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Abstract: The three-dimensional problem of the modelling of elastic wave propagation in a multi-
layered acoustic metamaterial, a periodic elastic composite with periodic arrays of interface cracks or
planar voids of arbitrary shape, is considered. The boundary integral equation method is extended
for this purpose. The unknown crack-opening displacement vectors for each array are related
using the Floquet theorem and solved using the Galerkin method at reference delaminations in
the arrays. The developed method provides an efficient tool for fast parametric analysis of the
influence of the periodic crack array characteristics on the transmission and diffraction of elastic
waves. Two modifications to the boundary integral equation method are proposed and compared for
rectangular cracks. To reduce computational costs, a preliminary analytical evaluation of the arising
integral representations in terms of the Fourier transform of Green’s matrices and the crack-opening
displacements are presented.

Keywords: wave propagation; boundary integral equation method; spectral method; acoustic meta-
material; crack; void; periodic composite; diffraction

1. Introduction

A novel class of composites, the so-called acoustic metamaterials (AMMs), which pro-
vide advanced characteristics has attracted the attention of researchers in recent
years [1,2]. AMMs reproduce unique properties that open up prospects for passive and
active wave energy manipulation. Currently, various AMMs have already been developed
with applications in ultrasonic technology, acoustoelectronics, hydroacoustics, architectural
acoustics, and sound absorption [3,4].

AMMs typically have a periodic or quasi-periodic structure, where arrays of inho-
mogeneities such as holes, voids, or inclusions are embedded in a matrix that can also be
a composite. The mathematical modelling is usually performed at the first stages of the
design of new AMMs to select the structure parameters that provide the desired wave
properties. In this study, multi-layered AMMs with doubly periodic arrays of delami-
nations/cuts at some interfaces are considered. To describe the dynamic behaviour of
the considered AMMs, a modification to the boundary integral equations method (BIEM)
proposed by Glushkov and Glushkova [5] is developed. A similar employment of the BIEM
was proposed in [6], where the propagation of plane waves through the interface of two
elastic media with doubly periodic interface crack arrays was considered. In this study,
the advanced BIEM is presented to simulate wave motion in a multi-layered AMM with
multiple doubly periodic arrays of cracks or voids.
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2. Statement of the Problem

The problem of elastic wave propagation in multi-layered AMMs composed of N
periodically arranged unit-cells made from two elastic isotropic layers is considered. M
doubly periodic arrays of cracks or infinitesimally thin voids are situated at the interfaces
forming a rectangular lattice. It is assumed that the periodic stack of layers is located
between two elastic half-spaces and a plane wave comes from the lower half-space at
a certain angle to the interfaces. For convenience, the Cartesian coordinates {x1, x2, x3}
are introduced so that the interfaces are parallel to x1Ox2, while the plane and voids are
situated along axes Ox1 and Ox2. An example of the AMM with M = 2 doubly periodic
arrays is shown in Figure 1. Accordingly, V0 = {x3 ≤ 0} is the lower half-space and
V2N+1 = {x3 > h2N} is the upper half-space. The unit-cell consists of two components and,
therefore, a total of 2N layers Vk = {|x1| < ∞, |x2| < ∞, hk−1 < x3 ≤ hk} are considered.
Each infinite three-dimensional layer Vk is made of homogeneous, isotropic material with
the mass density ρk, Young’s modulus Ek, and Poisson’s ratio νk.
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Figure 1. Geometry of the problem: multi-layered elastic periodic composite with two doubly
periodic arrays of cracks (with rectangular lattice).

Multiple doubly periodic arrays Ω(m) of cracks or voids with the same spacing between
the crack centres are situated in the planes x3 = d(m) and m = {1, 2}. The rectangular
lattice corresponding to each doubly periodic array Ω(m) is based on the vectors g1 and
g2 with dimensions s1 and s2 of the unit-cell, as shown in Figure 2a. In accordance with
the location of the cracks, the whole media can be considered as a doubly periodic array of
unbounded parallelepipeds

⋃
j1,j2 G(m)

j1 j2
= {|x1| ≤ s1, |x2| ≤ s2, |x3| < ∞}, which allows to

describe scattering by all doubly periodic arrays. The intersection of the parallelepiped

