing EHR data for secondary analyses presents key challenges [2,3].
Evidence suggests tendencies towards under-coding diagnoses related to cardiovascular
risk factors, such as hypertension in an individual’s EHRs [4]. Using diagnosis codes alone
to phenotype hypertension has been shown to result in a significant underestimation of the
true disease prevalence [5].

Previous work in phenotyping hypertension has ranged from developing simple
rule-based algorithms that use only hypertension-related diagnosis codes and/or antihy-
pertensive medication exposures [6] to more complex machine-learning algorithms that
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require both structured and unstructured EHR data [7]. These models have yielded ac-
ceptable sensitivity and positive predictive value (PPV) statistics on validation. However,
validation has been mostly limited to data arising from the same setting as those used
to develop these algorithms. The performance of any hypertension phenotyping model
would expectedly vary based on prevailing setting-specific practices such as the complete-
ness of chronic disease coding and documentation as well as the extent of capture of the
prescription records for chronic medications and blood pressure measurements.

Attempting to phenotype hypertension on a nationally aggregated EHR database that
draws data from different healthcare settings (from primary to tertiary care) also presents a
unique challenge using different EHR systems. Serving as a consolidated repository, these
aggregated databases capture individual health statuses more comprehensively. Solutions
to overcome the lack of standardization upon aggregation exist, such as the conversion
of EHRs to a common data model (CDM) [2], but this requires significant effort, which
may not be practical. Therefore, there is still a need for the development of a broadly
generalizable model that can be applied to raw aggregated EHR databases.

The primary objective of this study is to develop and validate an algorithm for pre-
dicting arterial hypertension in patients using aggregated EHR data, particularly when
direct blood pressure (BP’) measurements are unavailable. Such an algorithm should allow
for the prevalence estimation and bias correction of risk estimates in observational studies
involving hypertension. Recognizing the constraints posed by the aggregated nature of
consolidated electronic health record (EHR) databases (which amalgamate data in various
formats from multiple hospitals where data completeness may not be consistent), our
algorithm strategically utilizes diagnostic codes and medication data to estimate hyperten-
sion status. This approach is tailored to function effectively within the limitations of the
available data. Furthermore, we aim to demonstrate the feasibility of creating a robust and
generalizable phenotyping algorithm that can adapt to the diverse and large datasets often
encountered in EHR settings, where ideal data may not always be accessible.

2. Results

The Random Cohort was composed of 1619 inpatient admissions, with 808 patients
admitted in 2019 and 811 in 2020. The mean age for this cohort was 47.5 years in 2019
and 45.8 years in 2020, reflecting a broad age distribution among the general inpatient
population.

In contrast, the AF Cohort, which included patients with atrial fibrillation, consisted
of 608 patients in 2019 and 586 patients in 2020. Compared to the Random Cohort, the
AF Cohort had an older mean age of 72.2 years and 72.4 years, respectively, in 2019 and
2020. Additionally, there was a higher proportion of Chinese patients and a slightly greater
ratio of males to females in the AF Cohort compared to the Random Cohort, as detailed in
Table 1. Table Al provides a more detailed breakdown of age by gender and race.

The two validation cohorts differed in the underlying prevalence of hypertension
(Table 1). The AF Cohort had an expectedly higher prevalence (75.8 and 79.2% in 2019 and
2020, respectively) versus that of the Random Cohort (37.1 and 41.5%).

The Diag+Med hypertension algorithm was applied to both validation cohorts (Figure A1),
and the results were validated via chart review. Sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were calculated for the two validation cohorts. The
overall performance metrics of the Diag+Med hypertension algorithm were compared with
the Diag-Only control algorithm in Table 2.

For both the Random and AF Cohorts, the Diag+Med algorithm outperformed the
Diag-Only algorithm in sensitivity from 66.5-68.2% (Diag-Only) to 83.8-87.6% (Diag+Med).
The Diag+Med algorithm also outperformed the Diag-Only algorithm in NPV, while
maintaining relatively similar PPVs in both cohorts. The Diag+Med algorithm displayed
lower specificity compared to the Diag-Only algorithm.



Pharmacoepidemiology 2024, 3

171

Table 1. Demographic profile of Atrial Fibrillation Cohort and Random Cohort.

