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Abstract: The aim of this paper is to review the most important properties and applications of the
complete hypergroups. We will focus on the reversibility, regularity and reducibility properties, on
the class equation and the commutativity degree of the complete hypergroups, as well as on the
Euler’s totient function defined in this kind of hypergroups.
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1. Introduction and Preliminaries

Starting in 1934, when F. Marty introduced the hypergroup as a new algebraic struc-
ture extending the classical one of the group, and satisfying the same properties, i.e., the
associativity and reproductivity, the theory of hypercompositional structures (also called
hyperstructure theory) has experienced a rapid growth, succeeding to impose itself as a
branch of Abstract Algebra. Currently, this theory offers a strong background for stud-
ies in algebraic geometry [1], number theory [2], automata theory [3], graph theory [4],
matroids theory [5], and association schemes [6], to list just some of the research fields
where hypercompositional structures are deeply involved. These structures are non-empty
sets endowed with at least one hyperoperation, i.e., a multivalued operation resulting in
a subset of the underlying set, usually denoted as ◦ : H × H −→ P∗(H), where (P)∗(H)
denotes the set of non-empty subsets of H. A non-empty set H equipped with a hyper-
operation that satisfies: (i) the associativity: (x ◦ y) ◦ z = x ◦ (y ◦ z) for any x, y, z ∈ H,
where (x ◦ y) ◦ z =

⋃
u∈x◦y u ◦ z and x ◦ (y ◦ z) =

⋃
v∈y◦z x ◦ v, and (ii) the reproductivity:

x ◦ H = H = H ◦ x, for any x ∈ H, is called a hypergroup. One particular type of hypergroup
is represented by the complete hypergroups, introduced in 1970 by Koskas [7], based on the
notions of complete part and complete closure. Given a hypergroup (H, ◦), a non-empty
subset A of H is called a complete part if, for any n ∈ N and x1, x2, . . . , xn ∈ H such that
(x1 ◦ · · · ◦ xn) ∩ A 6= ∅, it follows that x1 ◦ · · · ◦ xn ⊆ A. The intersection of all complete
parts of H containing A is then called the complete closure C(A) of A in H. A hypergroup
(H, ◦) is complete if, for any (x, y) ∈ H2, C(c ◦ y) = x ◦ y. The complete hypergroups are
easily described with the help of groups as explained in the following theorem, called the
characterization theorem.

Theorem 1. [8] A complete hypergroup (H, ◦) can be represented as the union H =
⋃

g∈G
Ag of its

non-empty subsets Ag, with g ∈ G, where:

1. (G, ·) is an arbitrary group.
2. For any g1 6= g2 ∈ G, the subsets Ag1 and Ag2 are disjoint.
3. The hyperoperation on H is defined by the rule: if (a, b) ∈ Ag1 × Ag2 , then a ◦ b = Ag1·g2 .

We refer to G as the underlying group of the complete hypergroup H. Notice that if G
and H have the same cardinality, then they coincide and the complete hypergroup H is a
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group. Conversely, any group can be seen as a complete hypergroup. These are particular
cases, called improper complete hypergroups, that we will exclude from our study, where
we will deal only with proper complete hypergroups.

Example 1. Let G = S3 = 〈(12), (123)〉 be the permutation group with 6 elements generated
by the transposition (12) and the 3-cycle (123), i.e., G = {e, (12), (23), (31), (123), (321)}
and (H, ◦) a complete hypergroup with 9 elements having the underlying group G and given
by the following partition: Ae = {a0}, A(12) = {a1, a2}, A(23) = {a3, a4}, A(31) = {a5, a6},
A(123) = {a7}, A(321) = {a8}. Based on the characterization theorem, the Cayley table of the

complete hypergroup H is the following one:

◦ a0 a1 a2 a3 a4 a5 a6 a7 a8
a0 a0 a1, a2 a1, a2 a3, a4 a3, a4 a5, a6 a5, a6 a7 a8
a1 a1, a2 a0 a0 a7 a7 a8 a8 a3, a4 a5, a6
a2 a1, a2 a0 a0 a7 a7 a8 a8 a3, a4 a5, a6
a3 a3, a4 a8 a8 a0 a0 a7 a7 a5, a6 a1, a2
a4 a3, a4 a8 a8 a0 a0 a7 a7 a5, a6 a1, a2
a5 a5, a6 a7 a7 a8 a8 a0 a0 a1, a2 a3, a4
a6 a5, a6 a7 a7 a8 a8 a0 a0 a1, a2 a3, a4
a7 a7 a5, a6 a5, a6 a1, a2 a1, a2 a3, a4 a3, a4 a8 a0
a8 a8 a3, a4 a3, a4 a5, a6 a5, a6 a1, a2 a1, a2 a0 a7

