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Abstract: Cellulose, a linear polysaccharide, is the most common and renewable biopolymer in nature.
Because this natural polymer cannot be melted (heated) or dissolved (in typical organic solvents),
making complicated structures from it necessitates specialized material processing design. In this
review, we looked at the literature to see how cellulose in various shapes and forms has been utilized
in conjunction with microfluidic chips, whether as a component of the chips, being processed by a
chip, or providing characterization via chips. We utilized more than approximately 250 sources to
compile this publication, and we sought to portray cellulose manufacturing utilizing a microfluidic
system. The findings reveal that a variety of products, including elongated fibres, microcapsules,
core–shell structures and particles, and 3D or 2D structured microfluidics-based devices, may be
easily built utilizing the coupled topics of microfluidics and cellulose. This review is intended to
provide a concise, visual, yet comprehensive depiction of current research on the topic of cellulose
product design and understanding using microfluidics, including, but not limited to, paper-based
microfluidics design and implications, and the emulsification/shape formation of cellulose inside
the chips.
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1. Introduction

The most prevalent and renewable biopolymer in nature is cellulose, which is a linear
polysaccharide. Cellulose is an organic molecule with a formula comprising a polysaccha-
ride composed of a linear polymer of hundreds or even thousands of connected D-glucose
units. Cellulose is a structural component of the major cell wall of plants, many types of
algae, and oomycetes [1–3]. This natural polymer cannot be melted (heated) or dissolved
(in common organic solvents). By derivatized chemical modification or direct dissolving,
cellulose can be converted into a processible liquid state [4]. As adsorbents, cellulose
and cellulose derivatives have been utilized in the form of hydrogels [5,6], films [7,8],
beads [9,10], microfibers [11], and microcrystals [12,13]. In all these applications, cellulose
as a solid phase provides a large surface area that may separate chemicals from flowing
liquids due to cellulose active functional groups. In chromatography [14], protein purifica-
tion [15], and drug delivery [16–19], cellulose beads can be utilized as the stationary phase.
Papermaking and the synthesis of micro fibrillated cellulose have both employed partially
or considerably fibrillated cellulose. Micro fibrillated cellulose was created from wood
using a high-pressure homogenization process [20] and has since been utilized as a filter
aid as well as an excellent thickener [21]. In general, considerable energy consumption is
unavoidable for the nanoscale fibrillation of wood or other cellulosed source items that
need cleaves of interfibrillar hydrogen bonds [22].

Cellulose nanocrystals (CNCs) receive more research attention than their CNC coun-
terparts (in this case micro fibrillated cellulose) [23,24]. The reason for this is because
nanoparticles with their nanosized (higher surface area) have superior characteristics. The
popularity of nanocellulose materials is continuously increasing. CNCs and nano fibrillated
cellulose (CNF) (or alternatively cellulose nanofibrils) can be used in applications ranging
from small-scale medical-grade items to larger-scale sorbent products. For instance, CNF
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shows promise for applications that need flexibility, such as possibly wearable electrochem-
ical applications [25]. CNF-based aerogels are reasonably simple to make using freeze
drying or critical point drying and have received a lot of attention [26]. To research mate-
rial/cell interactions using CNFs, CNF-based nanocomposite hydrogels can be employed
as sophisticated origami actuators. Artificial tissue, medical devices, diagnostics, and
biosensors have all used these actuators [27]. Because of their ionic connections, CNF and
poly ethylene glycol (PEG) can undergo a reversible sol gel transition when subjected to
strain or temperature ramping [28]. In a way, the membrane of the hydrogel can act as a
layer that regulates ion exchange. CNFs\CNCs have been widely exploited as reinforc-
ing/fillers in the production of robust yet extremely flexible polymer gels, with a focus on
specialized biological applications [29]. Typical CNF-based hydrogels comprise 0.05 to 6%
CNFs by weight, with storage modulus values ranging from 0 to 100 kPa [30]. There are
still several obstacles to overcome before commercialization can take place.

The key attribute that cellulose-based goods provide to a matrix due to their elongated
structure is their capacity to enhance mechanical capabilities [31,32]. For instance, enhanc-
ing mechanical properties of polymers [29,33–36], ceramics [37,38], etc. Aerogels made
of chemically cross-linked nanostructured materials based on cellulose can be employed
as flexible substrates for a variety of functional nanoparticles, including hydrophobic
nutritional supplements and nanoparticles [39,40]. CNC aerogel nanostructures’ porous
structure enables rapid water absorption and swelling via macropores and the macropillary
action of mesopores; that makes this substrate ideal for separation and extraction [41].
CNCs have been linked with biopolymers using cross-linking chemistries to generate
a reinforced hydrogel structure, a process that involves, for instance, borax [42]. Basic
fibroblast growth factor was loaded into disposable gelatin microspheres, which were
then integrated into porous collagen/CNC scaffolds, according to Li et al. [43]. Cotton
nanofibrils on their own are more amenable to hydrogel production than CNCs. Dried
CNC films with a helix inner structure are usually formed, for example, by depositing a
suspension [44] onto a substrate and then drying it. The drying may be separated into
many parts that are governed by geometry, the atmospheric partial pressure of water,
and temperature. CNC division into liquid crystalline domains depends on aspect ratio
and concentration of CNC based on Onsager theory [45,46]. Having stated that, specific
applications based on CNC and CNF literature have been identified; there have previously
been reviews on the individual subjects of CNF [30], micro fibrillated cellulose [47–50],
cellulose nanocrystals [30,51,52], and cellulose nanocrystals in polymers [47,53,54] and
prospective readers are recommended to study the reviews of these references (refs.).

Cellulose has a wide range of characteristics, including, but not limited to, gas barrier
ability [55], as liquid crystal assembled structures [56–59], hydrogel-based templates [60],
aerogels [61–63], and inks [64–66], and the ability to provide Pickering emulsion capabil-
ity [67–78]. Moreover, additional modification such as the hydrophilization of cellulose-
based aerogels has piqued the interest of researchers due to its potential in oil/water
separations and organic pollutant entrapment [79]. It should be noted that several of the
studies given can be classified as belonging to the same category, for example, inks can
be classified as belonging to the hydrogel-based templates category. The list might be
expanded; nevertheless, this list will be enough to provide a comprehensive overview of
cellulose applications.

Moving on to the issue of microfluidics, which accounts for half of the current review’s
attention. Microfluidics is the science and technology of systems that are microscale
integrated channels through which small quantities of liquid may flow and during which
the flow and the material within can be controlled or altered in tandem [80,81]. The
history of microfluidics may be traced back to an attempt to perform miniature biochemical
analyses [82]. At the microfluidics scale, because the dimensions are small, the specific
effects are augmented, resulting in behaviour that differs from that of macroscopic fluids.
This causes viscous to inertial forces to become dominant [83], surface effects to become
significant, and mass and heat transfer to become efficient [84]. For instance, the size of the



Appl. Biosci. 2022, 1 3

particles being focused, a topic that will be covered later, is impacted heavily by inertial
forces [85]. This size dependency can be advantageous for biological sample cleanup since
smaller particles are sucked out, enhancing final sample purity, or minimizing bacterial
contamination [86].

The use of microfluidics simplifies the existence and varied interaction of several
phase fluids in a single “lab on chip” [87]. As a result of the characteristics listed, this
intriguing subject has led the way for multidisciplined study in the physical, biological,
chemical, and medical disciplines. In the production of nanoparticles, super control over
reaction kinetics [88], as well as tuning and modifying thermodynamic parameters, can
provide nanoparticles with customizable size and crystal structure. The efficient and
monodispersed state of particles improve when microparticles are synthesized as droplets
in a regulated and repeatable manner. Furthermore, by confining geometrically, tuning
certain physical and chemical processes, and adding appropriate ingredient, the particle
structure and composition may become extremely customizable. The investigations on
cellulose are an extension of the use of microfluidics.

Microfluidic devices can be used for causing the flow-induced orientation of cellulose,
as a mixing zone [89], for emulsification (can come under the category of mixing), as
a reactor such as acting as a glucose assay [90], and as an analytical tool, or cellulose
itself can be used to make a microfluidic device [91]. The microcapsule emulsification
approach includes mechanically shearing the system to generate a polydisperse mixture
of droplets from the mixing of oil and water. This droplet creation has received much
attention in recent decades since it allows for the generation of microparticles. Water-in-oil
droplet microfluidics is used to create consistent spherical CNC droplets in a nontoxic
and environmentally friendly manner. Following the evaporation of the water within the
droplets, the molecular cross-linking of surface modified CNCs is accelerated. On the
other hand, on a microfluidic chip, emulsification can occur through three broad designs
of co-flow, fluid-focused flow, or the T- or Y-junction meeting of multiple flows [89,92–95].
For instance, in Liu et al. [96], a simple and novel approach was used to effectively create
monodisperse ethyl cellulose hollow microcapsules. Microfluidic double emulsification and
solvent diffusion were used in this method. Microcapsules manufactured in an iso-osmotic
environment had a flawless spherical form and no collapse over time.

Microfluidic paper-based samples as another equally beneficial subclass of cellu-
lose and microfluidics have been employed as a potential bioanalysis platform technol-
ogy [97,98]. These devices are ideal for usage at the point of care and in low-resource
situations [99]. They were created by stacking many layers of patterned paper and connect-
ing them with paper channels. Most designs utilized 2D streams rather than 3D channels,
owing to the time-consuming manufacturing procedure of 3D designs. By folding patterned
paper into multilayered devices, the alignment of paper/tape sheets might be avoided. A
technique for creating 3D pathways in a single layer of cellulose paper is based on wax
printing [100]. At varying levels along the length of a substrate surface, interconnected
layers of paper channels are designed. This approach is also compatible with traditional
3D manufacturing processes. The guidance of liquid in these designs is purely based on
capillary forces; however, there are processes such as magnetophoretic [101], electrophore-
sis [102], and acoustophoresis [103] that affect the design of microfluidics by providing
an additional source of manipulation; however, we are not going into the details of them.
However, we have used publications that use these technologies to further advance, for
example, cellulose orientation in microfluidics [94,104,105].

