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Abstract: The genus Crossiella contains two species, C. equi, causing nocardioform placentitis in
horses, and C. cryophila, an environmental bacterium. Apart from C. equi, which is not discussed here,
environmental Crossiella is rarely reported in the literature; thus, it has not been included among “rare
actinobacteria”, whose isolation frequency is very low. After C. cryophila, only five reports cover the
isolation of Crossiella strains. However, the frequency of published papers on environmental Crossiella
has increased significantly in recent years due to the extensive use of next-generation sequencing
(NGS) and a huge cascade of data that has improved our understanding of how bacteria occur in the
environment. In the last five years, Crossiella has been found in different environments (caves, soils,
plant rhizospheres, building stones, etc.). The high abundance of Crossiella in cave moonmilk indicates
that this genus may have an active role in moonmilk formation, as evidenced by the precipitation
of calcite, witherite, and struvite in different culture media. This review provides an overview of
environmental Crossiella, particularly in caves, and discusses its role in biomineralization processes
and bioactive compound production.
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1. Introduction

The first strain included in the genus Crossiella has a long history of transfers and
amendments. Takahashi et al. [1] studied the soil isolate Nocardiopsis mutabilis, capable of
producing novel antibiotics, and classified it as a new subspecies: Nocardiopsis mutabilis
subsp. Cryophilis based on its growth at low temperatures (8–33 ◦C). This strain was
subsequently transferred by Labeda and Lechevalier [2] to the genus Saccharothrix as
Saccharothrix cryophilis because its morphological and chemotaxonomical properties were
more typical of the genus Saccharothrix than Nocardiopsis. In another study, Labeda [3]
erected the genus Crossiella to accommodate the species Saccharothrix cryophilis, which was
misplaced within the genus Saccharothrix. The genus only contained the species Crossiella
cryophila, which was soon accompanied by Crossiella equi, responsible for causing abortion
cases in horses with equine nocardioform placentitis in Kentucky [4].

In the last 20 years, no other species of Crossiella have been described, with scarce
reports on the isolation of Crossiella strains in the literature. Sánchez-Moral [5] isolated a
few strains of Crossiella from Altamira Cave, Spain. Adeyemo and Onilude [6] described
a strain of Crossiella isolated from Nigerian soil with a broad spectrum of antimicrobial
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activity. Cimermanova et al. [7] isolated nine actinobacteria collected from different heavy
metal-contaminated soils and found that one strain could represent a new species within
the genus Crossiella; however, they did not provide any characterization or description
other than its position in the phylogenetic tree and that the strain differed from Crossiella
cryophila in several biochemical properties. González-Riancho [8] isolated three Crossiella
strains from white and grey biofilms from Altamira Cave. Finally, Gonzalez-Pimentel
et al. [9] studied the genomes of two Crossiella strains selected from 13 strains previously
isolated from Altamira Cave (unpublished report).

The isolation of Crossiella strains on only five occasions in the last 10 years included
this genus within the so-called “rare actinobacteria”. Oren and Garrity [10] considered Acti-
nobacteria a synonym of Actinomycetota. They presented the names and formal descriptions
of 42 phyla to effect valid publication in their names based on genera as nomenclatural
types. However, in this paper, we maintained the original names, as previously published
by each author, to avoid mistakes.

“Rare actinobacteria” are non-Streptomyces actinobacteria whose isolation frequency is
much lower than Streptomyces strains, commonly isolated by conventional methods [11,12].
Tiwari and Gupta [13,14] reported 120 new genera of “rare actinobacteria” in the first
decade of the 21st century. A total of 40 out of 120 genera were isolated from soils with com-
paratively lower percentages from other environments: marine and freshwater sediments,
marine animals, plants, buildings, etc. A few reports included the rare genera Actinomadura,
Nonomuraea, Micromonospora, Streptosporangium, Nocardiopsis, and Pseudonocardia as most
frequent in diverse environments [15–20]. It is noteworthy that an abundance of “rare
actinobacteria” is in extreme environments, as exemplified in Atacama [18] and other
deserts [21–24]. However, Crossiella has not been included among “rare actinobacteria”
thus far. We have found that Crossiella is an abundant genus in most studied Spanish
caves, whether they are gypsum, karstic, or volcanic [9,25–27], and in other terrestrial and
aquatic environments.

