
����������
�������

Citation: Ikuta, K.; Iyatomi, H.; Oishi,

K.; on behalf of the Alzheimer’s

Disease Neuroimaging Initiative.

Super-Resolution for Brain MR

Images from a Significantly Small

Amount of Training Data. Comput.

Sci. Math. Forum 2022, 3, 7. https://

doi.org/10.3390/cmsf2022003007

Academic Editors: Kuan-Chuan Peng

and Ziyan Wu

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Super-Resolution for Brain MR Images from a Significantly
Small Amount of Training Data †

Kumpei Ikuta 1,*, Hitoshi Iyatomi 1 , Kenichi Oishi 2 and on behalf of the Alzheimer’s Disease
Neuroimaging Initiative ‡

1 Department of Applied Informatics, Graduate School of Science and Engineering, Hosei University,
Tokyo 102-8160, Japan; iyatomi@hosei.ac.jp

2 Department of Radiology and Radiological Science, Johns Hopkins University School of Medicin,
Baltimore, MD 21205, USA; koishi2@jhmi.edu

* Correspondence: kunpei.ikuta@gmail.com
† Presented at the AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD), Online,

28 February 2022.
‡ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Abstract: We propose two essential techniques to effectively train generative adversarial network-
based super-resolution networks for brain magnetic resonance images, even when only a small
number of training samples are available. First, stochastic patch sampling is proposed, which in-
creases training samples by sampling many small patches from the input image. However, sampling
patches and combining them causes unpleasant artifacts around patch boundaries. The second pro-
posed method, an artifact-suppressing discriminator, suppresses the artifacts by taking two-channel
input containing an original high-resolution image and a generated image. With the introduction of
the proposed techniques, the network achieved generation of natural-looking MR images from only
~40 training images, and improved the area-under-curve score on Alzheimer’s disease from 76.17%
to 81.57%.

Keywords: super-resolution; generative adversarial networks; medical image processing

1. Introduction

In medical imaging, magnetic resonance imaging (MRI) is commonly used because
it can capture the anatomical structure of the human body without exposing subjects to
radiation. MRI scanners that generate a strong magnetic field can scan images with a higher
spatial and contrast resolution than commonly used scanners. These high-resolution MR
images are preferred in both the clinical and research fields since more information can be
obtained from a single scanning session, leading doctors to diagnose diseases earlier or
computers to analyze images more precisely.

3T MRI scanners provide high spatial resolution and contrast images and are widely
used in clinical practice and research studies. Moreover, 7T ultra-high-field scanners are
now becoming available for research use, providing ultra-high resolution images that depict
fine anatomical structures in unprecedented detail and with higher contrast. Such ultra-
high resolution MRI is attractive because it has the potential to capture mild disease-related
anatomical changes that are difficult to identify with 3T MRI. Alternatively, obtaining high-
definition images with commonly used scanners requires longer scanning times and places
a burden on the patient. In such a situation, super-resolving techniques draw attention,
which translates low-resolution (LR) MR images to high-resolution (HR) MR images [1].
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Resolution enhancing methods for MRI can be categorized into two groups: (1) pro-
cessing the raw signal from the MRI scanner to improve the resolution to be reconstructed
and (2) translating already reconstructed LR images into HR-like images, so-called super-
resolution (SR).

From a practical point of view, we chose a post-processing method instead of process-
ing the raw signal from the scanner. The choice is for the following three reasons: (1) MR
images are usually stored as rendered image files, while the raw signal data are discarded
immediately after each scan. In this approach, an extensive archive of legacy MR images
can be used. (2) Post-processing can be used to perform super-resolution. (3) This approach
is independent of specific scanner hardware and scan protocols, and can be applied to
many MRI contrasts, such as T1-MRI, T2-MRI, diffusion MRI, and functional MRI.

