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Abstract: This work proposes a fractional-order mathematical model of a Buck-Boost converter
performing in continuous conduction mode. To do so, we employ the average duty-cycle representation
in state space, driven by the nonadimensionalize approach to avoid unit inconsistencies in the
model. We also consider a Direct Current (DC) analysis through the fractional Riemann–Liouville
(R-L) approach. Moreover, the fractional order Buck-Boost converter model is implemented in the
Matlab/Simulink setting, which is also powered by the Fractional-order Modeling and Control
(FOMCON) toolbox. When modifying the fractional model order, we identify significant variations
in the dynamic converter response from this simulated scenario. Finally, we detail how to achieve
a fast dynamic response without oscillations and an adequate overshoot, appropriately varying
the fractional-order coefficient. The numerical results have allowed us to determine that with the
decrease of the fractional order, the model presents minor oscillations, obtaining an output voltage
response six times faster with a significant overshoot reduction of 67%, on average.

Keywords: fractional order Buck-Boost converter; modeling; Riemann–Liouville fractional derivative;
FOMCON; steady state analysis

1. Introduction

Modern power electronics techniques aim to provide an efficient way to transform
electrical energy [1]. One is a Direct Current (DC–DC) voltage converter [2], which
transforms an input voltage into an output voltage of a different magnitude, preserving
its exact nature. The main goal is to supply a regulated voltage with a minimum
ripple. DC–DC converters are switched sources that transform the input voltage to the
desired output value with elements that intrinsically make the system non-linear. These
converters are widely used, especially as power supplies in computer hardware and medical
equipment [3]. The adequate control of the output voltage of these converters has been an
essential subject of study during the last few years. Therefore, the switching operation is
mainly responsible for their non-linear behavior and increasing design complexity [4,5].

The literature is prolific in studying integer-order models of DC–DC converters.
Nevertheless, the capacitor and inductor could behave depending on fractional
derivatives [1,6]. Therefore, fractional order models provide a more accurate description
and deeper insight into physical processes [7,8]. In recent years, there has been significant
study and development of fractional order systems [9,10]. Unfortunately, the inconsistency
of units at the time of modeling is often overlooked when trying to model these
electronic elements. There are three most used definitions of fractional calculus: Caputo
Derivative (CD), Riemann–Liouville (R-L) fractional integral, and Grünwald–Letnikov
(G-L) derivative [11]. Because of differences between the fractional calculus definitions,
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the model results under different fractional orders may present variations related to the
used fractional derivative and the occasional requirement of initial conditions.

This work analyzes the fractional order model of a Buck-Boost converter, its system
is nondimensionalized, and its properties are in Continuous Conduction Mode (CCM).
In doing so, we first nondimensionalized the fractional-order model of such a converter
represented in the state space. Next, we consider the converter’s duty cycle to achieve an
average model in the state–space of fractional order. Afterward, we analyze the non-linear
nature of the Buck-Boost converter fractional representation to determine the values for
which the converter’s performance increases.

The main contributions of the proposed Fractional-order Buck-Boost model were
a decrease in the output voltage oscillations or harmonics, fast settling time, and a
nondimensionalized version of the inductor current and capacitor voltage responses at a
stable state.

2. Mathematical Modeling

This section describes the mathematical procedure we followed for analyzing and
modeling the fractional-order Buck-Boost converter. First, we detail the most relevant
aspects of the traditional converter model using classical calculus. Then, we apply the
non-dimensionalization procedure to achieve a physically correct model.

2.1. DC–DC Buck-Boost Converter

The DC–DC Buck-Boost converter is derived from the combination of elementary
converters such as Buck and Boost. The resulting configuration can provide an output
voltage of inverse polarity, either greater or smaller than the input voltage. In this study,
we replace the integer-order capacitor and inductor with fractional-order ones to transform
the traditional converter model into the fractional domain. Figure 1 shows the circuit based
on non-integer calculus representing the fractional-order Buck-Boost converter.

+

+

Vi

ST

iC

RVo

+

SD

VL

Figure 1. Fractional-order Buck-Boost converter.

