
Citation: Lee, S.; Oh, S.; Kim, M.;

Park, E. Measuring Embedded

Human-Like Biases in Face

Recognition Models. Comput. Sci.

Math. Forum 2022, 3, 2. https://

doi.org/10.3390/cmsf2022003002

Academic Editors: Kuan-Chuan Peng

and Ziyan Wu

Published: 11 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Measuring Embedded Human-Like Biases in Face
Recognition Models †

SangEun Lee 1,‡ , Soyoung Oh 1,‡, Minji Kim 1 and Eunil Park 1,2,*

1 Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul 03063, Korea;
sange1104@g.skku.edu (S.L.); sori424@g.skku.edu (S.O.); m5512m@g.skku.edu (M.K.)

2 AI Team, Raon Data, Seoul 04522, Korea
* Correspondence: eunilpark@skku.edu
† Presented at the AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD), Online,

28 February 2022.
‡ These authors contributed equally to this work.

Abstract: Recent works in machine learning have focused on understanding and mitigating bias
in data and algorithms. Because the pre-trained models are trained on large real-world data, they
are known to learn implicit biases in a way that humans unconsciously constructed for a long
time. However, there has been little discussion about social biases with pre-trained face recognition
models. Thus, this study investigates the robustness of the models against racial, gender, age, and
an intersectional bias. We also present the racial bias with a different ethnicity other than white and
black: Asian. In detail, we introduce the Face Embedding Association Test (FEAT) to measure the
social biases in image vectors of faces with different race, gender, and age. It measures social bias in
the face recognition models under the hypothesis that a specific group is more likely to be associated
with a particular attribute in a biased manner. The presence of these biases within DeepFace, DeepID,
VGGFace, FaceNet, OpenFace, and ArcFace critically mitigate the fairness in our society.

Keywords: face-recognition models; facial attributes; social bias; fairness

1. Introduction

Recent advances in machine learning technologies allow computer vision researchers
to employ massive datasets from the web to train models with image representations for
general purposes from face recognition to image classification [1,2]. However, the absence
of scrutinizing those datasets disproportionately can cause negative impacts on racial and
ethnic minorities as well as other vulnerable individuals [3]. Without the necessary precau-
tions of these problematic narratives, there can be some issues in image classification and
labeling practices that entail stereotypes and prejudices [4,5]. The machine learning models
with such datasets may elaborate and normalize these stereotypes, inflicting unprecedented
harm on those who already comprise the margins of our society.

Therefore, it is essential to understand how datasets are sourced, labeled, and what
representations the models are trained on. One of the common measures called the Word
Embedding Association Test (WEAT) is used to assess undesirable associations in word
embeddings [6]. That is, WEAT is used to show that both humans and natural language
processing reveal many of the same biases with similar significance. For instance, WEAT
shows racial bias in the word vector space by quantifying the close relations between pleas-
ant words and European American names and unpleasant words with African American
names. Ross et al. [7] extend this work with a metric throughout interaction between vision
and language embeddings to measure biases in social and cultural concepts, such as race.
We extend prior works with a metric, which we term Face Embedding Association Test
(FEAT) to probe race, gender, and age biases in embeddings of pre-trained face recognition
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models. Unlike the previous measurements that measure bias within the facial image rep-
resentation itself [8,9], our measurement measures evaluative associations between pairs
of semantic categories which resemble the implicit attitudes underlying human cognitive
priming procedure [10]. That is, FEAT measures the models’ automatic associations as if
estimating humans’ stereotypical discrimination toward social categories represented by
associations between a target and an attribute dimension. In addition, a strong advantage
of FEAT is its potential for extension to additional discrimination tests. It is adaptable to
assess a wide range of biases in our society.

By taking advantage of the expandability of FEAT, we expand to assess social biases
toward a relatively unexplored racial group. There have been a lack of studies measuring
biases of various races but only focused on white and black ethnicity. It is a significant
oversight to invalidate ethnic group differences within racial category, which is another
common form of discrimination experienced not only by Asian people but by other racial
groups as well [11]. Understanding nuances in how different groups of people are affected
by their ethnicities represents the next step in advancing this field of study. Thus, we
take the next step to answer the question whether the models are significantly affected
by the biases toward other racial groups rather than white and black. To achieve this
goal, we employ face images of European American (EU), African American (AF), and
Asian American (AS) people. Moreover, we measure an interaction between racial and
gender biases that submissiveness and incapable of becoming leaders is prevalent in Asian
women [12]. In short, our contributions are:

• We introduce FEAT to measure racial, gender, age, and an intersectional bias in face
recognition models with images.