In this paper, we review the occurrence of environmental Crossiella, its relative abun-
dance in Spanish caves and other subterranean environments, as well as its involvement in
caves’ mineral precipitation. The interest in Crossiella lies in its role in biomineralization
and potential use in biotechnological processes (stone bioconsolidation, enzyme sources,
bioactive compounds, etc.).

2. The Genus Crossiella in Caves

Table 1 shows the occurrence of Crossiella in different Spanish caves. The high relative
abundance of this genus is in moonmilk (Figure 1), either from karstic (Pindal) or volcanic
(Fuente de la Canaria and Bucara II) caves, as well as in coloured biofilms (Pindal, Altamira,
Castañar, Covadura) is remarkable [27–31]. The relative humidity is near 100% in these
caves. In addition, other mineral/biological formations, such as a pink formation in Bucara
II, exhibit high relative abundance (38.9%). Similarly, formations such as mucous formations
or brown deposits also reach relatively high abundances (6.7–12.8%) [29]. Interestingly, low
percentages of Crossiella found in the sediments under the moonmilk indicate an aerobic
behaviour for this genus [3]. Crossiella was also found in phototrophic biofilms from Nerja
Cave [30].

Table 1. Occurrence and relative abundance (>1%) of Crossiella in Spanish karstic environments, as
reported in NGS studies.

Cave Relative Abundance Genus Type of Sample References

Pindal
16.0–27.1 Crossiella Moonmilk

[26,28,31]1.4–1.7 Crossiella Sediment under moonmilk
11.3–11.7 Crossiella Top-layer sediments
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Table 1. Cont.

Cave Relative Abundance Genus Type of Sample References

6.0–9.0 Crossiella Sediments
5.3–7.9 Crossiella Yellow biofilm
2.0–8.0
7.0–8.0

Crossiella
Crossiella

Grey biofilms
Pink biofilms

Fuente de la Canaria
12.6–12.8 Crossiella Mucous formations

[29]12.3 Crossiella Moonmilk
6.7 Crossiella Brown and yellow deposits

Bucara II 38.9
24.9

Crossiella
Crossiella

Pink deposit
Moonmilk [29]

Nerja 0.1–1.5 Crossiella Phototrophic biofilms [30]

Castañar 15.0 Crossiella Grey biofilm [31]

Altamira
>20.0
27.0
38.0

Crossiella
Crossiella
Crossiella

Grey biofilms
White biofilms
Yellow biofilms

[30]

Covadura
26.4–54.1
21.8–51.9
4.5–19.7

Crossiella
Crossiella
Crossiella

White biofilm
Yellow biofilm

Sediments
Unpublished data

Yeso 1.3–13.3 Crossiella Sediments Unpublished data

Thyssen Museum
basement

16.6
64.2

2.8–7.4

Crossiella
Crossiella
Crossiella

White biofilm
Grey biofilm

Sediment
[32]
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Figure 1. Scanning electron micrographs of moonmilk deposits in Pindal Cave, Spain. (a) Longitu-

dinal view of sediment covered by moonmilk. (b,c) Crystalline calcite fibres (red arrow) and Acti-

nomycetota filaments (blue arrow). (d) Scanning electron micrographs and EDX spectra of crystal-

line calcite fibres. Note the swelling of filaments in (c), similar to those reported for Crossiella cry-

ophila [3]. 
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and China. Less frequent records were found in caves in Italy, Pakistan, Portugal, Serbia, 

and Thailand, among other countries [35–57]. 