In this circuit, R [Ω] corresponds to the load, Vi [V] stands for the input voltage, ST
represents an ideal switching power MOSFET, and SD an ideal diode. In a broad sense,
the converter works as follows: when it operates in CCM, it appears in two switching states
defined below.

1. State 1: ST = ON and SD = OFF, for nT < t ≤ (n + Dc)T.
2. State 2: ST = OFF and SD = ON, for (n + Dc)T < t ≤ (n + 1)T.

In both states, n is an integer, T is the switching period, and Dc is the duty cycle of
the Pulse Width Modulation (PWM) commuting ST , which is defined as the ratio between
the turn-on time of ST and T. Hence, States 1 and 2 switch periodically in a stable state. In
practice, obtaining a fractional model of the capacitor and inductor is possible based on the
pioneering analysis performed by Zhang et al. [12] and Jiang and Zhang [13]. Consequently,
the inductor’s voltage vL and the capacitor’s current ic can be represented using a fractional
model, such as,

vL(t) = L
dαiL
dtα

, iC(t) = C
dβvC

dtβ
, (1)

where α and β denote the fractional order of the derivatives for the inductor’s current iL
and capacitor’s voltage vc, respectively.
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This model contains two features worth noticing. The former is when α = β = 1,
so the inductor and the capacitor components behave as ideal electronic components of
integer order derivatives. The latter is when {α, β} ∈ (0, 1) presents a fractional order.

Considering the particular case when ST = ON and SD = OFF, the fractional-order
Buck-Boost converter turns into State 1.

Applying Kirchhoff’s voltage law over the equivalent circuits of Figure 2, it is easy
to obtain,

L
dαiL
dtα

= Vi, C
dβvC

dtβ
= −vC

R
. (2)

+

Vi

ST= on

+

VL

iL

(a) (b)

Figure 2. Equivalent circuits of the Buck-Boost converter in State 1 with ST = on and SD = off.
(a) Equivalent circuit of the Buck-Boost converter in State 1 and ST = ON. (b) Equivalent circuit of
the Buck-Boost converter in State 1 and SD = OFF.

Meanwhile, when the ST = OFF and SD = ON, the fractional-order Buck-Boost
converter is in State 2, as Figure 3 depicts.

+

+

iC

RVo

SD= on

VL

Figure 3. Equivalent circuit of the Buck-Boost converter in State 2 with ST = OFF and SD = ON.

Performing a Kirchhoff’s voltage law analysis on the equivalent circuit in Figure 3,
the fractional-order differential equations supporting the State 2 analysis are,

L
dαiL
dtα

= −vC,

C
dβvC

dtβ
= iL −

vC
R

.
(3)

Merging (2) and (3) and implementing the state-space averaging model of the
fractional-order Buck-Boost converter operating in CCM leads to the next coupled model:

L
dα〈iL〉T

dtα
= SD〈Vi〉T − (1− SD)〈vC〉T ,

C
dβ〈vC〉T

dtβ
= −〈vC〉T

R
+ (1− SD)〈iL〉T .

(4)
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From these expressions, it is essential to recall that 〈x〉T , for any x(t), is the average
value of this variable x during a switching period, and it can be numerically computed
as follows,

〈x〉T =
1
T

∫ t+T

t
x(t) dt. (5)

2.2. Fractional-Order DC–DC Buck-Boost Converter

It is well-known that circuit variables in the converter, such as inductor’s current iL
and capacitor’s voltage vc, present high-order harmonics due to the commutation sequence
related to the operating principle of the Buck-Boost converter. These harmonics are
eliminated by averaging the circuit variables, considering a switching period. Furthermore,
when linearizing the model and obtaining the system transfer function, the averaged model
of the converter is given by,

L
dαiL
dtα

= Dc Vi − (1− Dc)vc,

C
dβvc

dtβ
= −vc

R
+ (1− Dc)iL.

(6)

Since a fractional-order derivative is used, such a transformation procedure
generates inconsistency in the units of the model depending on the chosen operator [14].
Consequently, it is paramount to apply a nonadimensionalize procedure to render
fractional-order differential equations with dimensions physically correct. Next, the
characteristic parameters used to nonadimensionalize are

τ̂ =
t

L/R
−→ dt =

L
R

dτ̂,

φ̂ =
iL

Vi/R
−→ diL =

vi
R

dφ̂,

ψ̂ =
vc

Vi
−→ dvc = Vidψ̂.

