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Abstract: The differential entropy of a continuous waveform is defined over the period spanned by
the recording. The time-dependent information dynamics of the observed process are not accessible
to this measure. We review here the construction and validation of approximate time-dependent
measures of information dynamics.
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1. Introduction

The object of this investigation is to review and extend methods for approximating
time-dependent information dynamics and then proceed to their use in the dynamical
characterization of information movement in networks. The investigation is constructed in
four steps.

1. Local entropy rate and specific entropy rate: approximate continuous time measures
of information generation

2. Specific transfer entropy: an approximate continuous time measure of information
movement

3. Time-dependent measures of information movement in networks
4. Hierarchical transition chronometries in information networks

2. Local Entropy Rate and Specific Entropy Rate

Consider a time series {x1, · · · xN}. Time ti is the time when xi was observed. Local en-
tropy rate, HL(ti) = HL

(
xi

∣∣∣xi−1
i−p

)
, is a time-dependent, locally determined conditional en-

tropy where the entropy of an observed variable is conditioned on its past. It quantifies the
surprise on observing xt given the preceding values xt−p, · · · xt−1. HL(ti) = HL

(
xi

∣∣∣xi−1
i−p

)
,

can be interpreted as the rate of information generation at time t [1,2] (It is a single number
that is a function of p + 1 inputs.

HL(ti) = H
L(

xi

∣∣∣xi−1
i−p

)
= −log f−i

(
xi

∣∣∣xi−1
i−p

)
The essential step in the analysis is to recognize the relationship between a conditional

density function, the joint distribution, and the marginal distribution. Specifically,

HL(ti) = H
L(

xi

∣∣∣xi−1
i−p

)
= −log f−i

(
xi

∣∣∣xi−1
i−p

)
= −log

 f−i

(
xi, xi−1

i−p

)
f−i

(
xi−1

i−p

)


Comput. Sci. Math. Forum 2023, 7, 3. https://doi.org/10.3390/IOCMA2023-14382 https://www.mdpi.com/journal/csmf

https://doi.org/10.3390/IOCMA2023-14382
https://doi.org/10.3390/IOCMA2023-14382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/csmf
https://www.mdpi.com
https://orcid.org/0000-0001-8045-9740
https://orcid.org/0000-0002-4624-3951
https://iocma2023.sciforum.net/
https://doi.org/10.3390/IOCMA2023-14382
https://www.mdpi.com/journal/csmf
https://www.mdpi.com/article/10.3390/IOCMA2023-14382?type=check_update&version=2


Comput. Sci. Math. Forum 2023, 7, 3 2 of 5

The subscript −i is used to indicate that the value xi is not used when evaluating the
local entropy rate at time ti. Density functions can be approximated by kernel density
estimation [3,4]) or by k-th nearest neighbor estimation [5] Autoregressive order p can be
determined by the minimization of a negative log predictive likelihood.

The local entropy rate is exquisitely sensitive to noise. This is consistent with its
definition. Noise at time ti reflects information generation at time ti and is reflected in
the value of the local entropy rate. Noise is usually not, however, particularly interesting.
This difficulty is addressed with a specific entropy rate [6] Like the local entropy rate, the
specific entropy rate is a time-dependent, locally determined measure. In this case, the
specific entropy rate gives a quantitative estimate of uncertainty at time ti. Specific entropy
rate differs from local entropy rate in being an average of local entropy rate over a defined
set. Therefore, it is intermediate to the local entropy rate, where no averaging occurs, and
the total entropy rate, which is the average of all available values of the local entropy rate.

A summary is given by Gilpin et al. [7] “Local and specific entropy rates quantify
complementary properties of a dynamical system. If we have a time series representing
an observable, the local entropy rate (LER) represents the statistical surprise of seeing an
already observed local future given specific past. It also can be thought of as the rate of
information generation at a given time point. The specific entropy rate (SER) represents
the statistical uncertainty in an as yet unobserved future given a specific past. The LER,
in isolation, is a retrospective measure, and the SER is a prospective measure, and each
yields distinct information about the behavior of the dynamical system.” The notation
HS(ti) = HS

(
xi−1

i−p

)
is used to emphasize the fact that specific entropy rate is determined

by values in the past. The present, xi, is not an argument of the specific entropy rate.
An operational requirement is the specification of the procedure used to calculate a

specific entropy rate from a subset of local entropy rate values. An unnecessarily simplistic
response would be a moving average. As an alternative, note that the set

(
xi−p, · · · xi−1

)
is

a point in an Rp dimensional space. Averaging local entropy rate values from points close
to
(

xi−p, · · · xi−1
)

exploits the possibility, suggested by the Takens embedding theorem [8]
that these points are subject to a dynamical process similar to that in operation at point(

xi−p, · · · xi−1
)
. Ideally, one examines the same underlying dynamics at each point in the

average, and noise will be reduced in the averaging process. We refer to this as dynamical
adjacency in contrast with the temporal adjacency of a moving average. The estimator for
the specific entropy rate is as follows:

ĤS(ti) = Hs
(

xi−1
i−p

)
=

1
k∗ ∑

j∈N(xi−1
i−p)

ĤL
(

xj

∣∣∣xj−1
j−p

)

N
(

xi−1
i−p

)
is the set of the indices of the k∗ points closest to

(
xi−p, · · · xi−1

)
∈ Rp. An

appropriate value of k∗ can be determined by a split-half minimization argument.