Table 2. Occurrence and relative abundance (>1%) of Crossiella in caves all over the world. 
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Heshang n.d. Crossiella Weathered rocks (NGS) [35] 

Laugerie-Haute  4.0 Crossiella Salt efflorescences (clones) [36] 

Sorcerers 30.0 Crossiella Salt efflorescences (NGS) [37] 

Pillier n.d. Crossiella Wall rock (NGS) [38] 

Yixing Shanjuan 3.9 Crossiella Speleothem (NGS) [39] 

Shuanghe 9.5 Crossiella Rock (NGS) [40] 

Manao-Pee 4.1 Crossiella Soil (NGS) [41] 

KN14 27.1–52.3 Crossiella Rock/Clay (NGS) [42] 

RN5 1.0–17.9 Crossiella Rock/Clay/Mud (NGS) [42] 

Maijishan Grottoes n.d. Crossiella Walls paintings (NGS) [43] 

Heshang n.d. Crossiella Weathered rocks (NGS) [44] 

Kashmir and Tiser 11.9–36.6 Crossiella Soil (NGS) [45] 

Zhijin 4.1 Crossiella Wall rock (NGS) [46] 

Rouffignac ~70.0 Crossiella Wall rock (NGS) [47] 

Stiffe 9.9 Crossiella Biofilms (NGS) [48] 

Heshang n.d. Crossiella Weathered rocks (NGS) [49] 

Figure 1. Scanning electron micrographs of moonmilk deposits in Pindal Cave, Spain. (a) Lon-
gitudinal view of sediment covered by moonmilk. (b,c) Crystalline calcite fibres (red arrow) and
Actinomycetota filaments (blue arrow). (d) Scanning electron micrographs and EDX spectra of crys-
talline calcite fibres. Note the swelling of filaments in (c), similar to those reported for Crossiella
cryophila [3].
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Crossiella, at a relative abundance of 15.0%, was found in grey biofilms from Castañar
Cave [31]. Similar grey biofilms were observed in Altamira Cave [8] and the Thyssen
Museum, reaching a relative abundance of 64.2% [32]. Data from a geomicrobiological
study of a Roman nymphaeum located in the archaeological basement of the Thyssen
Museum in Malaga, Spain, were also included in Table 1 due to its interest.

The environmental conditions of this archaeological basement are special because they
mix the characteristics of an environment heavily influenced by the natural underlying
karst system with those of an enclosure located in an urban building. Apart from caves,
it was remarkable that a subterranean environment, the Roman mortar pavement in the
archaeological basement, was colonized by grey biofilms with a high relative abundance of
Crossiella. This environment is characterized by permanent darkness, the absence of visits,
and high relative humidity.

Table 1 shows the occurrence of Crossiella in moonmilk, grey, yellow, pink and white
biofilms, and sediments from different caves and subterranean environments. Crossiella is
abundant in different types of rocks, either in volcanic (Fuente de la Canaria, Bucara II),
karstic (Pindal, Nerja, Castañar, Altamira) or gypsum (Covadura, Yeso) caves.

In addition to the studies in Table 1, authors have reported the occurrence of Crossiella
using methodological approaches other than NGS. Stomeo et al. [33] found metaboli-
cally active Crossiella in white biofilms from Ardales Cave, Malaga, Spain. Portillo and
Gonzalez [34] identified Crossiella as a major metabolically active bacterium in the black
crust of a shelter located in Aragon, Spain, and Sanchez-Moral [5] reported Crossiella in
Altamira Cave.

Table 2 shows the widespread occurrence of Crossiella in caves in the USA, France and
China. Less frequent records were found in caves in Italy, Pakistan, Portugal, Serbia, and
Thailand, among other countries [35–57].

Table 2. Occurrence and relative abundance (>1%) of Crossiella in caves all over the world.

Karstic Caves Relative
Abundance% Genus Type of Sample (Method) References

Heshang n.d. Crossiella Weathered rocks (NGS) [35]

Laugerie-Haute 4.0 Crossiella Salt efflorescences (clones) [36]

Sorcerers 30.0 Crossiella Salt efflorescences (NGS) [37]

Pillier n.d. Crossiella Wall rock (NGS) [38]

Yixing Shanjuan 3.9 Crossiella Speleothem (NGS) [39]

Shuanghe 9.5 Crossiella Rock (NGS) [40]

Manao-Pee 4.1 Crossiella Soil (NGS) [41]

KN14 27.1–52.3 Crossiella Rock/Clay (NGS) [42]