Example 2. Considering the same group G as in Example 1 and a complete hypergroup H of the
same cardinality 9, but with a different partition, i.e., Ae = {a0, a1}, A(12) = {a2}, A(23) = {a3},
A(31) = {a4}, A(123) = {a5, a6}, A(321) = {a7, a8}, we obtain the following Cayley table for H:

◦ a0 a1 a2 a3 a4 a5 a6 a7 a8
a0 a0, a1 a0, a1 a2 a3 a4 a5, a6 a5, a6 a7, a8 a7, a8
a1 a0, a1 a0, a1 a2 a3 a4 a5, a6 a5, a6 a7, a8 a7, a8
a2 a2 a2 a0, a1 a5, a6 a7, a8 a3 a3 a4 a4
a3 a3 a3 a7, a8 a0, a1 a5, a6 a4 a4 a2 a2
a4 a4 a4 a5, a6 a7, a8 a0, a1 a2 a2 a3 a3
a5 a5, a6 a5, a6 a4 a2 a3 a7, a8 a7, a8 a0, a1 a0, a1
a6 a5, a6 a5, a6 a4 a2 a3 a7, a8 a7, a8 a0, a1 a0, a1
a7 a7, a8 a7, a8 a3 a4 a2 a0, a1 a0, a1 a5, a6 a5, a6
a8 a7, a8 a7, a8 a3 a4 a2 a0, a1 a0, a1 a5, a6 a5, a6

Notice that, using the same underlying group but different partitions, we may obtain
non-isomorphic complete hypergroups of the same cardinality.

The aim of this presentation is to gather the main properties of complete hypergroups,
with an emphasis on those studied in the last years. We believe that an overview on this
theory, fixing the notations and terminology, will open new lines of research on complete
hypergroups or other topics related to them.

2. Properties of Complete Hypergroups

For a complete understanding of this topic, the reader is refereed to the books [8,9]
and overview articles [10,11].

2.1. Reversibility, Regularity and Reducibility Properties

One main difference between groups and hypergroups is in the existence of the
identity elements. In a group, an identity element always exists and it is unique, while in a
hypergroup it may exist or not, and it may be unique or not. The same property applies on
inverses. Let us recall their definitions.
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An element e in a hypergroup (H, ◦) is called a left (or right) identity, if a ∈ e ◦ a (or
a ∈ a ◦ e) for all a ∈ H. If, for all a ∈ H, we have a ∈ a ◦ e ∩ e ◦ a, then a is called a bilateral
identity (or simply, an identity). An element a−1 ∈ H is called a left (or right) inverse of
a ∈ H, if there exists an identity e ∈ H such that e ∈ a−1 ◦ a (or e ∈ a ◦ a−1). If a−1 is a left
and right inverse for a ∈ H, then it is called an inverse of a and a is an invertible element.

A hypergroup (H, ◦) is called regular if it has at least one bilateral identity and each
element has at least one inverse. A regular hypergroup is called reversible if for each
a, b, c ∈ H such that a ∈ b ◦ c it follows that b ∈ c ◦ a−1 and c ∈ b−1 ◦ a.

The natural bridge between the classical algebraic structures and the related hyper-
compositional structures is represented by the fundamental relations. There exist two
groups of such relations: the first one is composed with those relations that connect groups
with hypergroups, rings with hyper-rings and so on, while the second one refers to the
equivalences defined by Jantosciak [12] in order to obtain reduced hypergroups. Within the
first group, we recall the equivalence β defined as β =

⋃
n≥1 βn, where β1 is the diagonal

relation on H and βn is obtained by the rule aβnb if and only if there exist x1 . . . , xn ∈ H
such that {a, b} ⊆ x1 ◦ · · · ◦ xn. It is well known that in the case of a hypergroup, β is the
smallest equivalence such that the quotient H/β is a group. The heart of a hypergroup is
then the set ωH = {x ∈ H | ϕH(x) = 1}, where ϕ : H −→ H/β.

In the following result, we will summarize the main properties of the complete hyper-
groups related to the above-mentioned concepts.