3. Specific Transfer Entropy

In the simplest case, consider two sources producing simultaneously measured time series.
There is a long history of procedures that can be used to quantify the correlation between time
series. These correlation measures do not, however, quantify information movement between
the two sources. In the “Treatise Concerning Human Knowledge”, Bishop Berkeley identified
prediction rather than correlation as the essential criterion for causation [9] This is consistent
with Wiener’s operationalization of causation. To paraphrase Wiener [10] if measuring variable
X improves the prediction of variable Y, then Y is, in this very limited operational sense of
causation, causally dependent on X. Where we recognize that the relationship is not necessarily
unidirectional. Granger [11] introduced a measure of causal relations based on marginal
predictability that has been used extensively in econometrics. It is recognized, however, that
Granger causality can fail to detect nonlinear relationships. This motivated the introduction
of alternative measures, most notably transfer entropy [12] As an example, Amblard and
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Michel [13] give an example system that has zero Granger causality in a system that detects
information movement with transfer entropy.

Y is said to transfer information to X if the uncertainty in X alone exceeds the uncer-
tainty in X given Y. Schreiber defined transfer entropy TY→X as the difference between the
marginal conditional entropy and the joint conditional entropy. The corresponding local
transfer entropy is defined as

T̂L
Y→X(ti) = ĤC

(
xi

∣∣∣xi−1
i−p

)
− ĤC

(
xi

∣∣∣xi−1
i−q , yi−1

i−r

)
Conditional entropies can be re-expressed

T̂L
Y→X(ti) = −log f̂−i

(
xi

∣∣∣xi−1
i−p

)
+ log f̂−i

(
xi

∣∣∣xi−1
i−q , yi−1

i−r

)
Again, recalling that a conditional density can be expressed as the ratio of a joint

density and a marginal density, the estimator of TL
Y→X(ti) is

T̂L
Y→X(ti) = −log

 f̂−i

(
xi, xi−1

i−p

)
f̂−i

(
xi−1

i−p

)
+ log

 f̂−i

(
xi, xi−1

i−q , yi−1
i−r

)
f̂−i

(
xi−1

i−q , yi−1
i−r

)


The relationship between local transfer entropy and specific transfer entropy follows
the logic established by local entropy rate and specific entropy rate. Specific transfer
entropy is a local, dynamically informed average of local transfer entropy [14] (Darmon
and Rapp, 2017).

T̂S
Y→X(ti) =

1
k∗ ∑

j∈N∗
T̂L

Y→X(ti)

The Figure 1 below shows the results of a simulation using a coupled Hénon map [14]
Y is independent of X, but X includes a dependence on both Y and X. The top graph shows
Y as a function of time, and the second shows X as a function of time. The third graph
shows T̂L

Y→X(ti) and correctly indicates a nonzero transfer of information from Y to X. The
fourth graph shows T̂L

X→Y, and because of simulated noise, it indicates a spurious nonzero
transfer of information from X to Y, though the amplitude is less than that observed for
T̂L

Y→X . The fifth and sixth graphs show specific transfer entropy. The fifth graph shows the
expected nonzero value for T̂S

Y→X . In contrast to T̂L
X→Y, T̂S

X→Y is effectively zero.
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4. Time-Dependent Measures of Information Movement in Networks

Networks consist of nodes and edges. Each node is not necessarily connected to all
other nodes. When applied to the analysis of multichannel EEGs and event-related poten-
tials, which is our primary interest area, the electrodes are nodes and edges are quantified
by functional connectivity or information transfer. These between node relationships are
summarized in the adjacency matrix.

In the simplest case, the relationship between two nodes is quantified by the correlation
between the signals measured at the corresponding electrodes. A value of zero is entered
in the matrix if the correlation is less than a threshold value, and a value of one is entered if
the value is greater than the threshold. The resulting adjacency matrix is binary, symmetric,
and static. If the correlation itself is entered, the adjacency matrix is real, symmetric, and
static. Alternatively, transfer entropy can be used. As defined, transfer entropy, in contrast
with specific transfer entropy, is not time-dependent, but the information movement from
Node A to Node B is typically not the same as the information movement from Node B
to Node A. Therefore, in this case the adjacency matrix is real, asymmetric, and static. If
specific transfer entropy is used, the time-dependent behavior of information movement in
a complex network is summarized in a matrix that is real, asymmetric, and time-dependent.

In principle, any measure that is applicable to a real, asymmetric, static adjacency
matrix can be used iteratively at each time point to produce a time-dependent measure
of matrix dynamics which we denote by Λ(t). In many applications, particularly in
the analysis of biological systems, the detection of transitions in network behavior is
particularly interesting. This can now be implemented by an examination of the transition
behavior of Λ(t). This is addressed in the fourth step of the project.

5. Hierarchical Transition Chronometries in Information Networks

There is a large well developed mathematical technology for identifying transitions in
a time series, but care must be exercised when using these methods. As previously argued,
“the typically stated challenge, ‘find transition times in the time series’ is unacceptably
naïve. Transitions are timescale dependent. A stock market change that is significant to a
day trader is not necessarily important to a pension fund manager. The challenge to find
a time series’ transitions must be revised: ‘find the transitions in time series X that are
important on a timescale of Y’ [15].

One possible approach to meeting this requirement uses the quantification of recur-
rence diagrams. Recurrence diagrams were introduced by [16] with the specific objective
of identifying subtle time-dependent transitions in dynamical systems. Recurrence di-
agrams provide a graphical representation of geometrical relationships between points
in an embedded set. Quadrant scans [17] quantify this visually presented structure. A
change in the system’s dynamics generating the time series produces a local maximum in
the quadrant scan. A change in the embedding dimension changes the time scale of the
transitions identified in the recurrence diagram, and there is a corresponding change in
the time scale of the quadrant scan. The utility of this method in identifying hierarchical
transition chronometries has yet to be explored.

6. Conclusions

We have presented a four-step analysis trajectory that begins with the measurement of a
multichannel time series, proceeds with the construction of a time-dependent network, and
concludes with the identification of transitions in the behavior of that network. Applications in
the investigation of central nervous system psychopathology are now underway.
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