• We find statistically significant social biases embedded in pre-trained DeepFace [13],
DeepID [14], VGGFace [15], FaceNet [16], OpenFace [17], and ArcFace [18].

• Our new dataset and implementations are publicly available (https://github.com/
sange1104/face-embedding-association-test, accessed on 28 February 2022).

2. Related Work

A bias mitigation method can be largely divided according to the areas of model
distribution targeted for pre-processing, in-processing, and post-processing [19]. The most
widely used pre-processing technique is to re-balance datasets [20,21] or use synthetic
data [22]. In the case of datasets used in face recognition tasks, they proved to have
an imbalanced class distribution both in gender and race [23]. To address this problem,
several datasets with a balanced number of gender, ethnicity, and the other attributes are
proposed by the previous studies, including Racial Faces in Wild [24], Balanced Faces in the
Wild [25], and DiveFace [26]. Although, these datasets contribute to mitigating abnormal
distributions, but not to demonstrating that training with these datasets leads to impartial
results, because labels for ethnicity in the datasets are not widely allowed as ground truth
and are overly dependent on the annotator’s decision [27]. This motivates researchers to
develop in- and post-processing methods.

In-processing approaches take several methods to get rid of impartiality while training.
For example, cost-sensitive training and adversarial learning are used to get rid of sensitive
information from functionality [20,21]. Moreover, adjusting parameters of loss functions
and taking an unsupervised way of training are used to protect minorities by training
models with unbiased representations [26,28]. The examples of post-processing techniques
include re-regulating the similarity scores of the two feature vectors based on demographic
groups of the images [29] or attaching layers to the feature extractor for removing sensitive
information from the representation [26].

Along the line, growing numbers of measurements have appeared to measure the
effectiveness of the mitigation approaches. In the natural language processing field, var-
ious tests have been proposed to quantify bias in pre-trained word embedding models.
Bolukbasi et al. [30] and Manzini et al. [31] employed word analogy tests and demon-
strated undesirable bias toward gender, racial, and religious groups in word embeddings.

https://github.com/sange1104/face-embedding-association-test
https://github.com/sange1104/face-embedding-association-test
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Moreover, Nadeem et al. [32] present a new evaluation metric that measures how close a
model is to an idealistic model, showing that word embeddings contain several stereotypi-
cal biases.

Though less work has been studied to measure bias in the computer vision area com-
pared to text, there are several approaches to examine embedded bias in visual recognition
tasks. Acien et al. [33] investigate to what extent sensitive data such as gender or ethnic
origin attributes are present in the face recognition models. Wang et al. [34] propose a set
of measurements of the encoded bias in vision tasks and demonstrate that models amplify
the gender biases with an existing dataset. Furthermore, recent studies focus on generation
models to explore biases in face classification systems [22,35].

One of the widely used methods to examine bias is evaluating the representation
produced by the model [6,36], as it can be easily utilized as a tool to analyze human
bias [37,38]. To analyze the implicit bias, the WEAT [6] calculates word associations
between target words and attribute words. Replacing words to sentences, the Sentence
Encoder Association Test (SEAT) is introduced to apply WEAT to measure biases in sentence
embeddings [39]. Moreover, recent studies generalize WEAT to contextualized word
embeddings and investigate gender bias in contextual word embeddings from ELMo [40,41].
Steed and Caliskan [1] adapt WEAT to the image domain to evaluate embedded social
biases. However, to our knowledge, there are no principle tests for measuring bias toward
diverse racial subgroups, especially for Asians with face recognition models. Our work
aims to generalize WEAT to facial image embeddings in order to examine social biases
toward a wide range of subgroups in pre-trained face recognition models.

3. Methods
3.1. Face Embedding Association Test

Existing bias measures in natural language processing assess bias of word or sentence
based on an Implicit Association Test administered to humans [6,42,43]. We introduce
Face Embedding Association Test (FEAT) by extending the prior works throughout face
embeddings. The details of the FEAT are as follows.