Theorem 2. [13] For any complete hypergroup (H, ◦) with the underlying group G, i.e.,
H =

⋃
g∈G Ag, the following properties hold:

(1) The heart ωH is the set of all bilateral identities of H. In particular, ωH = Ae, where e is
the identity of the group G.

(2) H is a reversible and regular hypergroup.

Unlike what happens in group theory, two elements in a hypergroup may play inter-
changeable roles with respect to the hyperoperation, which are mathematically described
by the following three equivalences, called fundamental relations by Jantosciak [12]. In a
hypergroup (H, ◦), the two elements x and y are called

• Operationally equivalent, denoted x ∼o y, if x ◦ a = y ◦ a and a ◦ x = a ◦ y for any
a ∈ H;

• Inseparable, denoted x ∼i y, if x ∈ a ◦ b if and only if y ∈ a ◦ b for a, b ∈ H;
• Essentially indistinguishable, denoted x ∼e y, if x ∼o y and x ∼i y.

A hypergroup is then called reduced if the equivalence class of any element in H is a
singleton. For any proper complete hypergroup, the essentially indistinguishable relation
has the following interpretation: x ∼e y ⇐⇒ ∃g ∈ G : x, y ∈ Ag. Considering Example 1,
one may notice that the equivalence classes with respect to the fundamental relation ∼e are
indeed the sets Aσ, with σ ∈ S3. We can conclude with the following property.

Theorem 3. [13] Any proper complete hypergroup is not reduced.

2.2. The Class Equation

Two elements a and b are conjugated if there exists g ∈ G such that ga = bg. This is
an equivalence relation on G and the equivalence class of a, called the conjugacy class, is
denoted by [a]. Knowing that k(G) is the number of the distinct conjugacy classes of the
elements of G and Z(G) is the centre of G, we may write the class equation as follows:

|G| = |Z(G)|+
k(G)

∑
i=|Z(G)|+1

|[xi]|,

where G =
⋃k(G)

i=1 [xi].
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In order to obtain a similar equation on a hypergroup, we first define the conjugation
relation using the complete closure of a set. Two elements a and b in a hypergroup H are
conjugated if there exists c ∈ H such that C(c ◦ a)∩C(b ◦ c) 6= ∅ and we denote it by a ∼H b.
In a complete hypergroup, this relation reduces to a simpler form, very similar to the one
defined on groups, and indeed a ∼H b ⇐⇒ ∃c ∈ H : c ◦ a = b ◦ c. Based now on the
characterization theorem of a complete hypergroup written as H =

⋃
g∈G Ag, two elements

a ∈ Ag1 and b ∈ Ag2 are conjugated if and only if g1 and g2 are conjugated in G. Thus, the
number k(H) of the distinct conjugacy classes in the finite complete hypergroup H is equal
to the number k(G) of the distinct conjugacy classes of the underlying group G, and the
following theorem holds.

Theorem 4. [14] The class equation for a finite complete hypergroup H has the form

|H| = |ωH |+ ∑
a/∈ωH

|[a]|.

2.3. The Commutativity Degree

One of the famous arithmetic functions defined on a group is the commutativity
degree, expressed as the probability that two distinct elements commute in the group.
Defining c(G) = {(x, y) ∈ G2 | xy = yx}, the commutativity degree is the number

d(G) =
|c(G)|
|G|2 .

Extending this definition to complete hypergroups, we may introduce the commuta-
tivity degree on a hypergroup as follows:

d(H) =
|{(a, b) ∈ H2 | ∃gi, gj ∈ G, a ∈ Agi , b ∈ Agj , gigj = gjgi}|

|H|2 ,

that can be also expressed using the conjugacy classes of the elements in H. If CG(g) =
{h ∈ G | gh = hg} is the centralizer of the element g in G, then the centralizer of x ∈ H has
the form CH(x) = {y ∈ H | x ◦ y = y ◦ x} = ⋃

g∈CG(gx) Ag, where for x ∈ H, there exists an
unique gx ∈ G such that x ∈ Agx .

Theorem 5. [14] Let H =
⋃

g∈G Ag be a finite complete hypergroup with the underlying group G
such that |CH(x)| = |CH(y)|, for any y in the conjugacy class [x] of x. Then, the commutativity
degree of H is

d(H) =
∑

k(H)
i=1 |[xi]| · |CH(xi)|

|H|2 ,

where k(H) denotes the number of distinct conjugacy classes of the elements in H.

