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Abstract: Diffusive predator–prey systems are well known to exhibit spatial patterns obtained by
using the Turing instability mechanism. reaction–diffusion systems were already studied by replacing
the time derivative with a fractional order derivative, finding the conditions under which spatial
patterns could be formed in such systems. The recent interest in fractional operators is due to
the fact that many biological, chemical, physical, engineering, and financial systems can be well
described using these tools. This contribution presents a diffusive predator–prey model with a
finite interaction scale between species and introduces temporal fractional derivatives associated
with species behaviors. We show that the spatial scale of the species interaction affects the range
of unstable modes in which patterns can appear. Additionally, the temporal fractional derivatives
further modify the emergence of spatial patterns.

Keywords: pattern formation; predator–prey systems; fractional derivatives

1. Introduction

In population dynamics, Lotka–Volterra equations describe a system of two coexisting
species whose densities oscillate in time [1]. These systems can exhibit diffusion-driven
instabilities, which are explained by the Turing mechanism for diffusion-reaction sys-
tems [2,3], through extensions or modifications of the original model [4–6]. Predator–prey
interaction is a multi-factor dependent process. For instance, some studies consider hunting
cooperation, prey defense mechanisms, limited localized resources, and cross-diffusion
terms for studying the influence of movements on both species [7].

It has been proposed that the relative distance between a predator and prey can
influence the probability of an encounter between them. The latter is modeled through a
nonlinear reactive term that considers the mean of the possible interactions within a fixed
radius centered on one of the two species. [8,9]. These finite-range interaction models show
that the emergence of patterns is not only driven by diffusion but also there are regions
where the instability is driven by the interaction range [8]. Recently, this model has been
extended by introducing a constant drift and constraining the system to a large and narrow
environment [10]. In such an analysis, the geometry of the boundaries induces an effect that
couples with the drift. Thus, the corresponding dispersion relation has three parameters:
the ratio of diffusivities, a dimensionless drift, and the ratio of interaction lengths, which
enlarge the parameter space and, therefore, the possibilities of obtaining different kinds of
spatio-temporal patterns.

On the other hand, many processes, not only in ecology but in many other areas, have
been adequately described through models that include equations with fractional time
derivatives, which are well-known to model memory and non-local effects [11]. Including
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such effects, beyond just modifying the nonlinear interaction terms, brings the model closer
to a more realistic situation [12]. For reaction–diffusion models with anomalous diffusion,
it has been seen that the parameter that drives the instability is modified by the anomalous
diffusion exponent [13]. The inclusion of temporal fractional derivatives in predator–prey
systems has been shown to help control the stability of patterns for species coexistence [14];
memory effects can also shift the bifurcation threshold in such systems [15]. It has also
been shown that in systems where patterns do not naturally emerge, fractional derivatives
can induce diffusion-driven instability and thus pattern formation, hence the importance
of using this kind of model [16,17].

In general, the changes induced by fractional time derivatives in reaction–diffusion
systems have been extensively studied in the literature [18–22]. In almost all cases, it was
found that the nonlinearity of the functions describing the kinetics had an essential role in
the generation of spatial and temporal patterns.

In this work, we are interested in finding a relationship between the fractional deriva-
tive and the Turing instability, that is, if the temporal fractional derivative induces Turing
instability and produces spatial patterns. We present the stability analysis of the model that
considers the mean number of interspecies interactions in a given region defined by the
interaction distance. This distance is one of the parameters guiding the system towards the
instability leading to pattern formation. We consider whether replacing the time derivative
by a fractional operator accounts for memory effects in a predator–prey diffusive model
with a finite interaction scale between species.

The manuscript is structured as follows. Section 2 analyzes the predator–prey model
with a finite interaction length. We find the steady state and the corresponding dispersion
relation that depends on three parameters. The instability curve for the control parameter is
found when the ratio of the characteristic lengths of each species is larger than two, which
is the set value in previous studies. Section 3 presents the system’s stability analysis when
a fractional operator replaces the time derivative to account for memory effects, and its
consequences are discussed. Section 4 summarizes the obtained results.

2. Predator–Prey Model with Finite Interaction Length

Let us consider a model characterized by a system of two equations: one for the prey
N(x, t) and one for the predator P(x, t). They describe diffusion in the physical space, and
the strength of the interaction (nonlinear term) is a function of individuals’ proximity. These
reaction–diffusion models with the spatial interaction scale have been widely applied to
model the competition of species’ coevolution in an ecology community. We introduce two
different length scales to consider different effective interaction ranges, the region where
prey and predators interact may have different relevance to predator growth and prey
death. These scales have an important role in pattern formation. The model is as follows:

∂N(x, t)
∂t

= DN
∂2N(x, t)

∂x2 + rN(x, t)− αN(x, t)
∫ x+L1

x−L1

P(s, t)ds, (1)