Random Cohort (n = 1619)

AF Cohort (n = 1194)

2019 (n = 808) 2020 (n = 811) 2019 (n = 608) 2020 (n = 586)
Hypertension Yes 335 (41.5%) 301 (37.1%) 461 (75.8%) 464 (79.2%)
No 473 (58.5%) 510 (62.9%) 147 (24.2%) 122 (20.8%)
Gender Male 380 (47.0%) 401 (49.4%) 305 (50.2%) 310 (52.9%)
Female 428 (53.0%) 410 (50.6%) 303 (49.8%) 276 (47.1%)
Chinese 514 (63.6%) 489 (60.3%) 451 (74.2%) 458 (78.2%)
Race Malay 139 (17.2%) 137 (16.8%) 92 (15.1%) 81 (13.8%)
Indian 84 (10.4%) 99 (12.3%) 29 (4.8%) 25 (4.3%)
Others 71 (8.8%) 86 (10.6%) 36 (5.9%) 22 (3.8%)
Age Mean 475 45.8 72.2 72.4
Standard deviation 28.8 27.5 11.8 12.0
Total 808 (100.0%) 811 (100.0%) 608 (100.0%) 586 (100.0%)
AF: atrial fibrillation.
Table 2. Comparison of Diag+Med algorithm performance with Diag-Only algorithm performance.
Diag-Only (%) Diag+Med (%)
Cohort Random Cohort AF Cohort Random Cohort AF Cohort
(n =1619) (n =1194) (n =1619) (n =1194)
Sensitivity 68.2 66.5 83.8 87.6
Specificity 95.8 85.9 92.8 67.7
PPV 914 94.2 88.2 90.3
NPV 82.3 427 89.9 61.3

Diag-Only: diagnosis code-only algorithm (from diagnosis and Patient Problem List). Diag+Med: diagnosis
code and medication algorithm (Figure 1). AF: atrial fibrillation; PPV: positive predictive value; NPV: negative
predictive value.
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Diagnosis- and medication-based hypertension phenotyping algorithm flow chart

(Diag+Med algorithm). PPL: Patient Problem List; ACEi: angiotensin-converting enzyme inhibitor;

ARB: angiotensin receptor blocker; BB: beta blocker; DHP-CCB: dihydropyridine-calcium chan-

nel blocker.
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The year-wise performance metrics by cohort (2019 and 2020) of the Diag+Med al-
gorithm are shown in Table 3. In the Random Cohort, the Diag+Med algorithm had a
sensitivity of 82.45-85.4% (2019 and 2020, respectively), specificity of 92.0-93.5%, PPV
of 87.95-88.6%, and NPV of 88.1-91.6%. In the AF Cohort, the algorithm had a sensitiv-
ity of 85.9-89.2%, specificity of 66.7-68.9%, PPV of 89.0-91.6%, and NPV of 60.1-62.7%.
Performance metrics were also calculated across years of admission, gender, and race
(Table A2).

Table 3. Performance of the Diag+Med algorithm on the AF Cohort and the Random Cohort.

Random Cohort (n = 1619) AF Cohort (n =1194)
Statistics 2019 (%) 2020 (%) Overall (%) 2019 (%) 2020 (%) Overall (%)
Sensitivity 824 85.4 83.8 85.9 89.2 87.6
Specificity 92.0 93.5 92.8 66.7 68.9 67.7
PPV 87.9 88.6 88.2 89.0 91.6 90.3
NPV 88.1 91.6 89.9 60.1 62.7 61.3

AF: atrial fibrillation; PPV: positive predictive value; NPV: negative predictive value.

3. Discussion

This retrospective validation study, conducted on Singaporean hospital inpatients,
demonstrated an overall good performance in phenotyping patients with arterial hyperten-
sion. The performance of our Diag+Med algorithm was comparable to other hypertension
phenotype algorithms developed in other countries. These other studies similarly high-
lighted that diagnosis codes were usually only inadequate for capturing hypertension [5,7].
An example is an American study by Teixeira et al. in which they developed multiple
algorithms using a combination of diagnosis codes, medications, and BP measurements,
achieving sensitivity and PPV of above 80-90% [7].