In this comprehensive analysis, we want to combine and present an overview of
two areas, namely microfluidics and cellulose, which are utilized in tandem to develop
complicated cellulose-based products. We will utilize examples from the literature to
demonstrate the ability of microfluidics in characterizing, sculpting, and changing the
attributes of cellulose-based products. In this study, we looked at the literature to see how
cellulose in various shapes and forms has been utilized in conjunction with microfluidic
chips, whether as a component of the chips, being processed by a chip, or providing
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characterization via chips. There are two primary categories that have been sought after
in this review paper: cellulose or cellulose-based items being flown into a microfluidic
device within the criteria we established previously, or cellulose itself being employed as a
building block in the production of a microfluidic device. This research will help to open
up another large chapter on cellulose, in which cellulose design and development will
become more enhanced.

2. Cellulose and Microfluidics
2.1. Design of Cellulose with Microfluidics

In the literature, microfluidic technology has been employed to enhance the fabrication
of cellulose-based parts. Figure 1 shows how microfluidics may be used to generate distinct
shapes in cellulose products.
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Figure 1. Cellulose shape formation using flow modulation of microfluidics [106–109]. (a) CNC–CNF
joint orientation along channels of a microfluidic chip for particle production with optimized qualities.
Adapted with permission from Ref. [109]. Copyright 2018 Wiley-VCH. (b) The assembly process
of regenerated silk fibroin (RSF) fibrils suspended in RSF/CNF passing via a microfluidic channel
is depicted. RSF and CNF are distributed; the majority of RSF molecules are in random-coil form.
Adapted with permission from Ref. [106]. Copyright 2019 American Chemical Society. (c) The
nanofibrils are focused in the channels, and a gelation agent (NaCl) is injected along the route to help
the cellulose rods stay in place as they exit the channel. Adapted from Ref. [108]. (d) Microfluidics-
based microparticle manufacturing with customizable final sizes. The setup for the experiment is
shown at the bottom. Adapted from Ref. [107].

To create strong fibres from CNF and CNC, a continuous wet spinning technique
based on microfluidic flow focusing has been devised. For the first time, fibres with an
average breaking tenacity of 29.5 centi Newton per tex have been recorded. CNCs are an
appealing building element for producing lightweight yet robust and flexible textiles due to
their high strength and modulus. When CNCs are added to CNFs alone, the concentration
of dope can be increased by 4 to 5 times [109] (See Figure 1a).

In Lu et al. [106], cellulose hydrogel was utilized to create a microfluidic device using a
3D printer. Indeed, silk fibroin and CNF hybrid fibres were dry-spun via a microfluidic chip
that resembled the structure of a spider’s main ampullate gland in this work [106]. Many
researchers have used nano-scale innovations, such as the use of titanium dioxide [110],
graphene oxide [111], carbon nanotubes [112], and CNC, to improve the mechanical quali-
ties of artificial silk. The authors’ research in Lu et al. [106] revealed that CNF may easily be
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used to enhance the mechanical properties of silk fibres. Stress at break of RSF/CNF with
0.1 wt% CNF was determined to be about 485± 106 MPa, representing a 58 percent increase
over RSF fibres spun from silkworm (maximum recorder was 686 MPa). The method of
integration of the two ingredients is depicted in Figure 1b. Spider silks have amazing
mechanical qualities; hence, one of the areas of research in the field of biomimetic fibres has
been the construction of high-performance artificial silk fibres as waveguides [113]. Strong
fibres such as the one introduced here might be useful in biological media, bio-photonics,
and central nervous system interfaces [114]. Similarly, in other refs., the direction and
alignment of silk-spinning through microfluidic chips have been optimized through flow
analysis [115–117]. This finding sets the path for further research into the demystification of
the enigma of the natural spinning process. It offers a complete and methodical look at the
process of creating highly oriented artificial fibres for biological applications [118]. In the
development, regeneration and characterization of a blended system combining Bombyx
Mori silk fibroin protein and cellulose acetate, a cellulose derivative, silk may be mixed with
cellulose derivatives [119]. Many studies on the combination of silk and cellulose acetate
for filament/fibre manufacturing may be found in the literature [106,114,118,120–128].

CNF, which has a lot of potential as a building component for biobased products,
might need to have hydrodynamic alignment (alignment due to fluid-induced orientation)
and a dispersion–gel transition involved in its process. Gelation can occur due to the
introduction of NaCl, a coagulant that acts as a charge screener [2]. Knowing these two
concepts, alignment and gradual gelation, led the author to design the microfluidic channel
in Figure 1c. Based on mechanical examination, the filaments generated were shown to
be more durable and stiffer than the precursor material, CNF, and equivalent CNF-based
polymer nanocomposites in the literature [2]. The generated fibres are equally as tough
and strong as cellulose pulp fibres when equal fibril orientation is used. Figure 1c depicts
the assembly process for the design of this durable fiber. The cross section of the fibres is
also represented as a diffractogram. The orientation of fibres as a function of residence time
and shearing in the microfluidic channel was employed in all three studies listed above. It
would have been ideal to assess the level of orientation using the plot introduced by Pignon
et al. [129]; small-angle light scattering and small-angle X-ray scattering were used in this
experiment. Cluster breakup may also be studied using a confocal setup because gelation
is involved. Furthermore, utilizing rheology and theoretical models, the Folgar–Tucker
orientation of fibres along the boundaries of the microfluidic setup and at the centre may
be determined [29].

By merging microfluidic and flash-freezing methods [107], porous cellulose acetate
microspheres with variable particle sizes and pore characteristics were effectively manufac-
tured. These particles exhibited a large specific surface area and good adsorption properties.
The diameter of the microspheres may be precisely adjusted by modifying the microfluidic
settings. For oil, the developed porous structures were able to adsorb up to 30 times their
weight, while for Congo red, they were able to adsorb up to 23.9 mg·g−1. A pictograph
of the procedure is shown in Figure 1d. The setup for the experiment is also shown at the
bottom. Staying on the subject of using the microsphere as a way of extraction/separation,
paclitaxel, one of the natural anticancer drugs that can be isolated from the bark of pacific
yew tree, was recognized, and separated in Wu et al. [130] using a sophisticated design of
microspheres [130]. These examples demonstrate how microfluidics may be used to design
structures that are entirely adjustable and suited for specific applications such as separation.

The highlights of recent research utilizing microfluidics in the development of cellulose-
based goods are shown in Table 1.
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Table 1. Presentation of research involving microfluidics in the creation of cellulose-based goods, as
well as their highlights.

Study Application Highlight

Baek and Park [89]
Creation of uniformly
sized porous cellulose

beads

The creation of the cell/N-methyl morpholine
N-oxide droplet in the ethylene glycol solution
in the T-junction microfluidic chip could not be
observed in situ using an optical microscope.

As a model study, the form of a cellulose bead
after coagulation was explored.

Pepicelli et al. [131]

Creation of
cellulose-based
biodegradable
microcapsules.

Gluconacetobacter xylinus may live and flourish
in a variety of environments. Cellulose is a

major constituent of these self-secreted
protective coatings (made with

Gluconacetobacter xylinus). The results achieved
mark the first step toward the fabrication of
self-assembled degradable cellulose capsule.

Duong et al. [132]

Cellulose fiber
membrane was

sandwiched between
two silicone elastomer
poly(dimethylsiloxane)

(PDMS) layers to
mimic BBB

In vitro, a microfluidic system was created to
replicate the human blood–brain barrier (BBB).

BBB formation was assessed using cell
survival, actin filament (F-actin) formation,

and transepithelial electrical resistance (TEER).
Overall, the model showed a simple to

duplicate and low-cost framework for in vitro
drug test.

Jayapiriya and Goel
[133]

Creation of
paper-based energy
harvesting device

Using E. coli as the biocatalyst, a paper fuel cell
can generate 11.8 W·cm−2 of electricity. Fuel

cell construction that is both cost-effective and
thrifty can be utilized to power a wide range of

low-power point-of-care devices.

Sharratt et al. [134] Creation of hydrogel
microparticles

Hydrogel microparticles (HMPs) have a wide
range of practical uses, from medication

delivery to tissue development. The kinetics of
gelation fronts are initially determined using

1D microfluidic studies. The effective diffusive
coefficients rise with Fe3+ content and drop

with NaCMC concentration.

Chen et al. [135] Creation of core–shell
microparticles

Polysaccharides have been shown to be useful
in medication encapsulation and delivery.

Authors offered a multicompartment
polysaccharide core–shell microparticle that

may be used to build a long-lasting
dual-release system of active molecules for

wound healing. Microparticles reduced
inflammation while also promoting

granulation tissue development, collagen
deposition, and angiogenesis.

Liu et al. [96]

Creation of
monodisperse ethyl

cellulose (EC) hollow
microcapsules

A simple and new approach is used to
effectively create monodisperse ethyl cellulose

hollow microcapsules. Microfluidic double
emulsification and solvent diffusion are used
in this method. Microcapsules manufactured

in an iso-osmotic environment have a flawless
spherical form and no collapse.
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Table 1. Cont.

Study Application Highlight

Li et al. [136]
Using bacterial

cellulose for wound
healing

Bacterial cellulose is a type of nano-biomaterial
that may be used in tissue engineering. It is

unknown how bacterial cellulose’s nanoscale
structure impacts skin wound healing. The
lower portion of bacterial cellulose film can

encourage cell migration to aid in
wound healing.

Zhao et al. [137]
Creation of

cellulose-based flexible
electronics

Cellulose is a natural biopolymer with several
benefits such as low cost, ease of processing,
and degradability. It is extensively used in
flexible electronics as a substrate, dielectric

material, gel electrolyte, and derived
carbon-made material.