Although these deep-learning (DL) methods, including recent generative adversarial
network (GAN) -based ones, have many desirable features from non-DL techniques, they
have not yet been able to synthesize images as if they were taken by a high-field scanner.
This is because most of their methods are designed to be trained with pairs of ordinary
resolution MRI and its shrunken version. Therefore, the conventional SR methods can only
learn to translate low-resolution images to normal-resolution images and cannot perform
normal-to-high translation, which is an essential demand by clinicians and researchers.

What makes the normal-to-high translation difficult is the limited number of high-
definition training images. Deep neural networks, especially GANs, require a large number
of training samples to achieve desired performance. Due to the limitation of not having
access to images taken by high-end scanners, it is virtually impossible to apply existing
DL-based algorithms.

This paper proposes a simple yet effective GAN-based super-resolution method.
Compared to the existing DL-based super-resolution methods, the proposed method
requires significantly less training of MR images (dozens of data) and generates high-
quality SR images. The proposed method comprises two techniques: stochastic patch
sampling (SPS) and artifact suppressing discriminator (ASD). The SPS partitions input
LR MR images into several smaller patches (i.e., cubes) first. After the partitioning, the
ESRGAN-based neural network takes each LR patch as an input, and then outputs the
corresponding upscaled HR patch. Here, the ASD eliminates discontinuities in the joints
of each patch and generates natural-looking high-resolution images. In our experiments
to evaluate the performance of our SR method using 7T MR images of 37 patients, peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) were significantly improved
from 16.19 to 26.92 and 0.766 to 0.944, respectively, compared with baseline ESRGAN. In
addition, the diagnostic performance of the Alzheimer’s disease discriminator trained on
super-resolution processed images improved from 80.31% to 83.85%.

2. Related Works

In the last decade, the accuracy of single image super-resolution for general (non-
medical) images has increased significantly along with the advancement of DL-based
algorithms [2]. Originating from the super-resolution convolutional neural networks (SRC-
NNs) [3], a very first successful attempt to utilize convolutional neural networks to perform
super-resolution, many studies have proposed DL-based SR techniques. Very-deep super-
resolution (VDSR) [4] extended SRCNN with a deeper network to improve the accuracy.
Enhanced deep residual networks for single image super-resolution (EDSR) [5] also intro-
duced a deeper network with residual connection from ResNet [6]. In more recent years,
significant quality improvements have been achieved by several generative adversarial
network (GAN)-based SR methods [7]. A super-resolution generative adversarial network
(SRGAN) [8] achieved significant improvement in pixel-wise accuracy by introducing a
discriminator to their ResNet-like SR network. An enhanced super-resolution generative
adversarial network (ESRGAN) [9] made even more improvements with a DenseNet-like
generator [10] and Relativistic discriminator [11].
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Along with the advancement of super-resolution methods for general images, studies
for applying SR for medical images have also been made. Pham et al. [12] applied SRCNN
to MR images to enhance spatial resolution. The improvement with GAN-based techniques
has also been applied to medical imaging fields [13]. Sánchez and Vilaplana [14] utilized
a simplified version of SRGAN to MR images. Yamashita and Markov [15] improved the
quality of optical coherence tomography (OCT) images with ESRGAN.

3. Proposed Method

In this paper, we propose a new super-resolution technique for brain MR images with
a significantly smaller number of training images. To train the GAN-based super-resolution
network, SPS randomly selects many small cubic regions from the input images and feeds
them into the network. While the SPS enables the network to be effectively trained with
a few images, it also introduces intensity discontinuities around the boundaries of the
patches. The ASD suppresses such discontinuities by implicitly knowing the location
information of its input patches by referring to both the HR and the generated SR image.

3.1. The Network Architecture

Figure 1 illustrates the schematics of the proposed method. For the network architec-
ture, we used a slightly modified version of the ESRGAN. The modifications we applied
are as follows: (1) all the layers such as convolutions, poolings, and pixel-shufflers are
changed to their three-dimensional version to process volumetric MR images, and (2) the
number of residual-in-residual dense block (RRDB) is reduced from 23 to 5 because the
expected input size is smaller than the original ESRGAN.

artifact-suppressing discriminator (ASD)

merge HR and SR 
in the channel axis

training pair

generator

downsample

HR image

discriminator

SR image

feedback and optimize

“HR” / “SR”

stochastic patch sampling
(SPS) 

the whole-brain image

LR image

Figure 1. The schematics of the proposed method. Note that all 3D images are drawn in 2D for the
sake of visibility.