RN5 1.0–17.9 Crossiella Rock/Clay/Mud (NGS) [42]

Maijishan Grottoes n.d. Crossiella Walls paintings (NGS) [43]

Heshang n.d. Crossiella Weathered rocks (NGS) [44]

Kashmir and Tiser 11.9–36.6 Crossiella Soil (NGS) [45]

Zhijin 4.1 Crossiella Wall rock (NGS) [46]

Rouffignac ~70.0 Crossiella Wall rock (NGS) [47]

Stiffe 9.9 Crossiella Biofilms (NGS) [48]

Heshang n.d. Crossiella Weathered rocks (NGS) [49]

Cave Church 0.1–4.9 Crossiella Fresco (NGS) [50]

Volcanic Caves

Azorean caves 18.6 Crossiella Biofilms (clones) [51]
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Table 2. Cont.

Karstic Caves Relative
Abundance% Genus Type of Sample (Method) References

Hawaiian caves n.d. Crossiella Biofilms (NGS) [52]

Californian caves n.d. Crossiella Biofilms (NGS) [53]

Idahoan caves n.d. Crossiella Biofilms (NGS) [54]

Sicilian caves 62.5–77.6 Crossiella Biofilms (NGS) [55]

Other Cave Types

Carlsbad Cavern n.d. Crossiella Rocks (clones) [56]

Imawarì Yeuta n.d. Crossiella Patina/Speleothems (NGS) [57]

n.d. Not determined.

Apart from the high abundance in Spanish caves, the high relative abundance of
Crossiella in Italian caves is also remarkable. In this regard, Nicolosi et al. [55] recorded
high relative abundances in four Etna volcano caves. One of them ranged from 62.5 to 77.6%.
Other notable abundances were found in the salt efflorescences of a French shelter [37] and
in caves in the USA [42], France [47], Pakistan [45], and the Azores, Portugal [51].

Crossiella has been identified as one of the dominant bacterial phylotypes, with an in-
creasing prevalence when global humidity conditions rise, in a research covering 1050 cave
microbiomes worldwide (manuscript in preparation).

3. Crossiella in the Environment

Supplementary Table S1 lists papers in the literature that use the keyword “Crossiella”,
including Crossiella misspelling [58–146]. The occurrence of the genus Crossiella in different
environments is significant. Papers reporting Crossiella equi and its involvement in animal
diseases [4] were excluded.

The papers listed in Supplementary Table S1 rely on molecular methods, except for
five articles describing the properties of isolated strains [5–9]. The genus Crossiella shows a
ubiquitous and extensive geographical distribution on all continents, including Antarctica,
but not in Australia/Oceania, likely due to a lack of relevant studies.

Fewer reports locate Crossiella in mines and reclaimed mine soils [7,120–124]. How-
ever, the number of studies on its presence in soils and the rhizospheres of diverse
plants is considerable. Several Crossiella findings in stones and building stones were
also confirmed [125–138]. Finally, a few records in sea sediments and freshwaters were
significant [139–146] because they included aquatic environments among Crossiella habitats.

From Supplementary Table S1, we can conclude that Crossiella, in addition to caves,
is relatively abundant in diverse environments, namely soils, plant rhizospheres, mines,
building stones, and other occasional habitats, but is rarely isolated.

Considering the abundance of reports on Crossiella in soils [58–96] and plant rhizo-
spheres [97–119], the presence of this genus in caves and other subterranean environments
could be attributed to its transport to the subsurface via percolation waters. In this regard,
Crossiella in percentages <1% have been found in drip waters from Pindal Cave [28]. It may
be possible that once transported to the caves, the environmental conditions favour and
increase the colonization and growth of Crossiella on different mineral substrata.

4. Crossiella Isolates

Only five reports shed light on Crossiella isolates. A screening of Nigerian soils
resulted in the isolation of Crossiella sp. strain EK18. The 16S rRNA nucleotide sequence
showed 98% similarity to C. equi. This strain grew well in different culture media and
exhibited broad-spectrum antimicrobial activity [6]. The authors studied the effects of pH,
temperature, carbon and nitrogen sources, sodium chloride concentration, and incubation
time on antimicrobial activity. In addition, they reported a list of 12 so-called antimicrobial
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metabolites, including alkanes, alkenes, commonly synthesized by bacteria, and phthalates,
which are contaminants from materials and impurities from products used in culture media.
Therefore, no conclusive data on the real bioactive compounds produced by the Crossiella
strain can be derived from this study.