The condition expressed in the hypothesis of Theorem 5 is a necessary one in order to
have the formula given before.

Example 3. Continuing with Example 2 and calculating the conjugacy classes of the elements in
the group S3, we obtain [e] = {e}, [(12)] = {(12), (23), (31)} and [(123)] = {(123), (321)},
while their centralizers are CS3(e) = S3, CS3((12)) = {e, (12)}, CS3((23)) = {e, (23)},
CS3((31)) = {e, (31)}, CS3((123)) = {e, (123), (321)}. Let us calculate now the conjugacy
classes of the elements of the complete hypergroup H: [a0] = [a1] = Ae, [a2] = [a3] =
[a4] = A(12) ∪ A(23) ∪ A(31) = {a2, a3, a4} and [a5] = [a6] = [a7] = [a8] = A(123) ∪
A(321) = {a5, a6, a7, a8}. Their centralizers are: CH(a0) = CH(a1) = H, CH(a2) = {a0, a1, a2},
CH(a3) = {a0, a1, a3}, CH(a4) = {a0, a1, a4} and finally CH(a5) = CH(a6) = CH(a7) =
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CH(a8) = {a0, a1, a5, a6, a7, a8}. We notice immediately that the condition in Theorem 5 is fulfilled.
Based on these data, the computation of the commutativity degree is then

d(H) =
|[a0]| · |CH(a0)|+ |[a2]| · |CH(a2)|+ |[a5]| · |CH(a5)|

81
=

2 · 9 + 3 · 3 + 4 · 6
81

=
51
81

.

The condition expressed in the hypothesis of Theorem 5 is a necessary one in order to
have the formula given before.

Example 4. Keeping the same group S3 and considering a different partition of the complete
hypergroup H of cardinality 9, as for example Ae = {a0, a1}, A(12) = {a2}, A(23) = {a3},
A(31) = {a4, a5}, A(123) = {a6}, and A(321) = {a7, a8}, then we find that the elements a2 and
a5 have the same conjugacy classes, i.e., [a2] = A(12) ∪ A(23) ∪ A(31) = {a2, a3, a4, a5} = [a5],
while they have different centralizers: CH(a2) = Ae ∪ A(12) = {a0, a1, a2} and CH(a5) =
Ae ∪ A(31) = {a0, a1, a4, a5}. Thus |CH(a2)| 6= |CH(a5)|, so we cannot apply the formula found
in Theorem 5, but just the definition of the commutativity degree.

2.4. The Euler’s Totient Function

We start again with the basic concept related to this aspect in group theory, where by
o(a) we denote the order of the element a in the group G and exp(G) is the exponent of the
group. Then, the Euler’s totient function has the form:

ϕ(G) = |{a ∈ G | o(a) = exp(G)}|.

Since in a hypergroup we may have or not identities, the role of the order of an
element (as in group theory) is taken by the concept of the period of an element, defined as
p(a) = min{k ∈ N | ak ⊆ ωH} and then we define [15] the Euler’s totient function as

ϕ(H) = |{a ∈ H | p(a) = exp(H)}|.

In particular, in a complete hypergroup H =
⋃

g∈G Ag with the underlying group G, the
period of the element a ∈ Ag is the same as the order of g in G and then exp(G) = exp(H)
and the Euler’s totient function has the form

ϕ(H) = |{x ∈
⋃

g∈G
Ag | x ∈ Ag, o(G) = exp(G)}| = ∑

o(g)=exp(G)

|Ag|.

Example 5. Continuing with Example 1, we obtain ωH = Ae = {a0}. Calculating the periods of
all elements in H, we find p(a0) = 1, p(ai) = 2, for 1 ≤ i ≤ 6, and p(a7) = p(a8) = 3. Thus,
exp(H) = 3 = exp(S3) and thereby ϕ(H) = |{x ∈ H | p(x) = exp(H)}| = 2.

Calculating the orders of the elements of the group S3, we obtain ϕ(H) = ∑
o(g)=exp(G)=3

|Ag| =

|A(123)|+ |A(321)| = 1 + 1 = 2, so the formula is verified.

3. Conclusions

A similar study investigating these main properties related to the above mentioned
arithmetic functions can also be conducted on other types of hypergroups, as for example
cyclic hypergroups, canonical hypergroups or HX-groups, emphasizing the differences
with respect to groups.
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