(7)

Therefore, the nondimensional model is obtained by substituting (7) into (6), as follows

dαφ̂

dτ̂α
= −(1− Dc)ψ̂ + Dc,

dβψ̂

dτ̂β
= kτ

[
−ψ̂ + (1− Dc)φ̂

]
,

(8)

where kτ = L/R
RC is a constant produced by nondimensionalizing (6).

As in the integer case, the fractional state–space model is defined by two equations [15]:

1. A state equation, where each state xi(t) is differentiated to a fractional-order αi, is
given in the case of a generalized state–space model. All states xi(t) are differentiated
to the same fractional order α for the commensurate case.

2. An output equation depends on the internal states and the inputs, as in the
integer case.

Before obtaining the fractional state–space model, we first applied the concept of
fractional derivative to the classic state–space representation. In consequence, such a
fractional model in the state–space domain corresponds to

D(α)(x) = Asx + Bsu,

y = Csx + Dsu,
(9)
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where D(α)(x) = [Dα1 x1, Dα2 x2, . . . , Dαn ]ᵀ, since As, Bs, Cs, and Ds are the state–space
representation model matrices. Roughly speaking, we can obtain any model in the Laplace
domain by using its transform and considering zero initial conditions,

G(s) = Cs

[
(sα In − As)

−1
]

Bs + Ds, (10)

where Ds is generally null. The fractional state–space model, derived from (8), is now
defined as

dαφ̂

dτ̂α

dβψ

dτ̂β

 =

[
0 −(1− Dc)

kτ(1− Dc) −kτ

]
︸ ︷︷ ︸

As

[
φ̂

ψ̂

]
+

[
Dc

0

]
︸ ︷︷ ︸

Bs

u(t), y =

[
1 0

0 1

]
︸ ︷︷ ︸

Cs

[
φ̂

ψ̂

]
. (11)

For the sake of simplicity, we assume that α = β. Thus, the proposed transfer function
is obtained from (11) as follows,

M = sα I − As =

[
sα (1− Dc)

−kτ(1− Dc) sα + kτ

]
, (12)

where the characteristic equation is given by

|M| = s2α + kτsα + (1− Dc)
2 kτ , (13)

G(s) =
1

s2α + kτsα + kτ(1− Dc)2

[
1 0
0 1

][
sα + kτ −(1− Dc)

kτ(1− Dc) sα

][
Dc
0

]
. (14)

G(S) =


Dc(sα + kτ)

s2α + kτsα + (1− Dc)2 kτ

kτ Dc(1− Dc)

s2α + kτsα + (1− Dc)2 kτ

U(S), (15)

where U(S) = L{u(t)} is the Laplace transform of u(t). Once the system of equations is
nondimensionalized, we can express the output φ̂ and ψ̂ as follows,

φ̂(s) =
Dc(sα + kτ)U(s)

s2α + kτsα + (1− Dc)2 kτ
, (16)

ψ̂(s) =
kτ Dc(1− Dc)U(s)

s2α + kτsα + (1− Dc)2 kτ
. (17)

3. Stable-State Analysis

The linearized model (6) is solved using the definition of the Riemann–Liouville
derivative, defined as

RL
a Dα

b f (t) =
1

Γ(1− α)

d
dt

∫ b

a

f (t)
(t− τ)α

dτ, (18)

where Γ(·) is the Gamma function and [a, b] is the interval of the stable-state signal.
Thereby, the fractional derivatives of the variables iL and vc are obtained from (18),

respectively, as shown,

dαiL
dtα

=
1

Γ(1− α)

d
dt

∫ (n+1)T

nT

iL
(t− τ)α

dτ =
iLt−α

s
Γ(1− α)

,

dβvc

dtβ
=

1
Γ(1− β)

d
dt

∫ (n+1)T

nT

vc

(t− τ)β
dτ =

vct−β
s

Γ(1− β)
,

(19)
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where n is the current operating cycle of the PWM, ts is the time needed so that the
Buck-Boost converter achieves the stable state. Once the converter reaches this state,
the inductor current (iL) and capacitor voltage (vc) are considered constant and ts ≈ T.