FEAT uses sets of face images, rather than sets of words or sentences, to demonstrate
race and gender. Two sets of face images, X and Y, denote two sets of target races of the
same size, while A and B are two sets of attribute images. For example, as in Figure 1,
a face image x represents EU, while y as AS. One example of career attribute images A
denote as a and b is an example of family attributes B. The basis of an indicator of bias is
calculated by the average cosine similarity between pairs of images. Equation (1) measures
the association of one of the target face images f with different attributes as follows:

s( f , A, B) = meana∈Acos( f , a)−meanb∈Bcos( f , b) (1)

where the s function measures how close an average embedding for face image f with
attribute set A compared to the B. The relative proximity of f and A opposed to B indicates
that both concepts are more closely related.

Then, all target face images (i.e., X and Y) can be used to measure the bias in vector
space. Bias is defined as one of the two target sets being significantly closer to one set of
attribute images compared to the other. For example, the social bias is present when it comes
to one of the target sets EU or AS is significantly closer to the concept of career compared
to family. The following equation, s(X, Y, A, B), measures the differential association of the
two sets of target images with the attribute:

s(X, Y, A, B) = ∑
x∈X

s(x, A, B)− ∑
y∈Y

s(y, A, B) (2)

To compute the significance of the association between (X, Y) and (A, B), a permuta-
tion test on s(X, Y, A, B) is used as below:

p = Pri
[
s(Xi, Yi, A, B) > s(X, Y, A, B)

]
(3)
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where the probability is computed over the space of partitions (Xi, Yi) of X ∪ Y with
such that Xi and Yi are of same size. The effect size, a normalized difference of means of
s( f , A, B), is used to measure the magnitude of the association,

d =
meanx∈Xs(x, A, B)−meany∈Ys(y, A, B)

std f∈X∪Ys( f , A, B)
(4)

This normalized measure implies how separated the two distributions of associations
between the target and attribute are. That is, a larger effect size indicates a larger differential
association.

�

�

�� ��

����

Figure 1. One example set of images for measuring race bias, where the targets are face images of
European American and Asian American while the attributes are Career and Family. The images labeled
with ax, bx, ay, and by are images that depict a target in the context of an attribute.

3.2. Face Recognition Models

To evaluate the robustness of the models toward the social biases, we employed
popular pre-trained face recognition models. All the models are widely used in real world
applications, where the models learn to produce embeddings based on the implicit patterns
in the entire training set of image features. Moreover, with different structures of multiple
hidden layers, each model learns a different level of abstraction [1]. We extracted image
representations from the last layer of each model, where each model encoded a different
set of information. The detail of each model is given below:

DeepFace. DeepFace is the face recognition model by adopting a deep neural network.
DeepFace uses a pre-trained three-dimensional face geometry model to perform face
alignment by using affine transformations after landmark extraction and then learns feature
representation from a neural network consisting of convolutional nine layers. This model
is trained on the Social Face Classification (SFC) dataset which consists of 4.4 million
face images.

DeepID. DeepID is one of the well-known face recognition models. DeepID employs
a set of high-level feature representations through deep learning, referred to as deep hidden
identity features. This model is trained with CelebFaces+ dataset and rated by the state-
of-the-art score with Labeled Faces in the Wild (LFW) dataset (http://vis-www.cs.umass.
edu/lfw/, accessed on 1 December 2021) [44,45].

VGGFace. VGGFace is a very deep CNN model with a VGG16 architecture that
employs 15 convolutional layers. The VGGFace is trained by the VGG face dataset, a
dataset for a large capacity of face images created from Internet face image searches. This
dataset contains over 2.6 million images of 2622 celebrities.

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
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FaceNet. FaceNet is another face recognition model, which returns 128-dimensional
face feature representations. To achieve better performance, FaceNet measures face sim-
ilarity by mapping face images to a compact Euclidean space. The model uses a triplet
loss to optimize the weights of the deep convolution layers. This model was pre-trained
with MicroSoft Celebrity dataset (MS Celeb) (https://megapixels.cc/msceleb/, accessed on
1 December 2021).

OpenFace. OpenFace is an approximate version of FaceNet. With 3.7 million parame-
ters, it is more frequently adapted in the face recognition field. The model is trained on 500k
images from combining the two labeled face recognition datasets, CASIA WebFace [46] and
FaceScrub [47].