G(m)
00 = {x| (x1, x2) = β1g1 + β2g2, |x3| < ∞}, βi ∈ [−1/2, 1/2]

with the plane x3 = d(m) is chosen as a reference unit-cell in the m-th array containing the
reference crack Ω(m)

00 . The centre of the reference crack Ω(m)
00 for each array is assumed to be

the origin of the Cartesian coordinates. Geometrical sizes of the unit-cell are denoted as

s1 = |g1|, s2 = |g2|,
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whereas the centre of the unit-cell G(m)
ij is defined by the vector

a(m)
j1 j2

= {x(m)
j1 j2

, y(m)
j1 j2

, d(m)} = {s1 j1, s2 j2, d(m)}.

The centre of the crack-like voids Ω(m)
j1 j2

is shifted from the centre of the unit-cell by

vector b(m), as shown in Figure 2b.
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Figure 2. m-th doubly periodic array of rectangular cracks: (a) Lattice for m-th doubly periodic array.
(b) The reference unit-cell.

The steady-state harmonic motion of the multi-layered periodic elastic structure with
circular frequency ω is governed by the Lame–Navier equation with respect to the displace-
ment vector u. The displacement vector u and the traction vector τ = T3[u] = (σ13, σ23, σ33)

are assumed continuous outside the voids Ω(m)
i,j , while stresses and displacements are

related by Hooke’s law. The stress-free boundary conditions are assumed at the crack faces
such that an unknown crack-opening displacement (COD) function ∆u(m)(x) is introduced
for each plane x3 = d(m) containing an m-th doubly periodic array.

3. The Advanced Boundary Integral Equation Method

Let us consider plane wave scattering propagating in the composite by M arrays. In
this case, the wave-field u0 incident by a plane wave incoming from the lower half-space
V0 can be simulated using the transfer matrix method [7]. The total wave-field in the
composite is the sum of the incident wave-field u0 propagating in the layered structure
in the absence of inhomogeneities and the wave-fields ũm

j1,j2
scattered by each crack in the

doubly periodic arrays Ωm =
⋃

j1,j2
Ω(m)

j1 j2
.
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The mutual effect of the cracks on each other can be taken into account using the
Floquet theorem. Therefore, the two-dimensional Fourier transform of the COD ∆U with
parameter α = {α1, α2} has the following representation

∆U(m)(α) =
∞

∑
j1,j2=−∞

∆U(m)
j1 j2

(α) =
∞

∑
j1,j2=−∞

∆U(m)
00 (α) eia(m)

j1 j2
·αp , (1)

where αp = k0 p + α, p = {p1, p2} is the two-dimensional projection of the unit vector of
the wave propagation vector on the plane x3 = d(m), and k0 is the wave-number of the
incident plane wave with polar and azimuthal incidence angles θ and φ, respectively.

On the other hand, the scattered field can be expressed in terms of the two-dimensional
Fourier transform in accordance with the BIEM [5,6] as contour integrals along the contours
Γi bending poles and branch points of the two-dimensional Fourier transform of Green’s
matrix for the whole structure (see [8]).Notice that the Fourier transform of the unknown
traction vector can be expressed in terms of the COD.

Substitution of the integral representation of the total wave-field into the stress-free
boundary conditions, accounting for Hooke’s law and Floquet’s theorem, gives the follow-
ing boundary integral equation for the reference cracks in the m-th array:

1
4π2

M
∑

i=1

∫
Γ1

∫
Γ2

S̃(i)(αj1 j2 , d(m))
∞
∑

j1,j2=−∞
∆U(i)

00(α
j1 j2) eia(m)

j1 j2
·αp e−iα·ydα1dα2 = −τ0(x), x ∈ Ω(m)

00 (2)

αj1 j2 =

{
−k0 p1 +

2π j1
s1

,−k0 p2 +
2π j2

s2

}
, y = {x1, x2}.