However, the crux of our Diag+Med algorithm lies in its useability on heterogeneous
aggregated EHR databases without requiring BP measurements, which is the primary
objective of our study. Teixeira’s phenotyping algorithms were developed using data from
only one hospital cluster [7], in contrast to our Diag+Med algorithm, which was developed
and tested on aggregated data from multiple hospital clusters in Singapore and did not
require BP measurements.

Another key advantage of our Diag+Med algorithm is that it operates directly on raw
EHR data without requiring the laborious process of conversion to a CDM, unlike other
rule-based hypertension phenotyping algorithms [8].

This algorithm is a pioneering study in the use of Singapore’s nationwide EHRs to
phenotype patients. The strength of this study lies in the novelty and scale of the EHR data
accessed (covering approximately 85% of all hospital admissions in Singapore [9]), as well as
the large and varied cohorts used to evaluate the generalizability of the proposed algorithm.
The algorithm validation involved a relatively large sample size of different patient profiles
from multiple contributing healthcare institutions, showing that the algorithm is fit for
use on diverse patient populations from different healthcare clusters. This facilitates the
identification of patients with hypertension from aggregated data sources in Singapore
without the need for additional harmonization or processing (such as conversion to a CDM).

Hypertension is a chronic condition that is usually managed on an outpatient ba-
sis [10]; therefore, physicians may not input hypertension as a diagnosis for an inpatient
admission. This illustrates the importance of including patient medication data in the
phenotyping of hypertension, as it considerably improves sensitivity without excessively
sacrificing specificity.

Compared to the AF Cohort, the Diag+Med algorithm was better at distinguishing
negative cases in the Random Cohort. This was likely due to the difference in patient
profiles between the two cohorts, with the AF Cohort having a much higher underlying
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prevalence of hypertension. Higher hypertension prevalence in the AF Cohort resulted
in lower specificity [11]. Evidence also suggests that increased prevalence may result
in a variance in sensitivity and specificity even though these measures are theoretically
independent of prevalence, possibly due to other mechanisms [12].

The Diag+Med algorithm performed consistently over consecutive years (2019 and
2020, shown in Table 3), with all performance metrics (sensitivity, specificity, PPV, and
NPV) varying less than 5% across the years for all validation cohorts. The data demonstrate
the algorithm’s stability throughout the 2020 period, indicating resilience to any potential
impact caused by the COVID-19 pandemic. This is critical as it suggests that the algorithm
can reliably function under varying conditions, a feature that is essential for real-world
applications.

A sub-group analysis of the Diag+Med algorithm across gender and race was also
conducted (Table A2). The algorithm performed consistently across genders and most races
in Singapore. However, caution should be taken in interpreting the results of the sub-group
analysis. The findings may be attributable to chance, especially since the validation study
was not specifically designed to focus on these sub-group analyses, and certain sub-groups
are relatively small (such as the Others ethnicity as listed in Table 1).

There are some limitations to the EHR database available to researchers. Due to the
nature of the EHR database, which lacked vital sign readings such as BP readings, it was
crucial to develop an algorithm that was able to phenotype hypertension without such data.
There remains a need for an algorithm that can estimate the prevalence of hypertension and
adjust risk estimates in epidemiological studies using the available data. Our algorithm
is designed to work within these constraints, leveraging diagnostic codes and medication
data to provide the best possible estimation of hypertension status in the absence of direct
BP measurements. It is notable that in this study, BP readings were not needed to produce
a hypertension algorithm with a good performance.

Our study was developed and validated on hospital inpatients. Due to the nature of
our database, which contained unstructured notes from inpatient settings but not outpatient
settings, our ability to carry out comprehensive chart reviews on non-hospitalized patients
was limited. Inpatient cases would have their past medical history extensively documented
in the discharge summary, but not outpatients; hence, it was not possible to carry out a
robust algorithm validation on an outpatient study cohort.

Furthermore, the algorithm may not accurately predict patients who are followed up
in private settings, such as by general practitioners (GPs) or in private hospitals, as their
medications and outpatient visits are not available in the database. This likely contributed
to the false negative cases in the algorithm’s validation as there is no visibility of the patient
data outside of their inpatient admissions.