ArcFace. ArcFace is one of the face recognition models, which learned features
from CASIA [46], VGGFace2 [48], ms1m-arcface, and DeepGlint-Face (http://trillionpairs.
deepglint.com/overview, accessed on 1 December 2021) datasets. This model proposes
a new loss function, Additive Angular Margin Loss, which uses the arc-cosine function to
calculate angles between the input features and target weight.

3.3. Dataset

To measure the social biases in face embeddings, we compared the closeness between
target images and attribute images. For target images, we used UTKFace dataset (https:
//susanqq.github.io/UTKFace/, accessed on 1 December 2021), which consists of 24,190
cropped by 200 × 200 face images with diverse demographic profiles. In order to measure
racial bias in face recognition models, we randomly selected 3434 images from each EU, AF,
and AS, which is the minimum number among three categories. Moreover, for the attribute
images, we combined images from Ross et al. [7] and top-ranked hits on Google Images.
As we additionally examined racial bias toward Asian American, we collected the same
attribute images of Asians as the other racial groups. In detail, we input the search query
as Asian, Attribute to obtain the images from a search engine in line with our interest. To
measure gender bias, 5244 of male and 5058 of female images were employed. For the
attribute images, we used images from Ross et al. [7].

Similar approach was conducted to collect data for measuring age bias. We categorized
an individual between 19 to 50 as young adult, while over 60 as old adult [49]. Following
this, we randomly selected 851 face images for each young and old adult from the UTKFace
dataset. For the attribute images, we crawled images from Google Images by adapting the
search rule used in gender query.

In order to measure an intersectional bias in the face recognition models, we employed
1515, 1684, and 1859 images of European American Female, African American Female,
and Asian American Female, respectively. To analyze a certain stereotype with respect to
incompetence of Asian Female, we employed images from “Competent” and “Incompetent”
attribute. Detailed statistics of the collected dataset are described in Table 1.

Table 1. The statistics of dataset used in our paper. To measure racial bias, targets are EU, AF, and AS,
while attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.
For gender bias test, targets are Male and Female, while attributes are same as racial bias test. In age
bias measure, targets are young and old, while attributes are also same as in the gender bias test. To
measure gendered racism, the most common stereotype of Asian Female (ASF) having Incompetent
attribute, we sorted out images of each racial group with a certain gender (i.e., European American
Female (EUF) and African American Female (AFF)) and attribute (i.e., Competent/Incompetent).

Target
EU AF AS M F Young Old EUF AFF ASF

3434 3434 3434 5244 5058 851 851 1515 1684 1859

Attribute

Career/Family 237 239 280 236 230 264 250 - - -

Pleasant/Unpleasant 541 579 681 546 541 713 537 - - -

Likable/Unlikable 123 110 153 111 112 160 160 - - -

Competent/Incompetent 177 155 189 158 148 200 197 92 82 92

https://megapixels.cc/msceleb/
http://trillionpairs.deepglint.com/overview
http://trillionpairs.deepglint.com/overview
https://susanqq.github.io/UTKFace/
https://susanqq.github.io/UTKFace/
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4. Experiments and Results

In this paper, we validate the FEAT in correspondence with the previous studies [1,6,7]
to measure social biases based on the human Implicit Association Test (IAT) [10] with
face image stimuli. The FEAT aims to measure the biases embedded during pre-training
by comparing the relative association of image embeddings in a systematic process. We
present three tests to measure racial, gender, and an intersectional bias:

1. Race test, in which two target race concepts are tested for association with a pair of
stereotypical attributes (e.g., “European American” vs. “Asian American”, “Pleasant”
vs. “Unpleasant”).

2. Gender test, where two target gender images are tested for stereotypical association
(e.g., “Male” vs. “Female”, “Career” vs. “Family”).

3. Age test, where two target age images are tested for stereotypical association (e.g.,
“Young” vs. “Old”, “Career” vs. “Family”).

4. Intersectional test, we term as gendered racism to measure well-known stereotype
toward Asian Female; “Asian women are considered as incompetent; not a leader,
submissive, and expected to work at a low-level gendered job [12]”.

In line with the human IATs, we find several significant racial biases, gender stereo-
types, age biases, and an intersectional bias shared by pre-trained face recognition models.