Mahapatra et al.
[138]

Creation of
cellulose-based
sensing devices

For its unique features, including
biocompatibility, cellulose has the potential to

be used in the creation of cytosensors, and
organisms in a variety of materials.

Del Giudice et al.
[139]

Assessing
morphological

structure of
hydroxyethyl cellulose

with microfluidics

Non-modified hydroxyethyl cellulose acts as a
linear uncharged polymer when dissolved in

water, with an entangled mass concentration of
0.3 wt%. For the first time, authors presented
the concentrations scaling for hydroxy ethyl

cellulose solutions with the longest
relaxation period.

Zeng et al. [140]
CNFs produced by

microfluidic
homogenization

The purpose of this research was to investigate
and compare the shape and rheology of

cellulose nanofibrils derived from bleached
softwood kraft pulp. CNFs had the greatest

viscous, bulk modulus, and loss modulus, as
well as the largest aspect ratio.

Wang et al. [141]

Creation of uniform
size CNCs via
microfluidic
technology

CNC is a novel form of molecular substance
derived from biomass. CNCs with a good

dividend and consistency were achieved by
hydrolysis process in a microfluidic system
using a 60% sulfuric acid solution at 35 ◦C

for 40 min.

Lari et al. [93]

Creation of
poly(ε-caprolactone)
and cellulose acetate

nanoparticles

The purpose of this study was to compare two
types of microfluidic-assisted nanoparticles

(NPs) based on poly(-caprolactone) (PCL) and
cellulose acetate (CA). It was discovered that
CA NPs had a smaller average diameter (37
nm) and a lower polydispersity index (PDI)

(0.035) than PCL NPs.

Carrick et al. [142] Creation of cellulose
capsules

For medication delivery or controlled release
capsules, cellulose capsules with a limited size
distribution might be advantageous. Capsules

were carboxymethylated to make them pH
responsive and to expand roughly 10% when

the pH was changed from 3 to 10.
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Table 1. Cont.

Study Application Highlight

Pei et al. [143]
Cross-linked cellulose
hydrogel was used for

making a chip

To create cellulose–collagen hybrid hydrogels,
collagen, a critical extracellular component for
cell culture, was cross-linked in the cellulose

hydrogel. Researchers revealed that they have
excellent structural reproduction ability,

physical qualities, and cell culture
cytocompatibility.

Zhang et al. [144]

Creation of a
technology for
adsorption and

isolation of nucleic
acids on cellulose
magnetic beads

The use of a 3D-printed microfluidic chip
enables the extraction of nucleic acids without
the need of vortexes or centrifuges. Magnetic,

interfacial, and viscous drag forces are
described inside the chip’s microgeometries.
Across a variety of HPV plasmid levels, an

overall extraction efficiency of 61% is reported.

Wenzlik et al. [145]

In a microfluidic
setting, cholesteric

particles were made
from cellulose

derivatives

Co-flowing injection of drops of liquid
crystalline mixes of cellulose derivatives into
microspheres on the micrometre scale is used

in the process.

Miyashita et al. [146]

The diamagnetic
director for

microfluidic systems is
made up of

microcrystal-like
cellulose fibrils

Cellulose is a potential material for the
development of biogenic optical systems that

imitate the unique optical capabilities of living
creatures. In a microfluidic laboratory,

magnetic orientation tests on microcrystalline
cellulose were performed. During the

dispersed light intensity process, light intensity
altered depending on the direction of the

magnetic field.

Chen et al. [147]

A multilayer
microfluidic device

with a PDMS–cellulose
composite film was

developed

This paper describes an integrated multilayer
microfluidic system that can pre-treat raw

samples and detect them using immunoassays.
Using the crossflow concept, a

polydimethylsiloxane (PDMS)-cellulose
composite film was employed to extract

plasma from raw samples.

Włodarczyk and
Zarzycki [148]

On silica and cellulose
micro-TLC plates, the

chromatographic
behaviour of chosen
colours was studied

The chromatographic behaviour of 18
colourants, including amaranth, black PN,
bromophenol blue, and bromocresol green,

was investigated. Data were gathered using
silica and cellulose-coated microplates under

thermostatic settings (303 K). Dyes are
frequently utilized as colourants in food and

industry, as well as sensing compounds in
analytical and medicinal purposes.

Ghorbani et al. [149]
Creation of CNF-

stabilized perfluoro
droplets

In a variety of applications, hydrodynamic
cavitation on microchips has been emphasised.

Cavitating flow patterns may be used to
promote a wide range of industrial and

technical applications. Inside microfluidic
devices, a novel technique involving cellulose
nanocomposites perfluoro droplets was tested.
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Table 1. Cont.

Study Application Highlight

Park et al. [150]

Wet-spun
microcomposite

filaments were made
with cellulose

To make microfilaments, cellulose nanocrystals
were wet spun in a coagulation bath. The

influence of sodium alginate on the
characteristics of the micro composite filament

was studied. The higher spinning rate of
sodium alginate generated a rise in the
alignment index of CNCs, leading to an

improvement in the material’s tensile
characteristics.

Grate et al. [151]
Creation of Alexa

Fluor-labeled
fluorescent CNCs

A group of researchers discovered a
mechanism to attach Alexa Fluor dyes to

cellulose nanocrystals while preserving the
nanocrystal’s overall structure. Bioimaging
tests revealed that the spatial positioning of

solid cellulose deposits could be detected and
their elimination over time under the action of
Celluclast® enzymes or microorganisms could

be monitored.

Ke et al. [152]

Microgels made from
carboxymethyl
cellulose for cell
encapsulation

Carboxy methyl cellulose was modified with
4-hydroxybenzylamine (CMC-Ph) to create

carboxy methyl cellulose-based microgels for
use in scaffolds. The ATDC5 chondrocytic cell
line was grown for up to 40 days after being

encased in carboxy methyl cellulose microgels.

Rao et al. [153]
Creation of

microfluidic paper fuel
cell

MMPFCs (Membraneless Microfluidic Paper
Fuel Cells) are promising technologies for
harvesting energy for a variety of portable

applications. Because of the built-in co-laminar
flow and integrated capillary, the devices

remove the need for membranes and
additional pumps.

Shen et al. [154]
Creation of

paper-based
microfluidic fuel cells

Microfluidic fuel cells made of paper are
emerging as possible renewable energy sources
for small-scale electronic systems. The textural

qualities of the paper channels have a
considerable impact on the performance of

paper fuel cells. The use of paper with a bigger
mean pore width may result in a greater peak

power density and open circuit voltage.

Shefa et al. [155]

A method of
incorporation of

curcumin (Cur) into a
hydrogel system based

on cellulose was
developed

A freeze–thaw technique was used to create a
Cur including physically crosslinked

TEMPO-oxidized CNC–polyvinyl–alcohol
curcumin– hydrogel, that produced curcumin
to speed wound healing. L929 fibroblast cells

incorporated curcumin within 4 h of
incubation, according to in vitro experiments.

Chen et al. [156]

Separation of
glycoproteins was

achieved using
bacterial cellulose

microfluidic column

A simple technique was used to produce a
regenerated bacterial cellulose column

containing concanavalin A (Con A) lectin
immobilised in a microfluidic device to

evaluate and separate glycoproteins.
Schiff-base formation was used to covalently
link lectin Con A to the RBC matrix surface.

Table 1 displays a presentation of research involving microfluidics in the creation
of cellulose-based goods, as well as their highlights. As a recap of Table 1, a study of
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silk-spinning through microfluidic chips has uncovered the secrets of the natural spinning
process [114], a study easily extendable to cellulose. Paper as a substrate aids in reducing
existing stiff wastes and inevitable pollution [90]. Polysaccharides have been shown to
be useful in medication encapsulation and delivery. Using E. coli as a biocatalyst, a paper
fuel cell can generate 11.8 W·cm−2 of electricity using paper cells [133]. Membrane-less
Microfluidic Paper Fuel Cells are promising technologies for harvesting energy. H2O2 is
used as both fuel and oxidant in a paper-based microfluidic fuel cell for portable electronics.
The fuel cell does not require precious-metal catalysts, and the fuel utilized is carbon free
and environmentally friendly [157], with a peak energy capacity of 0.88 mW·cm−2.

A 3D-printed microfluidic chip allows for nucleic acid extraction without the need of
vortexes or centrifuges [158]. Inside the chip’s microgeometries, magnetic, interfacial, and
viscous drag forces are defined. Cavitating flow patterns have the potential to be utilized
to promote a wide range of industrial and technological applications. In a coagulation bath,
cellulose nanocrystals were wet spun [150]. The effect of sodium alginate on the properties
of the micro composite filament was investigated. Bioimaging experiments demonstrated
that solid cellulose deposits may be recognized in their spatial location [151].

2.2. Cellulose as a Microfluidic Building Block

We offered a generalization on the issue of microfluidics and cellulose in the preceding
section. The use of cellulose as a microfluidics building component will be discussed
here. Paper, elastomer, thermosets, silicon/glass, thermoplastics, and hydrogels are some
of the materials that may be used to make microfluidics chips [159]. Here, we focus on
paper-based microfluidics.

Paper-based microfluidics, often known as “lab on paper,” is a revolutionary fluid
management and analysis technology. The system is said to be low-cost, simple to use,
disposable, and requires no equipment. Indeed, paper is an appealing substrate for these
devices since it is omnipresent, ubiquitous, and incredibly inexpensive. As a result, the
material is also compatible with a wide range of additional chemical, biomedical, biomedi-
cal, biochemical, and medicinal applications. It transfers liquid through capillary forces
without the help of any external forces. Microfluidic paper-based analytical devices, for
example, may be utilized to measure the concentration of various analytes in a solution
while also serving as an excellent platform for point-of-care diagnostics (dubbed as POC).
Furthermore, it has found use in water quality analysis, as water pollution is harmful to
human health. In Chen et al. [160], a layered multilayer electrostatic printing approach
for manufacturing nanofiber-based microfluidic chips for water quality analysis was cre-
ated. Devices provide easy fabrication techniques, flexible prototyping, mass production
possibilities, and multi-material integration.