Substituting (19) in (6), the inductor current and capacitor voltage at stable state are
defined as,

iL =
ViDc

[
RCt−β

s + Γ(1− β)
]

Γ(1− β)R(1− Dc)2 + Lt−α
s Γ(1−β)
Γ(1−α)

+ RCLt−(β+α)
s

Γ(1−α)

, (20)

vc =
ViDc(1− Dc)RΓ(1− β)Γ(1− α)

R Γ(1− β)Γ(1− α)(1− Dc)2 + Γ(1− β)Lt−α
s + RLCt−(α+β)

s

. (21)

The Buck-Boost converter voltage ratio Gv at stable state is obtained by (21) since the
capacitor voltage is directly the output voltage,

Gv =
vc

Vi
=

Dc(1− Dc)RΓ(1− β)Γ(1− α)

R Γ(1− β)Γ(1− α)(1− Dc)2 + Γ(1− β)L t−α
s + RLC t−(α+β)

s

. (22)

Table 1 presents the circuit parameters used in the numerical simulations and the
fractional-order converter model analysis in the stable state.

Table 1. Parameters used for the simulations to obtain the Buck-Boost converter fractional model
response in the stable state.

Parameter Values

Stable–state time ts = T = 4 ms
Input voltage Vi = 25 V
Inductor L = 3 mH
Capacitor C = 150 µF
Load R = 30 Ω
Duty cycle Dc = 0.6

Figure 4 displays the response of the Buck-Boost converter fractional model in the
stable state. Plus, in Figure 4b, we fixed α, varying the value of β. Notice that the Gv
response falls slowly but then recovers rapidly. Figure 4a is the opposite case. When
varying β, the Gv response tends to mimic the behavior shown in Figure 4b. Additionally,
Figure 4c shows the dynamic variation of the Gv with the change of the fractional order,
presenting a minimum gain when α = β = 0.956.

(a) (b) (c)

Figure 4. Visualization of α and β influence the response of GV in stable-state. (a) Relationship
between Gv and α. (b) Relationship between Gv and β. (c) Three-dimensional representation of α and
β variations.
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4. Numerical Simulation

The mathematical model of the fractional-order Buck-Boost converter driven by CCM
is implemented in the Matlab/Simulink environment through the FOMCON toolbox [16].
According to the state–space model given by (11), we construct the block diagram of the
system, as shown in Figure 5. It is noteworthy that 1/sα is the fractional integral unit.

Figure 5. Numerical simulation of the fractional mathematical model by Matlab/Simulink.

The parameters for this numerical simulation were previously given in Table 1.
Furthermore, Figure 6 shows the dynamic response of φ̂ and ψ̂, cf. (7), which are associated
with the nondimensionalized inductor current (iL) and capacitor voltage (vC), respectively.

(a) (b)

Figure 6. Nondimensionalized voltage and current of the fractional-order Buck-Boost converter. (a)
Nondimensionalized inductor’s current. (b) Nondimensionalized capacitor’s voltage.

Figure 6a displays the behavior of the nondimensionalized inductor current with
different α values. It is worth commenting that when α = 0.7, iL achieves the desired
behavior, exhibiting a lower overshoot without negative values.

Figure 6b shows the nondimensionalized capacitor voltage under different scenarios.
We noticed that when the fractional order tends to unity, we obtain the traditional responses
of the converter, containing a myriad of oscillations. Further, the converter must evolve
for a long time to reach the desired reference. However, when α begins to decrease, this
reference is tracked in a shorter time. A similar behavior occurs with the nondimensional
inductor’s current for the nondimensional voltage when α = 0.7, as Figure 7 shows. The
obtained output is the desired one in this type of converter: a smooth and controlled voltage
rise, a lower overshoot concerning the other solutions, and a fast settling time.
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1.7653
 20.3321

Figure 7. Nondimensionalized capacitor voltage with α = 0.7.