4.1. Experiment 1: Do Face Recognition Models Contain Racial Biases?

We first present a racial bias test where targets have different ethnicity, including Euro-
pean American, African American, and Asian American. For the attributes, we replicate the
same concepts as the original IATs [10]. We adapted sets of attribute pairs, which include
Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent, into images.
In this experiment, we hypothesized that European American will be significantly related
to the first attributes of the pairs, which are career, pleasantness, likable, competences than
the others in line with the previous studies [1,6,7,50]. To validate this assumption, we
measured the association of races with attributes using FEAT. For example, we calculated
s(EU, AF, Career, Family) to compare relative distance between vectors of the target sets, EU
and AF, against career attributes such as “business” and “ceo” and family-related attributes
such as “children” and “home”.

Effect sizes and p-values from the 100,000 permutation test for each racial bias mea-
surement are reported in Table 2. As we hypothesized, EU is more likely to be related with
the attributes career and pleasant compared to other racial groups in all models. In detail,
relations show strong bias with presence of large effect size with associations between faces
of EU and pleasantness, whereas AF with unpleasantness (VGGFace: d = 0.939, p < 10−4;
FaceNet: d = 1.081, p < 10−4). Moreover, EU is significantly biased with the attribute
likable when embeddings are extracted from all models, except VGGFace.

On the other hand, the differential association of images of EU vs. AS with the
attributes show less significant biases. Even though the associations might be significantly
different, the effect sizes scored below 0.5, which is considered a small magnitude of
biases. Meanwhile, regardless of the race of the counterpart, OpenFace and ArcFace present
inherent bias that EU is more likely to be significantly related to the concepts of career,
pleasant, likable, and competent (p < 10−4).
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Table 2. The results for FEAT on race tests present biases toward races. Each cell represents the effect
size, which indicates the magnitude of bias as small (0.2), medium (0.5), and large (0.8). p-values
under 0.001 are significant, which are marked as *. Targets for test are European American, African
American, and Asian American. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable,
and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family
EU/AF 0.095 * 0.078 * 0.294 * 0.569 * 0.148 * −0.000

EU/AS −0.006 −0.209 −0.476 −0.097 0.372 * 0.078 *

Pleasant/Unpleasant
EU/AF 0.507 * 0.557 * 0.939 * 1.081 * 0.635 * 0.277 *

EU/AS −0.049 −0.001 −0.138 0.009 0.140 * 0.165 *

Likable/Unlikable
EU/AF 0.134 * 0.647 * 0.021 1.084 * 0.287 * 0.517 *

EU/AS −0.032 −0.112 −0.829 −0.121 0.111 * −0.524

Competent/Incompetent
EU/AF −0.038 −0.520 −1.215 0.704 * −0.575 −0.200

EU/AS 0.012 0.075 * 0.223 * −0.123 −0.334 0.186 *

4.2. Experiment 2: Do Face Recognition Models Contain Gender Stereotypes?

This experiment measures gender biases in the pre-trained face recognition models.
To be concrete, the target is a gender pair (i.e., male/female) and attributes are the same
as we employed in the racial bias test. To examine gender stereotypes, we calculated the
association as s(Male, Female, Career, Family), which measures the relative association of the
category men with career attributes and the category women with family-related attributes.
We hypothesized male will be highly associated with the concepts including career and
competence compared to the other attributes. To examine the magnitude of the gendered
biases in the models, we quantified the effect size and p-value as mentioned.

As in Table 3, there are statistically significant gender biases in VGGFace, FaceNet,
OpenFace, and ArcFace. As we hypothesized, male is more likely to be associated with
career (OpenFace: d = 0.445, p < 10−4; ArcFace: d = 0.112, p < 10−4) and competence
(VGGFace: d = 0.205, p < 10−4; OpenFace: d = 0.212, p < 10−4). These findings parallel
with the previous studies that image search results for powerful occupations such as “ceo”
systematically under-represented women [30,51]. Moreover, male appears to be more likely
to be related with pleasant (ArcFace: d = 0.452, p < 10−4) and likable attributes (FaceNet:
d = 0.237, p < 10−4; OpenFace: d = 0.053, p < 10−2). However, overall effect sizes represent
the small magnitude of bias (d < 0.5).