As stated earlier, cellulose is a plentiful natural solid carbohydrate biopolymer that
is vital to the biosphere and plays an important role in the global carbon budget [161].
The use of cellulose-derived nanoparticles for cell imaging, material science, sensors, and
other medical applications is gaining popularity [161]. One application for cellulose is
as a component in the manufacture of microfluidic chips. Overall, few procedures for
developing microfluidic devices, photolithography [162–164], plotting using a plotter [165],
etching [166–168], plasma [169], cutting [170,171] and wax printing [172–174], flexography
printing [175], screen printing [176], and laser treatment [177] have been documented. These
approaches can be utilized to make microfluidic devices; to classify them, photolithography,
etching, spraying, screen printing, and dipping wax are examples of indirect patterning
processes, whereas wax priming, plotting, flexography, writing, stamping, and inkjet
printing are examples of direct patterning methods.

Figure 2 shows the technology involved in patterning a PAD, including 3D printing,
wax printing, flexography printing, cutting, photolithography, and plotting.
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Figure 2. Methods of patterning a PAD [178–182]: (a) 3D printing; Adapted from Ref. [178]. (b) wax
printing, Adapted from Ref. [179]. (c) flexography printing; Adapted with permission from Ref. [181].
Copyright 2019 Elsevier. (d) cutting; Adapted with permission from Ref. [180]. Copyright 2015
Wiley-VCH. (e) photo-lithography; Adapted with permission from Ref. [180]. Copyright 2015 Wiley-
VCH. (f) plotting; Adapted with permission from Ref. [182]. Copyright 2016 Springer-Verlag. These
strategies are described in detail in the main text.

To explain some of the methods briefly: Wax printing uses a basic printer to design
wax on paper, after which the wax is melted to produce channels. This process is quick but
offers limited resolution due to the isotropy of melted wax [173]. A wax layer creates the
hydrophobic boundaries that are needed to guide the flow of a hydrophilic liquid. Inkjet
printing involves coating paper with a hydrophobic polymer and then applying an ink
that selectively etches the polymer to allow the paper to emerge [180]. Photolithography
is comparable to inkjet printing in that etching is accomplished using a photomask and
a photoresist polymer [164]. Using a hydrophilizing agents such as fluorocarbon plasma
polymerization, the paper first becomes hydrophobic, and then oxygen plasma etching is
used to form hydrophilic patterns onto the paper [183]. In flexographic printing, the process
involves the usage of conventional graphic printing, functional inks, and a substrate such as
paper. Flexography, inkjet printing, wax printing, and 3D printing all have striking parallels
in this regard. Filling the vacuum with a hydrophobic substance, such as a solid melted at
a certain temperature or a hydrophobic polymer immersed in an organic solvent, is another
approach for creating hydrophilic structures on paper. These materials may easily penetrate
the porous network in their liquid state and form a barrier once solidified. For applications
that demand portable yet small fluid handling, microfluidics parts made by 3D printing
with paper as part of the operation is of great use. A 3D printer can also be used to produce
hybrid channels. This technology is inexpensive and suited for household usage because it
offers accurate fluid handling abilities, functionality (versatile), and user-friendliness [178].
A depiction of 3D-printed microfluidics is shown in Figure 2a. Some examples of other
methods mentioned earlier are also depicted in Figure 2b–f.

Aside from selecting a good technique for microfluidic paper-based manufacturing, it
is also critical to pick a material that can go through the process. Cellulose and cellulose
derivatives are suitable materials for 3D printing; nevertheless, finding strong cellulose
solvents is crucial for their efficient use because cellulose cannot be melted (processed).
However, due to strong hydrogen bonding, cellulose is also insoluble in water and other
organic solvents. Only a few effective solvent systems capable of dissolving cellulose
have been discovered thus far. As a result, researchers discovered functionalization pro-



Appl. Biosci. 2022, 1 12

cesses such as xanthation [184], esterification [185], and etherification [186] on the cellulose
hydroxyl group as a method of disrupting hydrogen bonds and breaking cellulose’s tenac-
ity to dissolve. However, non-derivatizing solvents such as ionic liquid [187] can also
dissolve cellulose without requiring chemical changes, which is advantageous in many
instances [188].

The most significant cellulose derivatives are cellulose ethers and esters [186]. These
are found in a variety of goods, including thickeners, binders [189], emulsifiers, coatings,
and membranes. The esterification of cellulose allows for the transformation of cellulose
into different forms [190]. Cellulose ethers are plentiful, low-cost, environmentally friendly
compounds with exceptional characteristics. They have several uses in food, medicines,
cosmetics, and other commercial items. They are also commonly employed in 3D print-
ing, where they serve several purposes [191,192]. The properties of ink are vital in 3D
printing; specifically, 3D printing ink requires a well-regulated viscoelastic response (such
as high viscosity and shear thinning behaviour) [193]. The shear thinning properties of
polymer solutions are frequently used to achieve this objective [194,195]. These expected
rheological behaviours can be obtained using cellulose ethers. Cellulose ether has been
used to change the viscosity of a variety of industrial products [196]. However, when
an external force is applied, the mixing energy will break the hydrogen bonds between
the cellulose chains, causing the chain to align in the low direction, as seen by the shear
thinning of the pseudoplastic behaviour [197]. The qualities of cellulose ether solution
are thus sought since they are low at greater shear rates and high when the flow is halted.
Furthermore, these materials are thixotropic [191], which is advantageous for becoming
an ink since it necessitates the rehabilitation of the structure following fracture via the
nozzle. Table 2 contains a substantial amount of the literature devoted to the development
of cellulose-based microfluidic devices that can showcase the objective behind developing
such systems.

Table 2. Presentation of research in which cellulose was employed as a chip-building material.

Study Highlights

Lin et al. [198]

Three-dimensional microfluidic paper-based analytical devices
(3D-µPADs) are a potential platform technology that enables for

complicated fluid manipulation, parallel sample distribution, high
throughput, and multiplex analysis assays. This technology can

regulate the penetration depth of melted wax printed on both sides
of a paper substrate, resulting in multilayer patterned channels in

the substrate.

Martinez et al. [199]

A novel family of point-of-care diagnostic devices is PADs. They
are affordable, simple to operate, and particularly developed for
usage in poor nations. When completely developed, they may

deliver faster and less expensive bioanalyses.

Yamada et al. [200]

On microfluidic PADs, “distance-based” detection patterns provide
quantitative analysis without the need of signal output tools.

Quantitative analysis is enabled by the distance-based quantified
signal and the strong batch-to-batch production repeatability based

on printing processes.

Li and Liu [201]

A wax-printing process is used to create 3D microfluidic channels
inside a single sheet of cellulose paper. It enabled the production of

up to four layers of paper channels in a 315-micrometer-thick
substrate surface without the need for process optimization.

Ardalan et al. [202]

The smart wearable sweat patch (SWSP) is a non-invasive and in
situ multi-sensing sweat biomarkers sensor that measures glucose,

lactate, pH, chloride, and volume. A smartphone app was also
created to use a detection algorithm to estimate the quantity

of biomarkers.
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Table 2. Cont.

Study Highlights

Arun et al. [203]

The capillary-driven fluid flow of a combination of fuel and
electrolyte drives the capillary-driven fluid flow of a microfluidic

fuel cell. Various pencils are used to produce the graphite
electrodes to study their influence on fuel cell performance. To

improve performance, the paper fuel cell was also manufactured in
different diameters and coupled as cell stacks.

Yan et al. [157]

H2O2 is used as both fuel and oxidant in a paper-based microfluidic
fuel cell for portable electronics. It does have a peak energy capacity

of 0.88 mW·cm−2. The fuel cell does not require precious-metal
catalysts, and the fuel utilized is carbon free and

environmentally friendly.

del Torno-de Román et al.
[204]

The power and output current of a paper-based enzyme
glucose/O2 fuel cell can be enhanced by adopting a quasi-steady
flow. The fuel cell’s anode and cathode are composed of display
carbon electrodes that have been correctly functionalized with

protease inks.

Jia et al. [205]

Because of its hydrophilic properties, cellulose paper has been
widely employed in microfluidic devices. Cellulose is placed in
paper at random, with no specific direction or pathways. White

wood possesses natural microchannels as well as a quick and
anisotropic liquid and big solid particle movement.

Cai et al. [90]

By silanizing filter cellulose using a paper mask, authors created a
new, low-cost, and straightforward approach for fabricating PADs.

This procedure requires no expensive equipment and may be
carried out by inexperienced persons.

Murase et al. [206]

Cellulose nanofiber can be utilized as a component in PADs. The
thixotropic characteristic of TEMPO-oxidized CNCs aqueous

dispersion allowed for inkjet printability, which aided
manufacturing.

Kumar et al. [207]

Cancer diagnostics are not currently prioritised in resource-limited
settings. However, budget-friendly and targeted screening test and

diagnostic tools are in great need. Multi-layer cellulose
nanofibril-based coverings on expendable microfluidics were tuned

for targeted capture and efficient release of target cells.

Choi et al. [208]

The microfluidic cellulose microfibre chip was prototyped by
injecting 10 percent CM solutions onto CNC-milled substrates. It

can identify exudative age-related macular degeneration in human
aqueous sense organs.

Fu and Liu [209]

PADs are typically mounted on a cellulose paper substrate.
Covalent bonds with the target biomolecule can be achieved by
modifying chemicals. The optimum performance for biosensing
applications comes from potassium periodate (KIO4)-modified

cellulose paper.