For more details related to the derivation of the boundary integral equation and S̃(i)

see [9].
The boundary integral in Equation (2) is solved using the Galerkin scheme. The

unknown COD for the crack Ω(m)
00 in the reference unit-cell G(m)

00 is approximated by the
complete set of basis functions ϕk(x1, x2):

∆u(m)
00 (x1, x2) =

∞

∑
k=1

c(m)
k ϕ

(m)
k (x1, x2). (3)

The choice of basis and projection functions depends on the cracks shape. In the case
of rectangular cracks, the CODs can be expanded in terms of the Chebyshev polynomials
Un(x) of the second kind with the square root weight pk(x) = Uk−1(x)

√
1− x2 for each

coordinate. For arbitrary-shaped cracks/voids the unknown COD vector is expanded in
terms of axisymmetric basis functions

φ(x1, x2) =

{ (
1− x2

1 − x2
2
)π−1, x2

1 + x2
2 < 1;

0 otherwise.

Though convergence of the COD is not guaranteed in a continuous metric, the COD
convergence of the solution at the nodal points for all h > 0 is guaranteed [5] .

As a result of applying the Bubnov–Galerkin scheme to (2), keeping N terms after
reduction, the following system is obtained:

M

∑
m=1

N

∑
k=1

A(m)
jk · ck = f j, j = 1, 2 · · ·M. (4)
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The right-hand side of system of (4) is the projection of the wave-field τ0 onto the
projection function ψj(x1, x2), whereas the double series

A(m)
jk =

1
s1s2

M1

∑
j1=−M1

M2

∑
j2=−M2

S̃(i)(αj1 j2 , d(m))e−iαj1 j2 ·b(m)
Φ∗j ((α

j1 j2)∗)Ψ∗j ((α
j1 j2)∗) (5)

describes the scattering of the wave-field by the m-th array, induced due to the presence of
j-th array. Here, Φj and Ψj are the two-dimensional Fourier transforms of the basis and
projection functions, respectively.

The calculation of the left-hand side of the system (4) demands computations of
double series (5), which exhibit a low convergence rate for rectangular cracks if Chebyshev
polynomials are employed as basis and projection functions due to the Fourier transform
Φk(αj) ∼ α−3/2

j and kernel S̃(i)(α1, α2) ∼ α at α→ ∞. Thus, the double series summarize
the products of four Bessel and power functions. The convergence of the series (5) is shown
to estimat the absolute values. Moreover, such analytic evaluations allow for the direction
to be determined in the α-plane, where the slowest convergence is observed (along axes
Oα1 and Oα2). It is shown that the terms with {α1, α2} lying inside a certain asteroid and
along the coordinate axes provide the largest contribution to the sum, which is used to
calculate the double series.

Figure 3 illustrates the convergence of several non-zero components of the matrices
A1

jk at lower and higher frequencies k0s2 = 2 (Figure 3a) and k0s2 = 10 (Figure 3b), where
k0 is the wave-number of incoming plane longitudinal waves. The variation in the relative
error during the double series calculation

εr

(
Ajk; ij

)
=

Ajk; ij − A(exact)
jk; ij

|A(exact)
jk; ij |

with respect to the number of terms Mi is presented here. A(exact)
jk1k2; ij is calculated numerically

setting M1 = M2 = 2× 104. The higher the frequency, the greater the convergence rate of
the double series. The latter can be explained by the fact that the Fourier transform of the
kernel of the boundary integral equation S(α1, α2) decreases slowly at lower frequencies ω.
For non-square rectangular cracks (l1 6= l2), the ratio between the number of terms N2/N1
should be approximately equal to the ratio l2/l1.

10-1

10-6

R
e
la

ti
v
e
 e

rr
o
r 

 ε
r

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

(b)   k
0 
s

2
 = 10(a)   k

0 
s

2
 = 2

A
00; 11

A
01; 11

 

A
11; 11

 

A
01; 22

A
01; 33

Number of termsNumber of terms

Figure 3. The convergence of the double series.
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4. Conclusions

Two choices of basis and projection functions have been compared. In the case of the
same basis and projection functions in the Bubnov–Galerkin method, a slow convergence
of the arising double series is observed. If axisymmetric functions, proposed by Glushkov
and Glushkova [10], are used as projection functions in the Petrov–Galerkin method,
guaranteeing fast convergence in the series, then more basis functions are required for
better accuracy in the crack-opening displacements. The results of the numerical analysis
show good accuracy and convergence rate of the proposed method. The authors believe that
the proposed advanced BIEM will be further employed for experimental and theoretical
studies of wave propagation in acoustic metamaterials with doubly periodic arrays of
crack-like voids, see, e.g., [11].
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