3.2. Stochastic Patch Sampling (SPS)

Each image is split into a set of smaller three-dimensional cubic patches by randomly
choosing the coordinate in the image space. If the patch is sampled from the background
and does not contain any brain structure, the patch is automatically rejected and repeatedly
re-sampled until sampled from the appropriate coordinate. While the total amount of
information fed to the network is theoretically identical, using a collection of sampled
patches has several benefits rather than using the whole image at once. Compared to
the whole-brain image, the sampled patch is relatively tiny. With this approach, we can
use more training samples per batch during mini-batch learning, enabling more stable
optimization. The network will also be more robust for unregistered images since the input
patches have more significant spatial variances introduced in random sampling. At the
inference phase, patches are sampled evenly from the input image with the grid manner.
Then, each patch is upscaled by the network and combined into a single image.
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3.3. Artifact Suppressing Discriminator (ASD)

Since the network processes small patches separately and performs super-resolution
on each one individually, there is no mechanism to sustain the consistency of the final
combined image. This lack of consistency causes discontinuities at each patch’s joints,
resulting in an unpleasant final image. To address this issue, we introduced ASD, which
is an extension of the common GAN discriminator. ASD takes two images; one is always
a “real” (or HR, in the context of super-resolution) image, and the other is a generated
image or an HR image combined as a two-channel image. Accordingly, the discriminator
takes (HR+HR) or (HR+SR) images during training. The proposed ASD can extract more
discriminative feature representations by learning the correlation/difference between HR
and SR images, while common discriminators take HR and SR images independently.

4. Experiments

The purpose of super-resolution is to aid clinicians or computers in analyzing im-
ages more precisely, providing more information on smaller structures. To confirm the
effectiveness of the proposed techniques, we investigate the impact of the proposed super-
resolution network on disease classification performance in addition to regular image
quality evaluation.

4.1. Dataset and Preprocessing

As the high-resolution reference images, we used 37 scans of T1-weighted MR im-
ages from the DS000113 (“Forrest Gump”) dataset [16] and 11 images from the DS002702
dataset [17], both published by OpenNeuro (https://openneuro.org/, accessed on 20
September 2020). Both datasets are provided as a collection of functional-MRI (fMRI)
images but also contain T1-weighted still MR images we used, which were taken on a
high-field 7T scanners. After the skull removal and intensity normalization, each HR image
is shrunken to 50% to make an LR image, providing high- and low-resolution training
pairs. At the SPS phase during the training, we randomly sampled 2500 24 × 24 × 24
patches per one high-resolution image and downsampled them to 50% resolution to make
low-resolution images.

4.2. Training of the Network

Since the network input and output are three-dimensional volume data, we cannot
use the perceptual loss with a VGG network used in the original SRGAN and ESRGAN
because it must be pre-trained with the ImageNet dataset. To train the network to generate
images with more fidelity, we added mean-squared error (MSE) of gradients of the images
for all directions to capture finer transitions of the intensity.

As for optimization of both networks, we used the Adam optimizer with the same
learning rate and β1, β2 parameters with the original ESRGAN.

4.3. Assessing the Image Quality

First, we measure the two most standard metrics for assessing a super-resolution sys-
tem: (1) peak signal-to-noise ratio (PSNR) and (2) structural similarity (SSIM) between each
output image and its corresponding original high-resolution image. In general, SR studies
using GAN, Inception Score, and Fréchet Inception Distance (FID) are often used. How-
ever, scores are calculated based on low-dimensional representations of two-dimensional
images by models trained on everyday objects (e.g., ImageNet) and are unsuitable for this
evaluation. We also investigate the line profile of the optic thalamus, which is difficult to
see for fine structure with a conventional MR scanner.