Lu et al. [114]

Spider silks have amazing mechanical qualities; hence, one of the
areas of research in biomimetic fibres was the construction of

structures with high silk fibres as optical waveguides. The fibres
might be useful in biological media, bio photonics, and central

nervous system interfaces.

Bao et al. [210]

Transistors built of van der Waals materials are allowed by an
all-cellulose paper with CNF on the upper surface, which results in
outstanding surface roughness and electrolyte absorption. These
planar transistors can be employed as sensors in PADs, together

with other components.
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Table 2. Cont.

Study Highlights

Yadav et al. [211]

Microfluidics has the potential to revolutionise point-of-care
detection in smart healthcare. Paper as a substrate aids in reducing
existing stiff wastes and inevitable pollution. Flexible microfluidic
technology hardcopy provides a low-cost technical foundation for

next-generation intelligent sensors.

Solin et al. [212]

Point-of-care diagnosis can benefit from microfluidic technologies.
Authors looked at the fluidic structure due to stencil painting on

flexible surfaces. Combining minerals with cellulose fibrils resulted
in optimal printability and flow profiles. The findings demonstrate

the use of these pathways for drug and chemical analysis.

As a recap of Table 2, PADs have been developed for sub-microliter surface area/volume
analysis. The wax-printing technology that was previously used to design paper substrates
has been improved to make high-resolution designs patterned in filter paper. In recent
years, paper-based microfluidics used for analytical purposes, also known as PADs, have
attracted a lot of interest for carrying out a variety of traditional analytical activities.
PADs’ appealing characteristics are mostly due to them being made of paper (cellulose),
which is inexpensive, readily disposable, and environmentally benign. Three-dimensional
paper-based microfluidics with three layer channels made from a paper-made substrate
demonstrates the enzymatic detection of biomarkers such as glucose, lactate and uric
acid [201]. According to the ISI Web of Knowledge data collection, the market for these
types of devices has been steadily growing, as seen by 942 publications published under the
title microfluidic paper-based between the years 2018 and 2022. Clearly, the trend indicates
the future growth of PADs.

Figure 3 depicts a brief overview of the use of cellulose in the creation of microfluidic
chips of varying scale, size, shape, and design. The technique of transport depends
on hydrophilic cellulose or nitrocellulose fibres to transfer liquid from an input guided
through a porous medium via capillary action. The benefit of paper-based microfluidics
is their passively controlled activity, which distinguishes them from more sophisticated
microfluidic designs. The following regions are found in paper-based devices: an inlet in a
substrate that is commonly constructed of cellulose where liquid is manually dispersed, a
channel in which a hydrophilic network controls liquid transport, and a flow amplifier in
which flow velocity is impacted to impart a controlled velocity to flowing liquid. A flow
resistor is a capillary element that imparts a lowered flow velocity to control residence time,
a barrier is a wall that prevents liquid from penetrating out of the channels, and an outlet
is a location where a chemical or biological reaction occurs. For instance, in Figure 3a,c,
the µPAD is divided into three parts: sensing, substrate, and water addition. The distance
between the regions of addition of water and substrate was designed to be 12 mm, while
the area of sensing was estimated to be 11 mm.

Analytical application of µPAD are in, mass spectrometry [213,214] separation meth-
ods [215], flow control [216–218], electronic integration [219] physical integration [220],
chemical integration [221], paper-based microfluidics for diagnostics [199], use of paper
microfluidics in blood grouping [222], glucose detection [223], 3D devices for glucose
detection [224] and environmental and food safety tests [225].
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Figure 3. (a) Photolithographic devices for measuring glucose and protein. Adapted with permission
from Ref. [199]. Copyright 2010 American Chemical Society. (b) As a supporting material embedding
for the microchannels, cellulose nanofibrils hydrogel, a 3D structuring ultrathin film, was employed.
Adapted with permission from Ref. [266]. Copyright 2017 American Chemical Society. (c) The µPAD
is divided into three parts: sensing (6.5 mm diameter), substrate (6.5 mm diameter), and water
addition (11 mm diameter). The distance between the regions of addition of water and substrate
was calculated to be 12 mm, while the area of sensing was estimated to be 11 mm. Adapted with
permission from Ref. [206]. Copyright 2018 American Chemical Society. (d) Scanning electron
microscopy (SEM) photos of white wood microchannels are shown, as well as high magnification
SEM photographs of individual microchannels, to demonstrate the presence of pits with an average
diameter of 2.5 µm in addition to obstructed mass transmission that these designs can offer. Adapted
with permissions from Ref. [205]. Copyright 2018 American Chemical Society.

A novel family of point-of-care diagnostic devices is PADs. They are affordable,
simple to operate, and particularly developed for usage in poor nations. When completely
developed, they have the potential to produce bioanalyses that are faster, less costly,
and highly multiplexed. PADs are a viable starting point for innovative solutions to
the challenge of health-relevant tests in emerging nations. When completely built, we
expect they will give a platform with a number of novel bioanalysis capabilities. They
may also find use in farming, water, food, and other industries where they might help us
comprehend how these compounds act [227]. An example of such inexpensive design is
depicted in Figure 3a. As a test, authors employed a chemical process to create blue indigo
by enzymatic hydrolysis.

Another method for creating a microfluidic chip using cellulose is 3D printing. Com-
pared with ink, the matrix, a vital component responsible for maintaining the integrity
of the material while being printed, has received less attention throughout the years. Ink
refers to the substance that fills the matrix and is afterwards sucked out. The present
primary challenge in 3D printing is the inability of the matrix after injection to retain its
bulk structure. After ensuring that the design of the printed structure is sound, ink is
sucked out to build the microchannels. Abbasi Moud et al. [31] employed a fluorescence
after photo bleaching approach to monitor the healing of 3D-printed objects non-invasively.
Cellulose is a plentiful resource on Earth, and cellulose nanofibrils, as a component of
the cellulose domain, have been studied from a variety of perspectives in recent decades.
Cellulose nanofibrils have been reported to be used to adjust the viscosity of inks (flow
improver), as directional deformation structures, or as material padding for 3D printing;
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however, they have seldom been employed as a platform for the fabrication of a microflu-
idic device. CNF was employed as a hydrogel in the reference [226] and was 3D printed
to create the microfluidic gadget. Figure 3b depicts the printed microfluidic chip, which
is particularly adaptable in terms of pressure retention and can be readily printed. The
cellulose nanofibrils matrix was injected which generated thin structures made of cellulose
nanofibrils after the ideal selection of the rheological properties of cellulose nanofibrils and
a petroleum ink. The inks were then readily removed to render the inside of the structure
hollow. CNF-made microfluidic chips address fundamental challenges in PDMS-based
microfluidic devices, such as flexibility and compactness.

CNF can be utilized as a component in the fabrication of PADs. The thixotropic charac-
teristic of TEMPO-oxidized CNF aqueous dispersion allowed for inkjet printability, which
aided manufacturing. It is proposed in Figure 3c that TEMPO-oxidized CNF can be used
as a module of PADs due to features such as being an oxygen barrier in dry state (storage
of unstable substance due to not allowing oxygen influx in), ability to exchange molecules
while swollen with water (reaction site for biochemicals), and ability to immobilize en-
zymes (providing fixation to the sensing area); furthermore, because these materials may
be inkjet printed, the manufacturing process is hygienic. Figure 3c depicts a schematic of
the ultimate result of these devices [206].

Because of its hydrophilic properties, cellulose paper has been widely employed in
microfluidic devices. Cellulose is placed in paper at random, with no specific direction or
pathways. White wood possesses natural microchannels as well as a quick and anisotropic
liquid and big solid particle movement. A simple one-step delignification method yielded
an anisotropic highly porous microfluidic framework (white wood) from wood material.
Without the help of an additional pump, white wood can easily convey huge solid particles.
It has the potential to significantly broaden the variety of natural wood uses for biological
purposes. Figure 3d illustrates a construction created as a wood framework for material
delivery. For instance, carbon nanotubes ink in white wood exhibits anisotropic transport
characteristics. Under capillary forces, carbon nanotubes ink carried by liquid can travel
upwards on the channels. The greatest transfer distance of 17.5 mm was reached at 150 s
and 4.8 mm in the first second. As the lignin in the wood is removed, it is referred to as
white wood.

2.3. Advanced Integration of Cellulose in Microfluidcs

We went through the process of showing how cellulose may be used as a building
block for microfluidics chips in the previous part; in this section, we will expand on that to
include more complicated design. The layer-by-layer assembly comprises up to 5 layers of
CNF that are placed inside a microfluidic channel and are synthesized and characterized
with antibodies to trap probable cancer cells [207]. Cellulase enzymes were employed to
dissolve the CNF and release the collected cells in 30 min with a negligible influence on cell
viability. CNF is coated onto the channels of a microfluidic chip in Figure 4a. The impact
of increasing the thickness of CNF layers on surface density, moieties immobilisation,
enzymatic CNF release, and cell release is analyzed. As a side note, the dotted line denotes
the boundaries of the microchannels and changing the fluorescence strength indicates the
density of the layers. As you move from left to right, the intensity rises owing to denser
CNF covered fluorescently marked layers (going from 1 to 5 layers).
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Figure 4. (a) The effect of increasing CNF layers on surface density, moieties immobilization, enzy-
matic CNF release, and cell release. The dotted line represents the microchannel boundary. Chang-
ing the strength of the fluorescence reveals the density of the layers. The image shows a linear
CNF/bacterial cellulose packed with fluorescent particles. In the picture at the bottom, yellow and
blue liquids were injected independently. Adapted with permissions from Ref. [207]. Copyright 2020
Royal Society of Chemistry. (b) Under confocal lens for one week, oil cellulose-based microcapsules,
marked with magenta with tracer with sizes of 0.5 µm that can freely find room to diffuse inside.
Adapted with permissions from Ref. [92]. Copyright 2019 American Chemical Society. (c) The
interaction of two sides of a bacterial cellulose film on cells and tissue can modify their behaviour.
The findings of this study provide a new path for improving the wound healing efficiency of bacterial
cellulose material. Adapted from Ref. [228]. (d) Relying on microfluidic chips for analysis, a stacked
design (multilayered) electrostatic printing technology was perceived for producing CNF-based
microfluidic chip for detecting water quality. This idea might be used to create a colorimetric platform
that can quantitatively detect iron levels in water. Adapted from Ref. [160].