Table 3. The results for FEAT on gender stereotype test that measures biases toward gender. Each
cell represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5), and
large (0.8). p-values under 0.001 are significant, which are marked as *. Targets for test are Male and
Female. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family

Male/Female

0.002 −0.412 −0.197 −0.106 0.445 * 0.111 *

Pleasant/Unpleasant 0.001 −0.194 −0.089 −0.042 0.020 0.452 *

Likable/Unlikable 0.002 −0.053 −0.030 0.237 * 0.053 −0.243

Competent/Incompetent −0.001 −0.036 0.205 * −0.343 0.212 * 0.035

On the other hand, there is no presence of gender bias in DeepFace and DeepID, where
all the p-values rated at least 0.1. To confirm whether both models are not gender biased, a
replication test is left for future work.
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4.3. Experiment 3: Do Face Recognition Models Contain Age Stereotypes?

This experiment explores whether face recognition models reproduce stereotypes
toward a particular age group, such as elderly are slow, incompetent, and forgetful [52,53].
To measure age bias, we replicated the same attributes as the racial and gender bias
tests. Specifically, the target is an age pair (i.e., young/old) and attributes are pairs of
Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent. One of the
possible stereotypes is that young adults are more likely to be associated with the concepts
of career and competence compared to the other attributes. As in the aforementioned ex-
periments, effect sizes and p-values are quantified to examine the magnitude of stereotypes
toward each age group.

The results in Table 4 show that DeepID, VGGFace, OpenFace, and ArcFace present
age biases. That is, young people are associated with the attributes pleasant (VGGFace:
d = 1.406, p < 10−4, OpenFace: d = 0.551, p < 10−4), likable (DeepID: d = 0.290,
p < 10−4, VGGFace: d = 1.222, p < 10−4, OpenFace: d = 0.431, p < 10−4, ArcFace:
d = 0.509, p < 10−4), and competent (VGGFace: d = 1.046, p < 10−4, OpenFace: d = 0.225,
p < 10−4). In particular, VGGFace shows age biased representation with all four attributes.
Moreover, effect size d of three attributes, including Pleasant/Unpleasant, Likable/Unlikable,
and Competent/Incompetent, rated over one, which is considered a large magnitude of
bias. On the contrary, we cannot observe any significant differences in associations from
DeepFace and FaceNet. Further studies are needed to ensure that neither model shows
age bias.

Table 4. The results for FEAT on age stereotype test that measures biases toward age. Each cell
represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5), and
large (0.8). p-values under 0.001 are significant, which are marked as *. Targets for test are Young and
Old. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family

Young/Old

−0.055 −0.376 0.344 * −0.166 0.993 −0.416

Pleasant/Unpleasant 0.062 −0.036 1.406 * 0.137 0.551 * −0.260

Likable/Unlikable 0.066 0.290 * 1.222 * 0.000 0.431 * 0.509 *

Competent/Incompetent −0.021 −0.001 1.046 * 0.031 0.225 * −0.477

4.4. Experiment 4: Are Face Recognition Models Gendered Racism?

We attempt to replicate a stereotype toward the Asian American Female (ASF). Asian
women are usually seen as incapable of being or becoming leaders as they are quiet and
lacking leadership qualities. Instead, they are assumed to work at a low-level gendered
job, such as being a maid or working in a nail salon [12]. We used incompetent attribute to
test this intersectional stereotype, which includes “passive” and “indecisive”. In detail, we
set the targets for comparison as European American Female (EUF) and African American
Female (AFF). Similar to the bias tests above, we computed the relative distances between
the pairs of targets and attributes. For example, s(EUF, ASF, Competent, Incompetent) is
used to compare distance between EUF and ASF against the concepts of competence and
incompetence. Effect size and p-values are measured to systematically present the gendered
racism in the pre-trained models.

Table 5 presents the results of gendered racism of each model, which indicates the
biases are prevalent in VGGFace, FaceNet, OpenFace, and ArcFace. In detail, AFF is more
likely to be related to competence notions, while ASF is associated with incompetence
(VGGFace: d = 1.424, p < 10−4; FaceNet: d = 0.451, p < 10−4; OpenFace: d = 0.453,
p < 10−4). Moreover, compared to EUF, ASF is significantly related to incompetence
concepts (FaceNet: d = 0.165, p < 10−4; ArcFace: d = 0.354, p < 10−4). The results prove
the incompetent Asian women stereotype is prevalent in several face recognition models
which hampers the accuracy of the models.
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Table 5. The results for FEAT on intersectional bias that measures stereotypes toward Asian females.
Each cell represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5),
and large (0.8). p-values under 0.001 are significant, which are marked as *. Targets are European
American Female, African American Female, and Asian American Female. All target pairs are tested
with a single attribute pair, Competent and Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Competent/Incompetent