In Singapore, some medications for hypertension are commonly prescribed for other
conditions, such as heart failure and coronary heart syndrome (e.g., angiotensin II receptor
blockers and ACE inhibitors) [13]. This potentially contributes to the false positive rate in
the algorithm, and further improvements to the algorithm should consider the presence of
such comorbidities in addition to patients” medication lists.

The performance of the algorithm may vary over time as hypertension prescribing
guidelines, coding practices, and EHR systems in public hospitals may change in the future.
Caution must be taken to ensure that these underlying trends are stable before applying
the hypertension algorithm to cohorts.

4. Materials and Methods
4.1. Data Sources

All available historical records were extracted from a database that contains aggre-
gated, de-identified clinical data from all public healthcare institutions in Singapore. This
database covers approximately 85% of all hospital admissions and over 40% of all chronic
outpatient visits [8]. The database did not undergo prior harmonization or processing (e.g.,
conversion to a CDM). Structured clinical data include patient demographics, diagnosis
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codes in SNOMED (Systematized Nomenclature of Medicine), ICD-10 (International Classi-
fication of Diseases, 10th Revision) formats, and dispensed medication records from both
outpatient and inpatient settings. Unstructured clinical data include hospital discharge
summaries and emergency department visit notes.

Diagnosis codes were extracted from two data tables: (1) diagnosis and (2) Patient
Problem List (PPL). A Patient Problem List includes active issues with current management,
background chronic conditions, and resolved past medical issues. Medications dispensed
at the outpatient or inpatient discharge pharmacies from all contributing data centers were
extracted from the medications table.

Data elements from structured and unstructured clinical data (such as discharge
summaries and laboratory tests) were available for a chart review; however, vital sign
readings such as blood pressure (BP) were not accessible.

4.2. Algorithm Development and Validation

The primary outcome of interest was defined as chronic arterial hypertension, with
the exclusion of pulmonary hypertension, pre-eclampsia/gestational hypertension, ocular
hypertension, peripheral venous hypertension, and portal hypertension. Diagnosis codes
from the diagnosis and PPL tables, and medications from the medications table, were used
to develop a combined diagnosis and medication data-based hypertension phenotyping
algorithm, as shown in Figure 1 (Diag+Med algorithm). A diagnosis code-only algorithm,
which exclusively relied on the presence of diagnosis codes, was used as a control (Diag-
Only algorithm), as shown in Figure 2.

N N
HTN PPL Code 2 »| HTN Diagnosis Code N

Yes Yes

Figure 2. Diagnosis code-based hypertension phenotyping algorithm flow chart (Diag-Only algo-
rithm). PPL: Patient Problem List.

A broad list of candidate SNOMED and ICD diagnosis codes for hypertension was
first identified from ICD-9 AM, ICD-10, and SNOMED CT browsers. A frequency of use
assessment was conducted to identify commonly used codes; diagnosis codes with fewer
than 10 patients found in the database between 2018 and 2021 were removed. A hospital
physician vetted the remaining diagnosis codes and descriptions to ensure their appropri-
ateness for identifying chronic hypertension (Table A3). First- and second-line medications
used to manage hypertension were shortlisted based on the American Heart Association’s
2017 [14] and the Ministry of Health (Singapore)’s 2017 guidelines [9] (Table A4). Patients
treated with beta blockers alone were not included. The diagnosis codes and medications
listed in Tables A3 and A4 were used in the phenotyping algorithms.

For the Diag+Med algorithm (Figure 1), patients were categorized as hypertensive if
they had any PPL or diagnosis table records with a diagnosis code found in Table A3. If
the patient did not have any diagnosis codes in Table A3, the algorithm would look at the
medications prescribed to the patient. Patients were classified as hypertensive if they were
prescribed one medication listed in Table A4, specifically an angiotensin-converting enzyme
inhibitor (ACEi), angiotensin receptor blocker (ARB), dihydropyridine-calcium channel
blocker (DHP-CCB), or thiazide diuretic. Alternatively, patients were also classified as
hypertensive if they were prescribed a combination of any two of the following medications
from Table A4: (a) ACEi or ARB with a beta blocker (BB), (b) ACEi or ARB with a DHP-CCB,
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(c) ACEi or ARB with a thiazide diuretic, (d) BB with a DHP-CCB, or (¢) DHP-CCB with a
thiazide diuretic.