Microcapsules with regulated stability and porosity are in great demand for separating
and encapsulating applications. At an oil–water emulsion interface, the authors established
a bio-interfacial technique for producing robust yet elastic porous microcapsules from
bacterial cellulose [92]. Because of the compressive properties of the cellulose structure, the
capsules have a modest elastic modulus of roughly 100 Pa but remarkable robustness under
distortion. They have a porous outer wall and a nanofiber inner cytoskeleton, which affords
them the suppleness of red blood cells. Particle trajectories show dynamically diffusive
behaviour both within and outside the microspheres (see fluorescently tagged molecules
in Figure 4b floating around microsphere), but severely limited particle mobility inside
the microcapsule, where fibre density is at its maximum. The movement of colloid tracer
particles is measured by tracking their locations with picture frames [229].

Because G. xylinus metabolism is stimulated by oxygen, the creation of an air-medium
contact is crucial. The authors of [228] describe the 3D manufacture of bacterial cellulose
hydrogels using solid matrix-assisted 3D printing of an incubation medium. Because of its
hydrophobic nature and bio inertness, a round polytetrafluoroethylene (PTFE) microparticle
was considered as the most suitable for the solid matrix. PTFE microparticles and CNF
hydrogels were used to create ink containing active microorganisms. Filling the needle path
with contiguous matrix particles allowed for rapid matrix recovery, which was important
to avoiding vertical misprinting. The exterior of the 3D-printed hydrogel facing the solid
substrate had greater oxygen levels, whereas the interior of the printed structures had lower
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amounts. The variation in oxygen levels led to heterogeneity in the biosynthesis of bacterial
cellulose, allowing the fabrication of a tubular structure of bacterial cellulose. Finally,
a microfluidic vascular system of fibroblast cells was pushed through a CNF/bacterial
cellulose hollow chamber (tube) and was allowed to incubate and perform cell attachment
and proliferation (see Figure 4c). The cell grew at the inner wall and results were monitored
by SEM. It is therefore conceivable to develop a generic tool for the flexible 3D printing of
bio-organs and scaffolds [228].

Microfluidics devices have grown in prominence in recent years, with a wide range
of applications spanning chemistry, biology, and energy generation [230]. When it comes
to food, the application is limited to regulated emulsification methods that allow for the
formation of highly structured droplets. The use of such emulsions can, for example,
provide stability of small droplets in food beverages or products with a reduced caloric
capacity, or it can be used to trigger the release of an active component of taste on demand
(double emulsion) [231]. Aside from emulsification, phase change in liquid droplets may
be exploited as a building component in meals. To recap, the most prevalent usage of
microfluidics in food-related applications is in the creation of emulsions, where they enable
precise control over droplet size and form. Cellulose is one food type that can benefit
from the emulsification process of microfluidics [232–237]. The celluloses used for the
emulsification of foods are carboxymethylcellulose [234,235,238], cellulose nanofibrils [237],
microcrystalline cellulose [238] and bacterial cellulose [239]. Indeed, chemically modified
cellulose derivatives play five key roles in foods: rheological property management [240],
emulsification, foam stability, ice crystal formation and growth modulation, and water-
binding capacity.

Droplets develop in cross-roads of channels, such as those found in T-junctions or
micro-channeled systems, in the design of chips to accomplish emulsification. Droplets can
also be inserted in microchannels and then broken up further into tiny droplets when they
escape the chip in the rest of the channel. Starting from the point where two liquids start to
flow, the scattered phase flows into the continuous phase and forms a droplet at the channel
openings. The droplet is pulled along the pore and distributed into the continuous phase
in a shear-driven emulsification system. In a T-junction, the creation of non-Newtonian
droplets can also be stimulated under the influence of an external electric field. Because
of the direction of electric forces imparted to a droplet’s surface, the stronger the electric
field, the greater the droplet size. External electric or magnetic fields can be quite useful
for controlling droplet sizes [241]. Microfluidics, which employs the same mechanism, can
also result in foam generation [242]. The distributions of pore size and shape determine
most of the physical properties of solid foams. The authors of ref. [242] show how CNF
changes the structure of both the liquid foam template and the solid foam. The resulting
nanocomposite foams have improved mechanical properties, but not proportionally to their
size. Some of the studies in the literature that produce cellulose products using T-junction
and Y-junctions are found in set of refs. [89,241–248].

Many studies employed microfluidic devices to create nano or micro sized particles
by establishing a hydrodynamic flow-focusing apparatus. For instance, because of its low
toxicity, great stability, and outstanding biodegradability, cellulose acetate is one of the
most significant cellulose products. In the reference [93], nanoparticles produced utilizing
co-flow and flow-focusing glass capillary techniques were compared. They compared the
effect of geometries such as the size of the inner capillary orifice and the device utilized
in terms of co-flow or flow-focusing. Kwon and colleagues [249] employed microspheres
and a flow-focusing microfluidic to create microspheres with a lower size than traditional
approaches. They also looked at how the ratio of non-solvent to solvent flow rate affected
the size of produced microspheres. In this case, raising the flow rate ratio of the phase
resulted in an increase in the size of the particles. As a result, distinct emulsions or food
items with diverse designs are produced. Microfluidics in terms of using co-flow design
can also be manipulated to create cellulose products. Refs. [92,250,251] include studies that
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demonstrated the use of co-flow or flow-focusing technologies to create nano particles from
cellulose alone or cellulose in conjunction with other substances.

The system that is monodispersed, whether oil-in-water or water-in-oil emulsions, may
be easily manufactured utilizing a shear-driven system [252], and wettability is crucial in
the type of emulsion being prepared. Aside from single and double emulsion, flow-focusing
or co-flow devices may be used to create higher-order multiple emulsions [253,254]. In a
nutshell, microfluidic devices have a lot of potential for making simple and higher-order
multiple emulsions. The use of several systems leads to several operational issues that
contribute to unreliable emulsification. This is especially difficult in food applications
where droplet size must be less than 10 µm in most cases.

Similarly, relying on microfluidic chips for analysis, a stacked design (multilayered)
electrostatic printing technology was perceived for producing CNF-based microfluidic chip
for detecting water quality since water pollution has a substantial influence on human
health. This idea might be used to create a colorimetric platform that can quantitatively
detect iron levels in water [160]. The hydrophilic channels are printed with wax on the
substrate by electrostatic interaction (see Figure 4d).

2.4. Using Microfluidics to Shape Cellulose-Based Products

As previously said, microfluidic design may be divided into three categories: flow-
focusing, co-flow, and T-junction design. Figure 5 depicts these designs that can be applied
for food- or non-food-related applications. For instance, case studies of microfluidics used
to create food quality emulsions from cellulose may be found in refs. [96,131,234,255] and
non-food applications in refs. [142,256–258]. Creating a sophisticated design such as mi-
crocapsules with regulated stability and permeability are in great demand for separation
and encapsulating applications. Sometimes, the design of complex structures is left to mi-
croorganisms such as bacteria. At an oil–water emulsion interface, the authors established
a bio-interfacial technique for producing robust yet flexible porous microcapsules from
bacterial cellulose (see Figure 5a). Bacteria were initially utilized to make the cellulose
particles, as well as before and after shaping the microparticles [92]. Sometimes relying
only on shear and flow field to create the optimized structure is not enough. To tackle this,
using an innovative field-assisted flow-focusing approach, the authors in Wise et al. [94]
discovered that an external electric field may be used to regulate/fine tune the structural
ordering of anisotropic materials in a continuous flow process. The continuous fabrica-
tion of a macroscale filament with a diameter of 17 µm was carried out employing CNF
(TEMPO-oxidized) using this flow-focusing microfluidic chip. Beyond a certain voltage, the
influence of an AC external field on the material’s structure became considerable, resulting
in a CNF orientation of up to 16%. The set up for accomplishing this task is illustrated in
Figure 5c as a flow-focused microfluidic design [94]. Figure 5b is an example of a T-junction
design that here has been used as a mixing zone between gas and a non-Newtonian fluid.
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Figure 5. Flow-focusing, co-flow and T-junction design in creating cellulose-based products. (a) Bac-
teria were encapsulated in a co-flow microfluidic device in which bacteria and media flow as a
dispersed phase into continuous phase of 2.5% fibrillar HCO. Final products are shown at the top of
co-flow design as dispersed emulsion droplets. Adapted with permission from Ref. [92]. Copyright
2019 American Chemical Society. (b) Images of phase split at micro impacting T-junctions. At the
bottom, a sample of monodispersed droplets created by tuning the flow speeds of two streams is
displayed. Adapted with permission from Ref. [95]. Copyright 2014 Elsevier. (c) CNF orientation
in a flow-focusing design, for orientation of particles. The picture at the right is of a hydrodynamic
flow concentrating zone stained with eosin/fluorescein at three distinct flow rates using similar
design. Adapted with permissions from Refs. [89,93,94]. Copyright 2021 The Author(s), under
exclusive licence to Springer Nature B.V.; 2020 Springer-Verlag GmbH Germany; 2020 American
Chemical Society.