∂P(x, t)
∂t

= DP
∂2P(x, t)

∂x2 −mP(x, t) + βP(x, t)
∫ x+L2

x−L2

N(s, t)ds. (2)

Predators consume the prey with an intrinsic rate α and reproduce with the rate
β; r is the growth rate of prey, and predators are assumed to die spontaneously with
rate m. DN and DP are the constant diffusion coefficients of prey and predators, respec-
tively. The conditions under which the spatio-temporal patterns occur are first stud-
ied considering the stationary case with no diffusion. This gives us the stationary state
(N̄, P̄) = (m/(2βL2), r/(2αL1)). By considering now small harmonic perturbations for
both species, we pbtain the following dispersion relation of the system with diffusion

λ̂(K) = −K2 +

√
rmL2

1
DK

√
− sin2 K cos K. (3)
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where DN = DP = D, L2 = 2L1, K = kL1, and λ̂ = λ
L2

1
D . The system was further studied

in [10], and it was found that a general dispersion relation is the following:

λ̂ = − (1 + d)
2

(K2)± 1
2

[
(1− d)2K4 − 4µ2 sin(K) sin(K`)

K2`

]1/2

, (4)

from now on λ̂ = λ
L2

1
DN

, and the parameters d = DP/DN , µ =
√

rmL2
1/DN , and ` = L2/L1

were introduced. Certainly if d = 1 and ` = 2, this reduces to the above expression.
The system (1) and (2) linearized around the stationary point, with no diffusion, leads

to a characteristic equation λ̂ = ±iµ, two conjugate imaginary eigenvalues, which is the
limiting case for the instability condition since it has no real part. As the eigenvalues are
purely imaginary and conjugate to each other, this fixed point must be a center for closed
orbits in the local vicinity, i.e., an attractive or repulsive spiral in the phase space.

Turing Instability Parameter Space

For several values of µ, it has been seen that the critical value dc is reached for values
close to 1; therefore, when increasing, there will be no pattern formation. For `, something
similar happens; it has been seen that to guarantee pattern formation, ` 6= 1 must be
fulfilled, and usually it is just considered ` = 2, as in Equation (3). However, it is not the
only possible value.

In Figure 1, we plot the dispersion relation (4) with d = 1, as a function of K, varying
the parameter µ and for different values of ` indicated with different colors. This figure
shows that as ` increases, different ranges of unstable modes appear for each fixed µ value.
The choice of values ` > 2 increases the space of possibilities that meet the instability
condition and pattern formation.

Figure 1. Dispersion relation λ̂(K) varying the parameter µ. Several values of the ratio between the
interaction lengths are presented with different color plots; values increase to the left of ` = 2 (blue),
` = 3 (green), ` = 5 (red), ` = 10 (dark purple), and ` = 20 (purple).

To satisfy the instability condition Re(λ(K)) < 0 for pattern formation, it is usually
necessary to verify the so-called Turing conditions [2], a number of inequalities that come
from the analysis of the dispersion relation. This is equivalent to considering the instability
threshold when λ̂c = 0 in the characteristic equation, imposing a relation among the system
parameters and the critical value Kc, which determines such a threshold. For Equation (4),
we find that the parameters to study the instability of the system will be (µ, `). Remember
that µ measures the competition of time scales given by the species’ growth, death, and
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diffusion rates, while ` is the ratio between the characteristic lengths. Choosing µ2 as the
control parameter [23], it is possible to obtain the following relation, having fixed d = 1,

µ2(K, `) = − `K6

sin(K) sin(K`)
. (5)

This expression has a minimum in Kc obtained by deriving and equaling zero; this
reduces to solving the next equation, and as we can see it will depend on the choice of `,

Kc(cot (Kc) + ` cot (Kc`)) = 0. (6)

We can construct the stability curve µc(`) in parameter space, which satisfies the above
equations, such that patterns will emerge for values greater than the critical value of the
control parameter µ > µc. See the orange dots and curve in Figure 2.

The ratio of the interaction lengths of the two species `, as mentioned in [8], is an
important parameter since it drives the instability together with d. As we can see in Figure 2,
as ` increases, the parameter µ decreases but does not vanish.
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Figure 2. Stability curve µc as a function of ` with different fractional order values α. To guarantee
pattern formation µ must take values above the orange curve.