4.4. Assessing the Impact on Improving Diagnostic Performance

In addition, the purpose of super-resolution is to aid clinicians or computers in analyz-
ing images more precisely, providing more information on smaller structures. Therefore,
we investigate the effectiveness of the proposed SR method on disease classification perfor-

https://openneuro.org/
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mance. This way, we can emulate one of the real-world applications of super-resolution for
medical images.

In this experiment, we used 650 images from the ADNI2. (Data used in the prepara-
tion of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org,
accessed on 20 September 2020) dataset, containing 360 cognitively normal (CN) images
and 290 Alzheimer’s disease (AD) images. Each image is downsampled into 1.4-mm
pixel spacing to match the training data after skull removal and intensity normalization.
We first performed super-resolution for all images to make pseudo-high-resolution train-
ing/validation samples. Then, we trained a three-dimensional version of MobileNetV2
with 90% of the images and evaluated the area-under-curve (AUC) score with the remaining
10% of them.

To confirm that the proposed SR process recovers some of the lost information from
low-resolution images, we also trained a classifier with downsampled images. Then, we
trained another classifier with super-resolved downsampled images and compared their
AUC score. We used 50% and 25% for the downsampling scales and three-dimensional
MobileNetV2 for the classifier network.

Here, we defined “recovery ratio” to measure how much information is recovered
from a low-resolution image as follows:

recovery ratio =
AUC(SR)− AUC(LR)
AUC(HR)− AUC(LR)

,

where AUC(HR), AUC(LR), and AUC(SR) are the AUC score on HR images, LR (×0.5
downsampled from HR) images, and SR images, where 2× super-resolved images are
applied for LR images, respectively. Here, we assume that the AUC with the SR images
does not exceed that with the HR images, i.e., the AUC with the HR dataset is the upper
bound for the resolution.

5. Results
5.1. Image Quality Assessment

Figures 2 and 3 show examples of MR images generated by proposed super-resolution
networks and their original HR images, and their magnified view, respectively. In Table 1,
the average SSIM and PSNR between super-resolved images using each method and their
ground-truth high-resolution images are also summarized.

The output images of the network without SPS, i.e., plain ESRGAN (column (2)), are
visibly blurry, and most of the structural features are lost, leading to the lower SSIM/PSNR
value. With the proposed SPS (column (3)), generated images are significantly sharper and
visibly natural-looking. However, grid-shaped intensity shifts appear at the joints of each
patch (Figure 3 (3)). On the other hand, almost all the intensity shifts are suppressed with
the images with the proposed discriminator (column (4)).

www.adni-info.org


Comput. Sci. Math. Forum 2022, 3, 7 6 of 11

(1) (2) (3) (4) (5)

example subject
#1

example subject
#2

example subject
#3

Figure 2. Examples of generated images with their input and ground-truth images. (1) low-resolution
input image, (2) ESRGAN without SPS and ASD, (3) ESRGAN + SPS, (4) ESRGAN + SPS + ASD
(proposed), and (5) ground truth high-resolution image.

(1) LR image

(2) ESRGAN (3) ESRGAN + SPS
Figure 3. Cont.
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(4) ESRGAN + SPS + ASD (proposed) (5) ground truth high-resolution image
Figure 3. Magnified example of the the generated image.

Table 1. Values of image quality measurements with each method.

SR Method SSIM PSNR

ESRGAN 0.7659 16.19
ESRGAN + SPS 0.9056 25.81
ESRGAN + SPS + ASD (proposed) 0.9443 26.92

5.2. Effectiveness on Classification Performance

Table 2 shows the diagnostic performances of the Alzheimer’s disease classifier trained
and tested with the super-resolved images. The performance of pure ESRGAN is abysmal
because it fails to generate images, and the proposed method outperforms the other methods.