Microfluidics can also be used for the purpose of mixing, demixing [95,247] and inter-
nal orientation of particles [94,108]. The mixing of laminar non-Newtonian nanofluid flow
in two-dimensional microchannels is quantitatively explored in this article [248]. Pseudo-
plastic behaviour is seen in an aqueous solution of 0.5 wt% carboxymethyl cellulose and
10 nm diameter TiO2 nanoparticles. In a similar study [246], gas–non Newtonian liquid
two-phase flows in a horizontal rectangular microchannel were explored. Variable mass
concentrations of polyacrylamide aqueous solutions were employed as non-Newtonian
liquids at the same time as nitrogen gas being used as a test gas. The flow pattern, bub-
ble length, liquid projectile length, and frictional pressure drop were all measured in a
T-junction mixer by the authors. For the case of the orientation of particles, the authors
designed a continuous and potentially industrially scalable and parallelizable method that
prepared strong and stiff CNF-based filaments. This allowed the manufacturing of strong
filaments from wood fibre raw material for the future production of high-performance
bio-composites and textile production [108]. These experiments can assist in understand-
ing how the final structure can be improved using just fluid and a different component
addition approach.

Figure 6 shows a complex cellulose-based pattern built using microfluidics technology.
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Figure 6. Cellulosic-based designs were created with the help of microfluidics [107,151,259–261].
(a) Polarization of a micrograph depicting the production of cholesteric cellulose nanocrystals from
oil in a water droplet. Swelling of microfluidic droplet-templated CNC microparticles (from 3 wt %
CNC suspensions) when observed under polarized optical microscopy. Adapted with permission
from Ref. [259]. Copyright 2016 American Chemical Society. (b) Pore network of a microfluidic
device produced with PDMS using the micromolding process, with pillars and edges defining
the flow channel and pore network clearly. Adapted with permission from Ref. [151]. Copyright
2015 American Chemical Society. (c) Dry sCNC microparticles display variable chiral nematic
texturing due to the occurrence of kinetic arrest during drying, while chemically modified (and thus
crosslinked) microparticles exhibited uniform radial ordering (the image at the right-bottom of (c).
Adapted with permission from Ref. [260]. Copyright 2018 American Chemical Society. (d) Lipophilic
molecule encapsulation inside oil small droplets or embedded emulsions might be used to encapsulate
functional target chemicals. Adapted with permission from Ref. [261]. Copyright 2021 Elsevier.
(e) Three-dimensional representation of a form-stable composite including CNF-shell-produced
capsules. Adapted with permission from Ref. [107]. Copyright 2019 Elsevier.

CNCs in liquid crystalline form are materials that are both a hybrid of long-range
organized structure belonging to crystal structure and mobility that can create an isotropic
liquid. Among the several varieties of liquid crystals, cholesteric liquid crystals [262] are
popular because they are one-dimensional photonic crystals with a photonic band gap
(PBG) structure due to their helical structure. These materials have opalescent hues when
the half value of the helical pitch length is the same size as the wavelength of visible light.
Parker et al. [259] studied the self-assembly of cellulose nanocrystals synthesized in an
oil phase, during which radial ordering occurred, and when the produced droplets were
removed from the system, they buckled. The cholesteric character of particle orientation
was maintained, as shown by SEM.

Wenzlik et al. [145] applied another droplet pattern for making microparticles, in
combination with photopolymerization. Photocurable lyotropic mixtures of cellulose
emulsified in oil/water droplets were made initially. Then, samples were flown in an area
under irradiation of in situ ultraviolet (UV) light. The photopolymerization resulted in an
interpenetrating network in which the cholesteric arrangement of particles remained locked
in. Thus, the opalescent appearance was kept. Wang et al. [263], employed a nematic liquid
crystalline phase in the form of droplets to create an environment (a droplet) that was ideal
for polymerizing polymer microparticles. The process involved mixing polymer monomer
and initiator inside the droplets, which were initially nonreacted Then, the droplets through
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photopolymerization solidified, which led to the liquid crystalline particle being locked
inside a polymer that was now polymerized. In the next step, the non-reactive entities were
removed through the addition of ethanol, and the polymerized liquid crystal droplets were
shrunken anisotropically, which yielded solid particles with complex geometries.

Using sustainable and renewable biomaterials, a team of researchers [259] created a
method for fabricating genuinely hierarchical solid-state designs from the nanoscale to the
macroscopic scale. They were looking at how CNCs self-assemble within the micrometers
of aqueous droplets. The author was able to establish a hierarchical structure over various
length scales by directing the self-assembly process of CNCs in the microsphere. The
droplets were created with a restricted distribution, allowing for a local evaluation of the
CNC self-assembly process (See Figure 6a).

A group of scientists [151] discovered a mechanism to link Alexa Fluor dyes to CNCs.
The authors suggest that developing a strategy to analyze local losses of solid cellulose
is preferable to the traditional approach of batch sugar production. These observations
are difficult to carry out in a natural context with muddy soil and sediments, but they are
simple to carry out in a microfluidic chip. They became able to witness the elimination
of solid cellulose layers over time as the number of single blinking dye molecules, rather
than fluorescent signals, decreased. Two methods for conjugating contemporary dyes to
solid cellulose material for bioimaging have been devised. Crystalline cellulose is more
resistant to deterioration than amorphous areas, making it of special importance. These
substances are known to monitor and track the elimination of spatially limited aggregates
of solid cellulose materials because of hydrolysis. Figure 6b depicts a homogeneous pore
network with deposited fluorescently labelled cellulose. The investigators flushed out the
pore gaps with carbon-free media in multiple cycles, yet the bacterial population (injected
originally) rebounded each time, validating the hypothesis that certain strains of bacteria
can thrive via CNCs. The authors also shared the pore network with another comparable
bacterial strain, cytophaga hutchisonii, which can degrade cellulose, and tracked the decrease
in the fluorescence signal over time.

CNCs are cellulose-derived, stiff, rod-like nanoparticles. There are few methods for
controlling the shape and size of constructed CNC structures. Water-in-oil droplet mi-
crofluidics can create consistent spherical CNC droplets in a nontoxic and environmentally
friendly way. The authors of [260] demonstrated how to make stable spherical CNC mi-
croparticles by chemically cross-linking hydrazide-modified CNCs. The technique is based
on droplet templating using microfluidics and uses only environmentally friendly and
nontoxic ingredients. Microparticles generated via this study are shown in Figure 6c in
which dry sCNC microparticles displayed variable chiral nematic texturing due to the
occurrence of kinetic arrest during drying, while chemically modified (and thus crosslinked)
microparticles exhibited uniform radial ordering.

Lipophilic chemical preservation inside alginate microgels is difficult, owing to the
required oil-core matrix. The usage of glass microfluidic devices to manufacture emulsion-
filled alginates was investigated in this work [261]. The size of the microgels was deter-
mined by the viscosity of the O/W emulsion and the flow rates. Alginate microspheres and
emulsion-filled alginate hydrogel particles were uniformly shaped and spherical, with a
very narrow size distribution. Lipophilic molecule encapsulation inside oil small droplets
or embedded emulsions might be used to encapsulate functional target chemicals. Pictures
of the microparticle produced in this study are shown in Figure 6d.

Microspheres of porous cellulose acetate with variable size of particles and pore
characteristics have been successfully produced. The microfluidic settings were tweaked
to obtain the appropriate microdroplet size. Controllable structures were created using
a simple technique called microfluidics paired with the flash freezing approach. The
pictograph of procedure is shown in Figure 6e. The diameter of the microspheres may be
precisely adjusted by modifying the microfluidic settings. For oil, the developed porous
structures were able to adsorb up to 30 times their weight, while for Congo red, they were
able to adsorb up to 23.9 mg·g−1 [107].
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Hydrogels are three-dimensional networks made up of cross-linked polymers that can
contain a high amount of water in their particle interspace; most hydrogels are not soluble
in water [29]. Hydrogels are frequently utilized for drug administration, scaffolds in tissue
engineering, wound treatment, absorbent, thickeners, and packaging materials, and they
may be used to make transparent contact lenses [264]. This kind of material’s strong water
retention capacity, paired with its porosity, is also useful for simulating the extracellular
matrix microenvironment in vivo. Ca-alginate beads are among the most extensively used
methods for immobilizing protein molecules, as well as for controlled medication release.
The capacity to adjust particle size and size distribution is crucial, as particle diameter
and distribution impact clearance rate from the body and, ultimately, dose. Alginate gels
are enclosing gel spheres that may entrap cells in a three-dimensional region. They are
created using a traditional gelation process in which the alginate is being pushed within a
microfluidic chip. Because the structure of alginate is so similar to that of cellulose, most
alginate research may be applied to cellulose with minor changes.

In T-junction, droplets of sodium alginate loaded with calcium carbonate can create
an emulsion [265]. Similarly, in another study, the internal gelation system used to make
alginate/pectin Janus beads was etched in a Y-junction with two co-flowing channels.
Inside the bath containing calcium chloride, Janus droplets developed; later, in the bath,
calcium chloride was added to fortify the beads [266].

Janus particles can be designed with the assistance of microfluidics, using a liquid crys-
tal and a mineral oil component. Through lowering interfacial tension between cholesteric
CNCs to mineral oil, the form of droplets transformed from dumbbell to spherical [267].
The produced nanoparticles are shown in Figure 7a. The creation of microgels with non-
traditional forms was made possible by photopolymerizing the monomer introduced to the
cholesteric CNC phase and then removing the mineral oil. This technique simply opens new
doors to droplets produced from cholesteric CNC droplets by transferring these microgels
into an aqueous medium where they swelled up to keep their cholesteric structures. The
cholesteric phase’s polarized optical microscope pictures revealed a multidomain mosaic
pattern with distinct stripes. In a flow-focusing droplet-producing design, the cholesteric
phase is isolated from the two-phase system. In conjunction with the cholesteric phase, a
fluorinated oil containing 1.0 wt% surfactant was injected into the microfluidics. The shear
force imposed by merging the two oil streams led to the production of uniformly sized
droplets that were split up in the chip on a periodic basis. Later, polymer latex nanoparticles
were injected into the cholesteric phase, and photos from this set of studies may be found at
the bottom of Figure 7a. To examine the influence of confinement on the cholesteric phase,
the additional latex particles that resulted in the formation of a core–shell structure were
incorporated [268].