3. Fractional-Order System Stability Analysis

Let us now consider a reaction–diffusion system of fractional order in the temporal
derivative

∂αN(x, t)
∂tα

= DN
∂2N(x, t)

∂x2 + f (N, P), (7)

∂αP(x, t)
∂tα

= DP
∂2P(x, t)

∂x2 + g(N, P), (8)

where f , g are usually nonlinear functions, and in this case we will consider the same
dynamics as in (1) and (2). The fractional time derivative is defined in Caputo’s sense as

∂αF(t)
∂tα

:=
1

Γ(1− α)

∫ t

0

∂F(t′)
∂t′

dt′

(t− t′)α
, (9)

with 0 < α < 1, which is defined by its Laplace transform as follows:

L̂
{

∂αF(t)
∂tα

}
= sα F̃(s)− sα−1F(0+),

where F̃(s) = L̂{F(t)}, and 0 < α < 1.
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To study the stability of the system, we first consider the diffusionless case. Let
P = (N̄, P̄) be an equilibrium point of the system; its the stability of can be determined by
linearizing the system (7) and (8) around it, which leads to the following linear system: ∂α N̄(x,t)

∂tα

∂α P̄(x,t)
∂tα

 =

(
fu fv
gu gv

)
P︸ ︷︷ ︸

A

(
N̄
P̄

)
. (10)

By transforming the system to Laplace space, it is possible to rearrange it as follows:

(λ(s)I−A)︸ ︷︷ ︸
∆(s)

(L(N̄),L(P̄)) = (L{N̄(0)},L{P̄(0)})sα−1, (11)

where λ(s) = sα. The equilibrium point P of the system is stable if all the roots of the
characteristic equation ∆(s) = 0 have negative real part, i.e., Re(λ) < 0, additionally to
satisfying the usual conditions [2,23]. In the complex plane, the negativity condition means
that the argument of s must be greater than π

2 ; this implies that the argument of λ must be

| arg (λ)| > α
π

2
, (12)

this is called the Mantignon form for the stability criterion for the fractional case [24,25].
For the system (1) and (2), it was shown that, in the absence of diffusion, µ =

sin
(

arg
(

λ̂
))

; condition (12) implies that µ > µα = sin(απ/2), which defines a constraint
surface in the extended parameter space (µ, `, α), such that, besides satisfying the condition
seen above µ > µc, this condition must also be fulfilled to guarantee the stability of the
steady state associated with the order α.

In Figures 2–4, the effect of this constraint can be seen. In Figure 2, µc(`) is plotted, so
to guarantee pattern formation µ must take values above this curve. Considering different
values of alpha, we see that for larger ell, the values of muc(`) must be beyond those
determined by muc(`)., i.e., there will be a region associated with the order α, given by
µα > µc, for which the parameter values that previously met the instability conditions are
now discarded, and pattern formation is no longer possible.

Notably, for the extreme case α = 1, condition (12) merely reduces to asking for µ > 1
values. Although this condition does not influence the non-fractional case, it does set an
upper bound on the values of µ dropped by the fractional order. This case is illustrated as a
dotted line in Figure 2. The interesting point is that its intersection with the curve µc, which
occurs at approximately `∗ ≈ 6, indicates the values of ` above from which the fractional
order will have an effect, depending on the value of α. In Figures 3 and 4, the intersection
of the two surfaces µc and µα in the extended parameter space is shown for each value of
α. The region below the surface is just the region discarded by the fractional order of the
system, while the intersection curve gives the minimum ` for each α.
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Figure 3. Intersection of the two surfaces µc and µα in the extended parameter space for 0 < α < 1.

Figure 4. Alternative point of view of the intersection of the surfaces µc and µα.

4. Conclusions

Over the last few years, it has been seen that many physical, chemical, and bio-
logical systems, where memory effects cannot be neglected, are well described through
reaction–diffusion equations with fractional time derivatives. This work presents the
stability analysis of a reaction–diffusion system when a fractional operator replaces the
time derivative.

Early analyses found that this distance is indeed one of the parameters guiding the
system towards the instability that leads to pattern formation [8,9]. Later studies showed
that the parameter space for studying this instability could be extended to include drift
effects, as well as the large values of the characteristic length ratio and the parameter µ that
is a combination of the birth and death rates of the species and the characteristic time at
which they diffuse [10].
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Introducing the fractional time operator to include memory effects restricts the time
eigenvalue as a function of the fractional order of the derivative, in addition to the well-
known conditions. Thus, on the one hand, it is necessary to extend the parameter space to
include the fractional order. However, on the other hand, since several conditions must
be fulfilled simultaneously, the intersections of the restriction surfaces must be found to
find the corresponding critical values. In the specific case of the predator–prey system,
this is reflected in the fact that for large values of the characteristic length ratio—values
approximately greater than six—the value of µ must be taken above the critical value given
by the Turing conditions. How large this value should be depends on the fractional order.
That is, there is a region of µ values that in the usual case can form patterns but at the order
α is forbidden. When the interaction lengths of the species are very different, memory
effects cause the µ values that are suitable for pattern formation to be reduced.

The class of oscillations and their behavior will be analyzed in future work. The
present study reinforces the importance of the influence of the anomalous order in the for-
mation of unsteady state structures in a system where diffusivity is not the only parameter
guiding instabilities.
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