Cimermanova et al. [7] isolated Crossiella sp., strain S2, from mining wastes, with a
16rRNA gene sequence similarity of 99.1% to C. cryophila. The authors suggested that it
may represent a novel, never described species, based on its location in the phylogenetic
tree. The strain also exhibited high heavy metal resistance.

González-Riancho [8] found relative abundances of Crossiella >20% in white, yellow,
and grey biofilms from Altamira Cave. She isolated two strains from white and one
strain from grey biofilms with similarities of 99.0–100.0 to C. cryophila using the medium
Actinomycete Isolation Agar (AIA).

Gonzalez-Pimentel et al. [9] studied two of the thirteen Crossiella strains previously
isolated from grey biofilms colonizing Altamira Cave, Spain (unpublished report). In vitro
and in silico analyses showed the inhibition of pathogenic bacteria and fungi. The exclusive
combination of gene clusters involved in the synthesis of lanthipeptides, lasso peptides,
nonribosomal peptides and polyketides indicates that these two strains represent a source
of new bioactive compounds. The taxonomical distance of both strains from their closest
relative, C. cryophila, suggests that they represent a new species of Crossiella, which will be
described in future works.

So far, the low number of isolated Crossiella strains indicates that most of the culture
media used are inadequate to reproduce their growth in the laboratory. The environmental
conditions of their ecological niche should also be considered when designing specific
culture media, which are superior to conventional ones.

5. Biomineralization in Caves Induced by Crossiella

Biomineralization or crystal formation is a general phenomenon caused by soil bacteria,
as reported by Boquet et al. [147]. These authors isolated 210 bacteria that could form
calcite crystals in a medium with calcium acetate and stated that their occurrence depended
on the composition of the medium used.

The role of bacteria in speleogenesis has been discussed for decades. Barton and
Northup [148] stated that in the 1960s, a few authors proposed that microbes played a role
in forming cave deposits. Banks et al. [149] confirmed the link between calcium metabolism
in bacteria and calcification using cave isolates. They suggested that the toxicity of Ca2+

ions to bacteria promoted the need to remove Ca2+ ions from the cell via calcification as a
detoxification mechanism.

Further evidence of biomineralization has been reported in recent decades that sheds
light on microbially induced mineral precipitation [150–153]. This precipitation has been
attributed to several causes: the modulation of environmental pH, nucleation sites on cell
surfaces, or enzymatically driven processes involving carbonic anhydrase, urease, etc. [154].

Grey biofilms from Altamira Cave were studied, and scanning electron microscopy
(SEM) revealed an abundance of bioinduced calcite crystals in addition to moonmilk [152].
The biofilms mainly comprised Actinomycetota filaments promoting carbon dioxide uptake
and formation of calcite deposits. A model for bioinduced calcite formation, supported by
scanning and transmission electron microscopy data, was proposed by Cuezva et al. [152].