The red dotted line represents the voltage reference value set in 1.5. The green dotted
line represents the maximum peak reached by the converter, which has a value of 1.7653
that translates into an overshoot of 17.6854%. The black dotted line corresponds to the
reached settling time by this device, which is equal to t̂ss = 20.3321, using the criterion of
5%. Note that in the lower right part of Figure 7, a zoomed version of the output voltage
ripple response is located after achieving the stable state. Such an output ripple ranges
between 0.5100 and 0.5092. It is noteworthy that these values are nondimensionalized, and
to have the expected values with real units, we must use the reconversion described in (7).

We attribute the behavior observed in Figure 6a,b to the location of the poles of the
characteristic polynomial described in (13). As one may see, the α value directly affects
the imaginary part of the poles. Indeed, when α starts to decrease, the imaginary pole
magnitude tends to decrease. For this reason, the converter output response changes
its behavior from an under-damped system with many oscillations to an under-damped
system with a single overshoot. Notwithstanding, the α value should be carefully chosen,
since a small α value may provoke the converter to not work correctly and hinder the
construction of the electrical elements of the fractional order circuit. Table 2 exhibits the
converter performance w.r.t. the variation of α. It is observed that α = 1 presents an
overshoot of 71.8907 V, representing 91.7086%, while α = 0.7 produces an overshoot of
17.6854%. We can observe that the position of the poles cthange.

Table 2. Electrical characteristics of the fractional-order Buck-Boost Converter while varying α.

Nondimensionalized Real

α Poles L̂ t̂ss v̂ f L [v] tss [ms] v f [v]

0.7 −0.0391± 0.0165i 1.7653 20.420 1.5003 37.5075 2.0420 37.5075
0.8 −0.0465± 0.0426i 2.0369 29.832 1.5002 50.9225 2.9832 37.5045
0.9 −0.0457± 0.0725i 2.4010 48.5906 1.5001 60.0257 4.8590 37.5034
1 −0.0375± 0.1029i 2.8756 318.6323 1.5020 71.8907 31.8620 37.5511

On the other hand, we employ the phase portrait approach to represent the Buck-Boost
converter dynamic in the phase plane geometrically. The main idea is to identify those
equilibrium points permitting the system to maintain stable states. Retracing the path of
the fractional calculus concept applied to this work, the phase portraits shown in Figure 8
considered null initial conditions with different α values.
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(a) (b)

(c) (d)

Figure 8. Phase portrait of the fractional-order Buck-Boost converter at different values of α: (a)
α = 0.7, (b) α = 0.8, (c) α = 0.9, (d) α = 1.

Analyzing the obtained phase portraits, one can see that the equilibrium point
(1.54, 0.2) remains constant for all α values. Furthermore, we detected two significant
findings regarding the α range. The first one liaises a low α value so that the trajectory
toward the equilibrium point is much faster and more stable than in the other cases
(cf. Figure 8a). The second one corresponds to the unit value of α, which leads to
an asymptotically stable spiral point (cf. Figure 8d). With this in mind, the obtained
results prove that a fractional-order Buck-Boost model yields an improved behavior and
performance than an integer-order model.

5. Conclusions

In general terms, most DC–DC converters adopt the integer-order approach for
representing the behavior of their electrical components. Consequently, the mathematical
models of such converters do not match the reported experimental data. Therefore,
the proposed fractional-order Buck-Boost converter model was nondimensionalized,
and the fractional-order state–space model was deduced to avoid integer-order model
inconsistencies in the analysis. To carry this out, the inductor current and capacitor voltage
were determined through the fractional Riemann–Liouville definition in the stable state.
Moreover, the steady-state response of the system showed variations while the order
of the derivative changed. Some models demonstrated a remarkable performance over
the integer-order model. This phenomenon happened for α values of 0.7. Therefore,
we consider that decreasing below this value makes building the model very difficult.
The proposed nondimensionalized model was tested using the Simulink and FOMCOM.
It is worth mentioning that the parameter α directly impacts the capacitor voltage and
inductor current responses. Additionally, we determined that the converter reaches the
desired behavior when α = 0.7. According to the obtained results, the fractional-order
concept used in this work seems feasible for achieving more realistic models of DC–DC
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converters. Finally, the experimental tests led to the design of a Buck-Boost converter with
fractional-order electrical components that do not require complex control schemes.
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