Table 2. AUC scores on Alzheimer’s disease diagnosis of the networks trained with images generated
by each SR method.

SR Method as Preprocessing AUC

None 76.17
ESRGAN 67.35
ESRGAN + SPS 79.01
ESRGAN + SPS + ASD (proposed) 81.57

Table 3 and Figure 4 summarize the classification accuracies with the downsampled
images with/without super-resolution. For the sake of better comparison, results on
original (non-downsampled) images are also listed/plotted in them.

Table 3. AUC scores on Alzheimer’s disease diagnosis of the networks trained with downsampled images.

Image Scale With SR (%) Without SR (%) Recovery Ratio

1× (a) 79.01 (d) 76.17 N/A
0.5× (b) 71.37 (e) 70.46 15.94
0.25× (c) 60.87 (f) 52.86 45.51
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Figure 4. AUC score comparison of networks, trained with downsampled images.

6. Discussion
6.1. Qualities of Generated SR Images

ESRGAN, a sophisticated super-resolution method based on GAN that requires many
training images, could not generate any images at all with about 30 training images. This
result is worse than the result from the bi-cubic interpolation of LR images. By introducing
patch learning with the proposed SPS, we can confirm that it is possible to generate images
with a certain level of accuracy. However, as mentioned earlier, discontinuities between
patches are noticeable.

With the introduction of the proposed ASD, the discontinuities are mostly suppressed
and achieved to generate more natural-looking super-resolution images. Besides the
quantitative metrics such as PSNR and SSIM, the line-profile shown in Figure 5 shows that
the proposed method can generate the details of finer tissues, which are known to be more
challenging to capture with conventional MRI scanners.

In regular GAN training, a generator and a discriminator are trained adversarially.
The discriminator indirectly lets the generator learn to make more natural images by trying
to identify whether the input is “real” or “fake” (i.e., HR or SR). On the other hand, the
proposed ASD takes a two-channeled input, which always contains a HR image in one
of the channels. Therefore, in addition to the usual effect, the discriminator itself learns
the SR image closer to the HR by implicitly giving the information of the relative location
of a patch in a whole-brain image. In this regard, an overfitting effect could be expected
because of more information given to the networks during training. Nevertheless, from
our experiment with different patients, no adverse effect was confirmed.

6.2. Impact of Super-Resolution on the Disease Classification Problem

The removal of unwanted boundary discontinuities by ASD resulted in an improved
AUC score by 5.4% in diagnosing Alzheimer’s disease. The increased visibility of es-
sential structures, as shown in Figure 5, is thought to have contributed to the improved
diagnostic performance.

In the experiment with downsampled images, first, we confirmed that the AUC score
drops as the input resolution decreases, as we intuitively expected. From Table 3, it can be
said that the images enhanced by the proposed method can boost the performance up to
45% closer to the possible upper bound of score.
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Figure 5. Line profile of the thalamus. The thalamus contains subnuclei with characteristic signal
intensity, but it is challenging to identify thalamic subnuclei because low-resolution MRI does not
provide sufficient contrast. Our SR method can obtain intrathalamic contrast equivalent to that of
HR images.

6.3. Limitations and Future Work

In the proposed method, a low-resolution training image is obtained by simply down-
sampling the corresponding high-resolution image. However, the actual differences be-
tween images with high-field scanners and ordinary ones are not just image resolution but
also intensity contrasts, the amount of noise, and so on. The network would perform better
if we trained it with high-field and actual ordinary scanners. In the future, we will use
more HR images to develop a better method.

7. Conclusions

In this paper, we propose a new super-resolution method for brain MR images with
a significantly smaller number of training images. Our method is GAN-based super-
resolution with two essential proposed techniques: the SPS and ASD. These proposed
techniques succeeded in generating super-resolution images from the training of only about
30 brain MR images. The images generated in this way showed an overall improvement
in image quality and an increase in the resolution of critical diagnostic regions, which
helped to improve the disease diagnostic performance of the CNN-based classifier built on
these images.
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