Apart from the precipitation of calcite by Crossiella, another experiment (Figure 2)
with two strains of Crossiella isolated from Altamira Cave [9] revealed that both strains
induced the formation of different crystals when incubated in a culture medium with
barium acetate, yeast extract, and agar (Ba1). Two crystal types were identified on the
plates: witherite (barium carbonate) and struvite (magnesium ammonium phosphate),
with distinct abundances that were higher for witherite and scarcer for struvite. Witherite
precipitation is due to an abundance of barium in the medium. Occasional struvite crystals
can be derived from the amino acids and minor amounts of phosphorus and magnesium in
the yeast extract [155].
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Figure 2. Scanning electron micrographs and EDX spectra of barium carbonate and phosphate
crystals from two strains of Crossiella sp. (Cross-1 and Cross-2) [7]. (a) Witherite (barium carbonate)
crystals and Crossiella filaments in culture medium Ba1 (Cross-1). (b) Witherite crystals in culture
medium Ba1 (Cross-2). (c) Struvite (magnesium ammonium phosphate) crystals in culture medium
Ba1 (Cross-1). (d) Crossiella filaments without crystal formation in tryptic soy agar medium (Cross-2).
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Baryte (barium sulphate) precipitation by bacteria was previously reported by
Joubert et al. [156]. Sanchez-Moral et al. [157] found that baryte was associated with
filamentous bacteria in altered volcanic rocks. Agromyces spp., Bacillus spp., Lysobacter
spp., Ralstonia sp., Stenotrophomonas maltophilia, and Streptomyces sp. were isolated from
the volcanic rocks and precipitated witherite or calcite/vaterite in media with barium or
calcium acetate, respectively. The occurrence of baryte, but not witherite, in volcanic rocks
was due to the presence of sulphate ions that easily transform witherite into barite. This
transformation was not produced on the Crossiella plates without sulphate ions.

Struvite precipitation is not as widespread as calcite or witherite in bacteria. Sanchez-
Moral et al. [158] tested eight bacteria isolated from the Roman catacombs of St. Callixtus
and Domitilla and reported that Agromyces ramosus precipitated calcite, magnesium calcite,
witherite, and struvite, depending on the media composition. Other bacteria precipitating
struvite were Bacillus sp. and Ralstonia metallidurans.

Rivadeneyra et al. [159] found that only 20.8% of the tested bacterial isolates pre-
cipitated struvite and that calcium acetate appeared to inhibit struvite precipitation in
culture media, whereas ammonium ions triggered it [160]. Manzoor et al. [161] stated that
urease-producing bacteria play a key role in struvite precipitation, controlling nucleation,
and modulating crystalline phases and crystal shapes. Urease is present in the strain type
of Crossiella, C. cryophila [3], and urease genes have been identified in the genomes of the
two Crossiella strains from Altamira Cave [9].

Sánchez-Román et al. [162] reported that carbon and phosphorus cycles are interrelated
during biomineralization. They also demonstrated the co-precipitation of carbonate and
struvite, which we also found in Crossiella strains.

The data reported show that biomineralization by Crossiella is an active process in the
presence of different ions, confirming its role in moonmilk formation. Crossiella strains’
ability to induce carbonate precipitation, which is used to consolidate cultural heritage
stones and buildings, should be explored.

6. Moonmilk Formation

Moonmilk formation has been discussed in the literature for a long time [150,163–168].
The question: Is moonmilk an abiotic process driven physicochemically, or is it biotic,
mediated by microorganisms? A biological origin currently prevails; even a combination of
physicochemical and biogenic processes is being considered [166]. Cañaveras et al. [150,165]
indicated that bacteria influenced the physicochemistry of calcite precipitation. They ob-
served that cave moonmilk comprises a network of calcite crystals and active filamentous
bacteria. They also found that hydromagnesite and needle-fibre aragonite deposits were
associated with bacteria in Altamira Cave, predominantly Streptomyces, for which they
demonstrated their ability to precipitate calcite/vaterite in the laboratory. The association
between bacteria and mineral crystals was reported in other papers and described using
SEM [152,153,165,168–170]. In addition, different bacterial genera such as Agromyces, Amy-
colatopsis, Brachybacterium, Nocardioides, Nocardiopsis, Paenibacillus, and Rothia precipitated
vaterite/calcite and Mg-calcite [171].

Maciejewska et al. [153] found that all the Streptomyces strains tested could promote
calcification and biomineralization. The metabolic activities involved in the precipita-
tion were amino acids ammonification and ureolysis, which increased environmental pH.
Sanchez-Moral et al. [169] stated that microbial activity induces carbonate precipitation in
the early stages of deposition. However, as carbonate accumulates, a progressive decline
in microbial activity occurs, as deduced from the RNA/DNA ratio, which is used as a
marker of metabolic activity. The decreased metabolic activity is due to the progressive
accumulation of carbonate and bacterial entrapment in mineral deposits.