For the Diag-Only algorithm (Figure 2), patients were categorized as hypertensive if
they had any PPL or diagnosis table records with a diagnosis code found in Table A3.

The hypertension algorithms (Diag+Med and Diag-Only) were applied on two valida-
tion cohorts (Random Cohort and AF Cohort). These validation cohorts were constructed
by sampling patients admitted to any public health institution between 2019 and 2020,
as shown in Figure 3. The Random Cohort consists of a random sample of inpatient
admissions in 2019 or 2020 from any public health institution. Random sampling of the
dataset was necessitated by the constraints of our available computational resources. The
AF Cohort consists of inpatient admissions with a new diagnosis of atrial fibrillation (AF)
in 2019 and 2020. The inclusion criteria for the AF Cohort were defined as a new onset of
primary or secondary diagnoses of AF (an ICD-10 or SNOMED diagnosis code of atrial
fibrillation) and the initiation of one of the drugs of interest (apixaban, rivaroxaban, or
warfarin) within 2 days before the date of discharge.

Inpatientadmissions in
Singapore public hospitalsin
2019 or 2020

N

Random sampling I New diagnosis code
of AFin 2019 or 2020

!

Started on any drugs
of interest within 2
days before date of

discharge
1. Apixaban
2. Rivaroxaban
3. Warfarin

}

Random Cohort I | AF Cohort |

n=1619 n=1194

Figure 3. Construction of Random Cohort and Atrial Fibrillation (AF) Cohort.

The Random Cohort was used to assess the algorithm’s generalizability and perfor-
mance in a diverse patient population. Additionally, the AF Cohort was chosen due to the
higher prevalence of hypertension within this group compared to the general inpatient
population, providing a robust test for the algorithm’s sensitivity in a group with higher
prevalence.

Trained annotators from the Health Sciences Authority independently assessed all
sampled admissions from both validation cohorts via a chart review of the aggregated
database. Only data that were recorded before or on the discharge date of the patient’s
inpatient admission episode were used.

A trial annotation run-in phase was conducted for annotators to practice annotating
for hypertension on a common set of 200 patient charts (not included in this study) to assess
potential variability in annotation accuracy. An excellent inter-annotator agreement of
0.89-0.99 was achieved on the 200 practice set records (pairwise Cohen’s Kappa, Table A5).
Thereafter, independent (non-overlapping) annotations were carried out on all records in
both AF and Random validation cohorts to develop a gold-standard label for each patient
in the validation cohorts.
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4.3. Statistical Analysis

Algorithm performance metrics (sensitivity, specificity, PPV, and NPV) were calculated
by comparing the hypertension predictions of the algorithm with the gold-standard labels
reviewed in the patient charts during annotation. Sensitivity was calculated by taking
the proportion of confirmed hypertension cases that were predicted to be positive (true
positives) out of all confirmed hypertension cases (true positives and false negatives).
Specificity was calculated by taking the proportion of confirmed non-hypertension cases
that were predicted to be negative (true negatives) out of all confirmed non-hypertension
cases (true negatives and false positives). PPV was calculated by taking the proportion of
confirmed hypertension cases that were predicted to be positive (true positives) out of all
cases that were predicted positive (true positives and false positives). NPV was calculated
by taking the proportion of confirmed non-hypertension cases that were predicted to be
negative (true negatives) out of all cases that were predicted negative (true negatives and
false negatives). The algorithm’s performance metrics and Cohen’s Kappa were calculated
using Spyder (Python 3.8).

5. Conclusions

The development and validation of a hypertension phenotyping algorithm with high
sensitivity and specificity were not only beneficial for identifying hypertensive patients
in various clinical and pharmacoepidemiology studies, but they also demonstrated its
effectiveness in the context of Singapore. This algorithm is particularly noteworthy as it
can be successfully applied to national aggregated data sourced from diverse healthcare
institutions across the country, without requiring harmonization or conversion to a CDM.
This makes it a versatile and robust tool for the identification of patients with hypertension
within the healthcare landscape in Singapore to facilitate risk estimate adjustments or
quantitative bias analysis in epidemiological studies.
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Appendix A

Table A1. Demographic Profile of Atrial Fibrillation Cohort and Random Cohort, with breakdown by
gender and race.