EUF/AFF −0.017 0.465 * −1.007 0.748 * −0.095 0.358 *

EUF/ASF 0.007 −0.172 0.029 0.165 * −0.237 0.354 *

AFF/ASF 0.072 0.018 1.424 * 0.451 * 0.453* −0.367

In addition to the incompetent Asian women stereotype, it appears that EUF is more
likely to be associated with competence, while AFF is related to incompetence (DeepID:
d = 0.465, p < 10−4; FaceNet: d = 0.748, p < 10−4; ArcFace: d = 0.358, p < 10−4). This
counters the past stereotypes that black women are self-reliant, strength, resourcefulness,
autonomy, and the responsibility of providing for the material for their family [54].

4.5. Race Sensitivity Analysis

In order to verify that the racial features of the images result in racial bias in pre-
trained models, we measured the differences of racial bias depending on the variances of
racial features. We hypothesized that if a strong association between a target and attribute
becomes loose as changing the racial features, a model tends to link a certain target that has
specific race-dependent features with an attribute. In this regard, we reversed the races of
images to measure associations between reversed race targets and attributes with FEAT. We
synthesized the set of target images to having reversed races (i.e., EU to AF and AF to EU)
by varying the extent of the racial variances by increasing the levels of transformation from
0% to 100% with 25% interval. We preserved the identity-related features of the images
while reversing the racially dependent features of the faces. Following the findings of prior
research, AF and EU have several differences in external facial features [55]: (1) skin color,
(2) nose shape, and (3) lip shape. In detail, skin color is one of the most representative
features that can be used to visually distinguish race. Moreover, AF individuals typically
have shorter, wider, and shallower noses than the EU population [56]. In addition, their
lips are also thicker and wider [57]. Therefore, the aforementioned face features of EU are
converted into AF features and vice versa.

For the reliability of the racial transformation, we validated whether the race of a given
image is represented differently as the level of the transformation increased. We employed
the convolutional neural network (CNN) model, which has shown good performance
with image classification tasks [58], to classify the race of the image. We trained the CNN
using a race balanced dataset which consists of 774 EU and 774 AF. By employing the
trained CNN, we classified the race transformed dataset which contains 500 EU and 500
AF images into one of the race classes. For each degree of transformation, we averaged the
race classification probabilities of transformed images where 0 indicates the EU class and 1
indicates the AF class. The classification probabilities are represented in Figure 2. As the
transformation level of EU becoming AF moves from 0% to 100%, there is a probability of
EU being classified as AF. Similarly, AF are more likely to be classified into EU throughout
the level of race transformation. The classification variances imply that the race of the
image is distinguished by the extent of the transformation.

As we verified the racial transformation, we measured the FEAT by varying the racial
features of target images. For example, we calculated s(EU25, AF25, Career, Family), where
EU25 indicates the EU images transformed into AF at about 25%, while AF25 represents the
AF images converted into EU by 25%. Table 6 describes the FEAT result with race sensitivity.
Accordingly, as the race converted, the number of significant differences decreases. In other
words, as the race becomes converted, the associations between targets and attributes are
not significantly different. For instance, EU25 is more likely to be related to a career than
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family, while EU100 is not significantly related to a certain attribute. In accordance with
this result, AF100 is not associated with a certain attribute, but AF25 is linked with family
rather than a career.

Table 6. The results for race sensitivity analysis with FEAT on race transformation by varying the
racial features in each image. Each cell represents the effect size, which indicates the magnitude
of bias as small (0.2), medium (0.5), and large (0.8). p-values under 0.001 are significant, which
are marked as *. Targets for test are EU and AF. Attributes are Career/Family, Pleasant/Unpleasant,
Likable/Unlikable, and Competent/Incompetent.