The high relative abundance of Crossiella in moonmilk from different caves indicates
that this genus is active in moonmilk formation (Table 1). Enzymatic processes induce
this mineralization, and several enzymes have been linked to Crossiella activity in moon-
milk. Martin-Pozas et al. [26] suggested that moonmilk formation is related to syntrophic
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relationships between Crossiella and nitrifying bacteria, and Cuezva et al. [27] associated
Crossiella with the ability to capture CO2 from the atmosphere and precipitate calcium
carbonate as a by-product of carbonic anhydrase action, as observed in cave moonmilk.

7. Is Moonmilk a Source of Bioactive Compounds?

Caves and moonmilk are colonized by complex bacterial communities.
Maciejewska et al. [153] reported that Proteobacteria was the dominant phylum of moonmilk
from a Belgian cave, followed by Actinobacteria, Acidobacteria, Chloroflexi, Nitrospirae, Gem-
matimonadetes, and Planctomycetes. These seven phyla accounted for 85.8–90.2% of the total
community. Martin-Pozas et al. [26] investigated the moonmilk composition from Pindal
Cave in Spain. They found that Proteobacteria and Actinobacteria dominated the community
with over 30% of relative abundance for each phyla, followed by Acidobacteria, Chloroflexi,
Planctomycetes, Gemmatimonadetes, and Nitrospirae. These phyla accounted for 93.1–93.9% of
the total community. The similarities between the phyla compositions of moonmilk from
two different caves are remarkable. Moonmilk from a geographically distant cave [172] and
another subterranean environment [173] also showed relatively similar phyla compositions.

Moonmilk has been a promising reservoir for novel bacteria producing bioactive
compounds, and a few novel species have been isolated, namely Streptomyces lunaelac-
tis [174], Pseudomonas karstica, and Pseudomonas spelaei [175]. Several studies have stressed
the great diversity of unknown bacteria inhabiting moonmilk and the isolates’ production
of bioactive compounds [176–178].

The high abundance of Actinomycetota (=Actinobacteria) and Pseudomonadota (=Pro-
teobacteria) in moonmilk has prompted researchers to test a series of strategies to isolate
hard-to-culture “rare actinobacteria” and discover novel bioactive compounds [13,14].
Adam et al. [176] obtained 40 isolates represented by Agromyces, Amycolatopsis, Kocuria,
Micrococcus, Micromonospora, Nocardia, Streptomyces, and Rhodococcus species. The Strep-
tomyces isolates displayed strong inhibitory activities against Gram-positive and Gram-
negative bacteria and fungi [179]. Genome mining of Streptomyces lunaelactis revealed
42 biosynthetic gene clusters [180] and the production of the antibiotics bagremycins and
lunaemycins [180,181]. The genome of Crossiella, abundant in moonmilk [26], showed the
presence of a combination of gene clusters involved in synthesising different bioactive com-
pounds [9]. The data suggest the possibility of finding other moonmilk bacteria involved
in synthesising bioactive compounds.

8. Conclusions

The genus Crossiella is widely distributed in all environments, reaching a relative
abundance of up to 78% in a Sicilian cave. Its occurrence in soils, plant rhizospheres and
caves is especially important. The last case is probably due to its transport to the subsurface
by percolating waters. Despite this abundance, the strains isolated were scarce.

The data suggest that more environmental Crossiella species are waiting to be described,
apart from Crossiella cryophila and Crossiella equi. The increasing number of metagenomic
sequence data from all environments offers clear opportunities to guide the isolation and
cultivation of Crossiella. Therefore, further efforts are required to design suitable isolation
culture media. They should consider the environmental conditions of the niches where
Crossiella thrives, namely alkaline pH and high mineral concentrations.

Crossiella has an important role in carbon sequestration in subterranean environments.
Metagenomic studies and isolating more Crossiella strains and/or species are the only way
to advance knowledge of Crossiella functions in different ecosystems. Furthermore, its role
in biomineralization and moonmilk formation is also apparent.

Finally, Crossiella appears to be a promising source of active compounds, and the isolated
strains deserve more attention regarding their potential use in biotechnological processes.
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