Random Cohort (n = 1619) AF Cohort (n = 1194)
2019 (n = 808) 2020 (n = 811) 2019 (n = 608) 2020 (n = 586)
Hypertension Yes 335 (41.5%) 301 (37.1%) 461 (75.8%) 464 (79.2%)
No 473 (58.5%) 510 (62.9%) 147 (24.2%) 122 (20.8%)
Male 380 (47.0%) 401 (49.4%) 305 (50.2%) 310 (52.9%)
Gender
Female 428 (53.0%) 410 (50.6%) 303 (49.8%) 276 (47.1%)
Chinese 514 (63.6%) 489 (60.3%) 451 (74.2%) 458 (78.2%)
Race Malay 139 (17.2%) 137 (16.8%) 92 (15.1%) 81 (13.8%)
Indian 84 (10.4%) 99 (12.3%) 29 (4.8%) 25 (4.3%)
Others 71 (8.8%) 86 (10.6%) 36 (5.9%) 22 (3.8%)
Overall 475 (28.8) 45.8 (27.5) 72.2 (11.8) 72.4 (12.0)
Male 47.5(29.9) 47.0 (28.4) 69.1 (11.6) 69.7 (12.0)
A Female 475 (27.9) 44.6 (26.4) 753 (11.2) 753 (11.4)
ge
(Mean, SD) Chinese 52.8 (28.1) 52.9 (27.8) 73.8 (11.0) 73.7 (10.9)
Malay 332(26.7) 31.6 (24.8) 67.6 (15.6) 69.6 (13.7)
Indian 45.8 (27.4) 39.3 (22.9) 69.0 (11.0) 66.7 (13.6)
Others 39.1(28.7) 35.2 (19.5) 63.9 (14.6) 67.8 (18.3)
Total 808 (100.0%) 811 (100.0%) 608 (100.0%) 586 (100.0%)
AF: atrial fibrillation.
Total Event = 808 No No No 2019 Random Cohort
n=589 n=568 n=474
HTN PPL Code HTN Diagnosis Code HTN Medications
Yes Yes Yes
n=219 n=21 n=94
No
Only 1 HTN n=59 Any
medication 1. ACEi/ARB +BB
Yes 2. ACEi/ARB + DHP-CCB
n=35 3. ACEi/ARB + Thiazide
diuretic
4. BB +DHP-CCB
Any No 5. DHP-CCB + Thiazide
1. ACEi/ARB n=15 diuretic
2. DHP-CCB
3. Thiazide Yes
diuretic n=54
Yes
n=20
/M
HTN
n=314

Figure A1l. Illustrative flow chart of Diag+Med algorithm applied to 2019 Random Cohort. PPL:
Patient Problem List; ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor
blocker; BB: beta blocker; DHP-CCB: dihydropyridine-calcium channel blocker.
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Table A2. Breakdown of Diag+Med algorithm performance compared with Diag-Only algorithm

performance by year of admission, gender, and race.

Diag-Only (%)

Diag+Med (%)

Random Cohort AF Cohort Random Cohort AF Cohort
(n=1619) (n =1194) (n=1619) (n=1194)
Overall 68.2 66.5 83.8 87.6
2019 65.1 63.1 82.4 85.9
2020 71.8 69.8 85.4 89.2
Male 67.1 68.3 82.4 87.7
Sensitivity Female 69.7 64.6 85.5 87.4
Chinese 68.7 68.1 843 88.6
Malay 712 58.4 86.4 84.7
Indian 76.5 68.6 88.2 88.6
Others 452 63.4 66.7 78.0
Overall 95.8 85.9 92.8 67.7
2019 95.3 85.7 92.0 66.7
2020 96.3 86.1 935 68.9
o Male 95.0 84.1 91.9 65.6
Specificity Female 95 88.1 935 703
Chinese 939 85.3 90.2 67.0
Malay 98.1 86.1 95.7 75.0
Indian 98.3 84.2 95.7 57.9
Others 98.3 941 96.5 70.6
Overall 914 942 88.2 90.3
2019 90.8 93.3 87.9 89.0
2020 91.9 95.0 88.6 91.6
Male 91.3 93.0 88.8 88.7
PPV Female 91.4 95.5 87.6 92.0
Chinese 90.5 94.4 88.0 90.7
Malay 92.2 94.1 86.4 92.8
Indian 9.3 88.9 923 79.5
Others 90.5 96.3 87.5 86.5
Overall 823 127 89.9 61.3
2019 79.4 126 88.1 60.1
2020 85.2 429 91.6 62.7
Male 787 164 87.0 63.5
NPV Female 85.5 39.0 923 58.9
Chinese 78.0 425 87.2 62.0
Malay 91.6 35.2 95.7 56.2
Indian 87.6 59.3 932 733
Others 83.1 51.6 88.8 57.1