Race Transformation Attribute DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

25%

Career/Family 0.598 * 0.470 * 0.354 * 0.419 * 0.657 * 0.523 *

Pleasant/Unpleasant 0.438 * 0.314 * 1.723 * 0.720 * 0.267 * 0.901 *

Likable/Unlikable 0.796 * 0.202 * 1.414 * 0.607 * 0.756 * 0.077

Competent/Incompetent 0.957 * 0.717 * 1.420 * 0.645 * 1.306 * 0.657 *

50%

Career/Family −0.007 −0.560 −0.689 −0.770 −0.281 −0.443

Pleasant/Unpleasant −0.029 −0.409 1.591 * −0.754 −0.510 0.201 *

Likable/Unlikable 0.008 −0.961 0.834 * −0.729 −0.378 −0.951

Competent/Incompetent −0.095 −0.624 0.817 * −0.716 0.308 * −0.501

75%

Career/Family −0.768 −1.226 −1.362 −1.467 −1.134 −1.089

Pleasant/Unpleasant −0.653 −0.888 1.324 * −1.547 −1.188 −0.475

Likable/Unlikable −1.018 −1.515 −0.387 −1.490 −1.318 −1.375

Competent/Incompetent −1.170 −1.439 −0.549 −1.509 −1.036 −1.278

100%

Career/Family −1.112 −1.538 −1.586 −1.725 −1.490 −1.382

Pleasant/Unpleasant −0.999 −1.200 0.761 * −1.785 −1.493 −0.884

Likable/Unlikable −1.448 −1.733 −1.102 −1.745 −1.619 −1.593

Competent/Incompetent −1.536 −1.697 −1.046 −1.755 −1.493 −1.628

In particular, for the Career/Family attribute, we found that a significant difference in
association only exists in the 25% race transformed embeddings for all models. As the EU
becomes AF (i.e., 50% to 100%), and vice versa, the associations between target and the
attribute become insignificant. That is, the models are sensitive to racial features which
would be the cause of discriminative associations.

AF

EU EU to AF

0.0

0.2

0.4

0.6

0.8

1.0

100%75%50%25%0%
AF to EU

0.0

0.2

0.4

0.6

0.8

1.0

100%75%50%25%0%

0.08

0.30

0.42

0.62

0.77 0.77
0.83

0.58

0.38

0.31

EU

AF

Figure 2. The classification probability of race between AF and EU by extent of the race transformation;
x-axis indicates level of race transformation, while y-axis indicates probability of prediction to EU (0)
or AF (1).



Comput. Sci. Math. Forum 2022, 3, 2 11 of 14

5. Discussion

The current study demonstrates that the pre-trained face recognition models are prone
to stereotypical bias even though they are widely used as building blocks for various
vision tasks. We investigated a wide range of social biases to show how human-like biases
are automatically encoded in vector spaces of face recognition models. By introducing
FEAT, we systematically evaluated how pre-trained models interpret an image containing
a bias target and associate them to a specific attribute. We confirmed racial, gender,
age, and an intersectional bias are reproduced through the embeddings from pre-trained
models by assessing differences in evaluative associations between pairs of semantic or
social categories. To be specific, the results show an intersectional bias in minorities such
as females of relatively unexplored ethnicity in the field. This implies a wide range of
subgroups and ethnicities should be considered with respect to diagnosing social biases.

The new measurement, FEAT, would be useful for quantification of the social biases
from the way people are portrayed in images that are used to train machine learning
models. This alerts practitioners to be cautious against using pre-trained models for
transfer learning, which implies the importance of monitoring the harms these biases may
pose. Moreover, the different levels of social biases in each model emphasize the importance
of model selection when fair decisions are to be made in the real world. Leveraging these
developments will spur future research in understanding human bias in pre-trained models
and further mitigating social biases in models to build a fair society.

However, our study has some limitations to be solved in a future study. There is a lack
of exploration as to whether the discriminative associations result from underlying biased
data distribution or a training procedure. Moreover, as we collected our test data in the
wild, the test set might amplify the biases of the models because most of the models are
fine-tuned on task specific datasets. That is, the absence of the fine tuning process with
the new dataset might deteriorate the accuracy of the models. Therefore, to confirm the
origins of these biases in face images, syntactic and semantic features from the contextual
representation would be analyzed in the future study following the previous study [59].
Furthermore, measuring biases depending on each training batch can be another direction
for future work. That is, we can test the FEAT with the face embeddings from every batch to
detect the stage where the social biases start while training with the pre-trained model. In
addition, to analyze the main factors of biases within the embeddings, the bias mitigation
techniques would be presented to contribute to the fairness in the field of computer vision.
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