Magnetic stimulation might be a tempting supplement to other methods of remotely
regulating and modifying light. A microfluidic emulsification method, in which water-
based droplets are created in a flow-focusing device, is used to make microparticles. An
external magnetic field can be used to manipulate microparticles that are suspended
in a fluid. It is possible to make magnetic sensitive birefringent microscopic particles
with unique magneto-optical coupling capabilities. Using a distant external magnetic
field, microparticles may be modified to sense the local rheological parameters of a fluid.
Display technologies, microrheological studies, and camouflaging devices might all benefit
from these capabilities. A sample of the results [269] of using a magnetic field to guide
microparticle size production in depicted in Figure 7b. To make the microparticle (CNC-
laden) impressionable to magnetic fields, CNC building blocks were mixed with a small
concentration of iron oxide nanoparticles. Figure 7c shows two microfluidic designs
for creating Janus and simple microparticles, as well as a microfluidic design based on
Figure 7a’s results.
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Figure 7. (a) Droplets of the mineral oil and cholesteric CNC phases with various volume percentages.
The row at the bottom displays variation in droplet morphology and related polarized optical
microscopy of photos. This method may also be used to synthesize core–shell particles with a
liquid crystalline shell. Adapted from Ref. [268]. (b) Spiraling tube to elongate the emulsion droplet
before consolidation phase that makes the particle anisotropic. Particles with different aspect ratio
synthesized using this approach. As the particles exited the tube, UV light was employed to rigidify
them. Adapted with permissions from Ref. [269]. Copyright 2019 WILEY-VCH. (c) Two microfluidic
device geometries to produce hydrogel particles and hydrogel Janus particles. The scheme on the left
makes microbeads using a T-section design, whereas the diagram on the right is for flow focusing for
production of Janus particles. Adapted from Ref. [270].

Table 3 shows the different types of cellulose used and how they are used in the
microfluidics framework.

A novel application of microfluidics to the production of cellulose microparticles is
the encapsulation of cellulose-producing bacteria inside a core–shell design for long-term
investigations on a static culture, which does not require the use of a chemical method
to induce cellulose dissolution. In Yu et al. [271], for example, microfluidics was utilized
to build a sacrificial template based on core–shell structured microparticles for bacterial
encapsulation. After bacterial incubation inside the sphere and the manufacture of bacterial
cellulose, the particle’s template was dissolved, resulting in the formation of bacterial
cellulose. Higashi et al. [257] employed microfluidics to produce a nanofibrous structure
using bacterial cellulose in a similar investigation. Gelatin was used to enclose the bacteria-
infested microsphere. The bacterial cellulose microspheres were recovered after the gelatin
was removed. The authors also compared the microspheres generated by bacterial activity
to those produced by the emulsification process, which clearly demonstrated the inefficiency
of emulsification in contrast. Recently, in Pepicelli et al. [131], they customized the bacterial
cellulose microcapsule with configurable size and being monodisperse, which was affected
by bacterial concentration, droplet size, and surfactant type. As previously stated, cellulose
microparticles are also being generated with cellulose derivates that are dissolved in solvent;
for example, Zhang et al. [107] developed microspheres with configurable porosity and
size using cellulose acetate.
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Table 3. Refs classified based on nanocellulose types involved and application in conjunction
with microfluidics.

Study Material Used Microfluidic Application

Shin and Hyun [226] CNF Construction material for
microfluidics

Li and Liu [201] CNF Construction material for
microfluidics

Jia et al. [205] CNF Construction material for
microfluidics

Cai et al. [90] Filter paper Construction material for
microfluidics, glucose assay

Yu et al. [271] Bacterial cellulose Production of cellulose
microcapsules, wound healing

Nechyporchuk et al. [109] CNF, CNC Using microfluidics for spinning
strong microfibers

Li et al. [136] Bacterial cellulose Microfluidics as a platform to
examine wound dressing screening

Ardalan et al. [202] Cotton thread Cellulose-based microfluidic
wearable patch

Tata Rao et al. [272] Cellulose absorbent pads Microfluidic paper–based fuel cells

Park et al. [273] Bacterial cellulose Cell culture and wound healing

Baek and Park [89] Molten cellulose Microfluidic set up was used to
produce cellulose beads

Higashi and Miki [257] Bacterial cellulose
Application for biochemical

engineering and cell
delivery systems

Song et al. [92] Bacterial cellulose Produce a framework for
artificial cells

Pepicelli et al. [131] Bacterial cellulose
Capsules for applications such as
flavor, fragrance, agrochemicals,

nutrients, and drug encapsulation

Zhang et al. [107] Cellulose acetate Remediation of water

Liu et al. [274] Carboxy methyl cellulose Preparing cell-laden microgels

Levin et al. [260] CNCs
Porous microparticles for

applications such as drug delivery
or sorption agents.

Kaufman et al. [275] CNF Production of strong yet flexible
microcapsule shells.

Dhand et al. [276] TEMPO-oxidized CNF Tune microparticles suspension to
tailor complex fluid rheology

Carrick et al. [142] cellulose pulp
Microencapsulation for drug

delivery or controlled
release capsules.

Yeap et al. [16] Ethyl cellulose Drug–excipient composite
microparticles

Yeap et al. [277] Ethyl cellulose Production of monodisperse
spherical drug particles

There is other research in the literature that might possibly expand Table 3; however,
to keep this review brief and to the point, we will abstain from adding further resources
here. Readers are urged to check numerous published publications in the literature that
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might provide further information on Table 3. Figure 8 depicts a variety of illustrative
products of the microfluidics-aided cellulose-based design to summarize the information
offered in this study in the form of a figure. It appears the range of products varies from
fibers, buckled particles, and microfluidic devices to microcapsules. The inclusion of liquid
crystalline feature is also possible.
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Figure 8. Products manufactured with microfluidics derived from cellulose. (a) Three cellulose
microcapsule deformation regimes: elastic deformation, mild compression, and finally stretching
and folding. Adapted with permission from Ref. [92]. Copyright 2019 American Chemical Society.
(b) Prepared cellulose capsules following isopropanol addition. Adapted with permission from
Ref. [142]. Copyright 2014 The Royal Society of Chemistry. (c) The tissue of a microfluidic paper-
based device is illustrated on the side under SEM. Adapted from Ref. [278]. (d) SEM pictures of
CNF orientated within a microfluidics device (fibers are impregnated in an epoxy-based matrix).
Adapted with permission from Ref. [109]. Copyright 2018 Wiley-VCH. (e) Images of buckled cellulose
microcapsules under cross-polarizers and SEM images of particles. Adapted from Ref. [259]. (f) SEM
pictograph of cellulose-based microcapsules, flow rates for the production of these microcapsules
varied from 200 to 1200 µL/h. Adapted with permission from Ref. [96]. Copyright 2009 Elsevier.

3. Conclusions and Projections in the Future

The incorporation of cellulose microfluidics into research projects via the literature
has resulted in several benefits for the scientific community. Even while microfluidics as
a design idea has several advantages, its value in investigating cellulose-based products
and the use of cellulose as a building component is currently underutilized. Surprisingly,
the sort of structure and process continuity for microfluidics is quite capable of developing
novel designs that are impenetrable by conventional approaches. One example is the
development of a platform for wound dressing screening, utilizing microfluidics to spin
robust microfibers. Microfluidics can also produce microparticles for applications such as
drug administration and sorption agents.

It should also be noted that research on microfluidic devices made of paper is still in
its early stages, and significant efforts are required to make this field of research thrive
further to provide a platform for technology in diagnostic and environmental monitoring.
More research is needed to uncover new concepts and capabilities related to this technology.
As a result, more exploratory investigations should be conducted in order to identify
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new concepts and possibilities of this critical technology. The feasibility of present and
future approaches for making PADs must be studied and appraised by researchers for the
purpose of the sdiagnostic market in terms of material and also the cost that comes with
the production of these devices and their potential. For mass manufacturing, dependency
on any other equipment must be assessed in order for them to be scaled to the industrial
level. The dependability with which they interpret relatively easy-to-read test data and
their perfect interoperability with telemedicine are also other notable factors that must
be tackled.

The 3D printing of these devices in the future may increasingly play a very different,
very important role in tailoring novel applications such as disease screening application
or even roles such as food quality testing. The expertise in controlling paper sheet struc-
ture, incorporating new materials such as nano fibres or other natural source fibres and
functional materials into sheets using polymer electrolyte, and significantly improving
printing technology, are also other factors for which the resources have remained untapped.
Benefitting future development, of the paper-based microfluidic technology to date, most
of the devices are being made with filter papers; however, in the future, endeavours must
be made to develop better materials that offer properties that are unmatched by current
filter papers. Future studies will also be required to work to comprehend capillary forces
that in a paper sheet will be important for achieving more accurate control of lateral flow in
the paper. The paper, surface energy, and structure are also additional aspects that must be
addressed in further research. Vertical flow in paper, for example, liquid flowing through
the paper thickness to a defined region, and control of it may necessitate more research.
This specially becomes cumbersome with 3D-printed device; 3D-PADs need to regulate
more than just liquid lateral flow. On paper, there is also a vertical flow approach with
microfluidic biometric analytics and signal transfer.

It should be emphasized that there are additional sophisticated methods for structuring
cellulose products that are currently underutilised, such as the merging of two microfluidic
systems and electrospinning. Wet spinning and microfluidics designs were discussed
in the previous section; however, more complicated designs exist, such as combining
two streams and then employing jet extrusion from microfluidics to collect on a foil via
electrospinning [279].

As a recap, the use of microfluidics in the design of cellulose-based products and the
value of paper as a medium for manufacturing microfluidics were discussed in this review.
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