AF: atrial fibrillation.
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Table A3. Diagnosis codes used in hypertension phenotyping algorithm.

No. Diagnosis Code Diagnosis Description Format
1 38341003 Hypertensive disorder SNOMED
2 59621000 Essential hypertension SNOMED
3 10725009 Benign hypertension SNOMED
4 38481006 Hypertensive renal disease SNOMED
5 1201005 Benign essential hypertension SNOMED
6 6962006 Hypertensive retinopathy SNOMED
7 64715009 Hypertensive heart disease SNOMED
8 56218007 Systolic hypertension SNOMED
9 170578008 Poor hypertension control SNOMED
10 110 Essential (primary) hypertension ICD-10
11 86041002 Pre-existing hypertension in obstetric context SNOMED
12 86234004 Hypertensive heart AND renal disease SNOMED
13 473392002 Hypertensive nephrosclerosis SNOMED
14 266287006 (Hypertensive disease) or (hypertension) SNOMED
15 8762007 Chronic hypertension in obstetric context SNOMED
16 712832005 Supine hypertension SNOMED
17 5148006 Hypertensive heart disease with congestive heart failure SNOMED
18 65402008 Pre-existing hypertensicslrt1 E;Igf;l;ceagt:;i Cz;ND /OR reason for care SNOMED
19 78975002 Malignant essential hypertension SNOMED

20 194779001 Hypertensive heart ar}1lcel a1‘1:etr1faalilclllirseease with (congestive) SNOMED

21 46113002 Hypertensive heart failure SNOMED

22 48146000 Diastolic hypertension SNOMED

23 194767001 Benign hypertensive heart disease with congestive cardiac failure SNOMED

24 397748008 Hypertension with albuminuria SNOMED

25 49220004 Hypertensive renal failure SNOMED
26 443482000 Hypertensive urgency SNOMED

27 62275004 Hypertensive episode SNOMED

28 50490005 Hypertensive encephalopathy SNOMED

29 706882009 Hypertensive crisis SNOMED

30 70272006 Malignant hypertension SNOMED

31 31992008 Secondary hypertension SNOMED

32 161501007 H/O: hypertension * SNOMED
33 52698002 Transient hypertension SNOMED

34 123799005 Renovascular hypertension SNOMED
35 28119000 Renal hypertension SNOMED

36 193003 Benign hypertensive renal disease (disorder) SNOMED

37 194785008 Benign secondary hypertension SNOMED

38 449759005 Hypertensive complication SNOMED

39 428163005 Hypertensive left ventricular hypertrophy SNOMED

40 89242004 Malignant secondary hypertension SNOMED

41 37618003 Chronic hypertension complicating AND/OR reason for care SNOMED

during pregnancy

* History of hypertension.
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Table A4. Medications used in hypertension phenotyping algorithm.

Included Drugs (Not

No. Class of Medicine Included ATC L4 Code . Excluded Drugs
Exclusive)
Amlodipine
Nifedipine
. L1 I CO8CA Felodipine
1 Dihydropyridine derivatives COSGA Lacidipine
Cilnidipine
Nimodipine
Losartan
Valsartan
. . . . Telmisartan
2 Angiotensin II antagonists, plain C09CA Irbesartan
Candesartan
Olmesartan medoxomil
Enalapril
Lisinopril
3 ACE inhibitors, plain CO9AA Perindopril
Captopril
Ramipril
Imidapril
Atenolol Sotalol
. . Bisoprolol Timolol
4 Beta blocking agents, selective C07AB Metoprolol Betaxolol
Nebivolol Esmolol
Valsartan and amlodipine
Angiotensin II antagonists and calcium C09DB Telmlsart.ar} and
5 amlodipine
channel blockers C09DX .
Olmesartan, medoxomil,
and amlodipine
6 Thiazides, plain CO03AA Hydrochlorothiazide
Furosemide
. . CO03BA Indapamide .
7 Sulfonamides, plain CO3CA Metolazone Verapamil
Bumetanide
. Carvedilol
8 Alpha and beta blocking agents C07AG Labetalol
CO01DA . ..
9 Organic nitrates C01DB ISOSOI.'blde dmltr.ate Glyceryl trinitrate
Isosorbide mononitrate
C01DX
. . Propranolol
10 Beta blocking agents, non-selective CO07AA Nadolol
Angiotensin II antagonists and Valsartan and diuretics
11 & L antag C09DA Losartan and diuretics
diuretics . .
Irbesartan and diuretics
12 Benzothiazepine derivatives C08DB Diltiazem
13 Aldosterone antagonists CO3DA Spironolactone
Eplerenone
14 Beta blocking agents, selective, and CO7FB Atenolol and other
other antihypertensives CO7FX antihypertensives
15 ACE inhibitors and calcium channel CO9BB Perlndop.rl.l and
blockers amlodipine
Low-ceiling diuretics and Hydrochlorothiazide and
16 . . CO3EA . .
potassium-sparing agents potassium-sparing agents
Perindopril, amlodipine
17 ACE inhibitors, other combinations C09BX and indapamide
Cosyrel
18 Angiotensin IT z.inta.gonlsts, other C09DX Sacubitril-valsartan
combinations
- CO3XA Tolvaptan
NA Other excluded medicines COIDX Nicorandil
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Table A5. Inter-annotator agreement among annotators (Cohen’s Kappa). Pairwise Cohen’s Kappa
score between fifteen annotators on training dataset of 200 discharge summaries.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.99 0.99 0.96 0.97 0.95 0.97 0.97 0.92 0.96 0.98 0.93 0.96 0.99 0.96
2 0.99 0.98 0.95 0.96 0.96 0.98 0.96 0.93 0.95 0.99 0.94 0.95 0.98 0.97
3 0.99 0.98 0.97 0.98 0.94 0.96 0.98 0.93 0.95 0.97 0.94 0.97 0.98 0.95
4 0.96 0.95 0.97 0.95 091 0.93 0.95 0.9 0.92 0.96 0.95 0.96 0.95 0.92
5 097 0.96 0.98 0.95 0.92 0.94 0.96 091 0.95 0.95 0.92 0.95 0.96 0.93
6 0.95 0.96 0.94 0.91 0.92 0.94 0.92 091 0.91 0.95 0.92 0.95 0.96 0.93
7 0.97 0.98 0.96 0.93 0.94 0.94 0.94 091 0.93 0.97 0.92 0.93 0.96 0.95
8 0.97 0.96 0.98 0.95 0.96 0.92 0.94 091 0.93 0.95 0.92 0.95 0.96 0.93
9 0.92 0.93 0.93 0.90 091 0.91 0.91 0.91 0.90 0.92 0.89 0.92 0.91 0.90
10 0.96 0.95 0.95 0.92 0.95 091 0.93 0.93 0.90 0.94 0.89 0.92 0.95 0.92
11 0.98 0.99 0.97 0.96 0.95 0.95 0.97 0.95 0.92 0.94 0.95 0.94 0.97 0.96
12 0.93 0.94 0.94 0.95 0.92 0.92 0.92 0.92 0.89 0.89 0.95 0.91 0.94 0.91
13 0.96 0.95 0.97 0.96 0.95 0.95 0.93 0.95 0.92 0.92 0.94 091 0.95 0.92
14 0.99 0.98 0.98 0.95 0.96 0.96 0.96 0.96 091 0.95 0.97 0.94 0.95 0.95
15 0.96 0.97 0.95 0.92 0.93 0.93 0.95 0.93 0.90 0.92 0.96 091 0.92 0.95
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