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Abstract: In electricity markets, electricity retailers or brokers want to maximize profits by allocating
tariff profiles to end-consumers. One of the objectives of such demand response management is to
incentivize the consumers to adjust their consumption so that the overall electricity procurement in
the wholesale markets is minimized, e.g., it is desirable that consumers consume less during peak
hours when the cost of procurement for brokers from wholesale markets are high. We consider a
greedy solution to maximize the overall profit for brokers by optimal tariff profile allocation, i.e.,
allocate that tariff profile to a consumer that maximizes the profit with respect to that consumer.
This, in turn, requires forecasting electricity consumption for each user for all tariff profiles. This
forecasting problem is challenging compared to standard forecasting problems due to following
reasons: (1) the number of possible combinations of hourly tariffs is high and retailers may not have
considered all combinations in the past resulting in a biased set of tariff profiles tried in the past, i.e.,
the retailer may want to consider new tariff profiles that may achieve better profits; (2) the profiles
allocated in the past to each user is typically based on certain policy, i.e., tariff profile allocation for
historical electricity consumption data is biased. These reasons violate the standard IID assumptions
as there is a need to evaluate new tariff profiles on existing customers and historical data is biased
by the policies used in the past for tariff allocation. In this work, we consider several scenarios
for forecasting and optimization under these conditions. We leverage the underlying structure of
how consumers respond to variable tariff rates by comparing tariffs across hours and shifting loads,
and propose suitable inductive biases in the design of deep neural network based architectures
for forecasting under such scenarios. More specifically, we leverage attention mechanisms and
permutation equivariant networks that allow desirable processing of tariff profiles to learn tariff
representations that are insensitive to the biases in the data and still representative of the task.
Through extensive empirical evaluation using the PowerTAC simulator, we show that the proposed
approach significantly improves upon standard baselines that tend to overfit to the historical tariff
profiles.

Keywords: out-of-distribution generalization; forecasting; temporal bias; permutation equivariance;
optimization

1. Introduction

A smart grid consists of multiple types of entities such as those involved in generation,
distribution, and consumption (smart appliances and buildings). One of the aims of a smart
grid is to manage electricity demand in an economical manner via integration and exchange
of information about all entities involved. For the customers or the end-consumers as well
as the electricity distributing agencies or the electricity brokers, it offers the flexibility
to choose/allocate among dynamically changing tariffs to meet certain objectives, e.g.,
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minimize electricity bill for customers, maximize profit for retailers, etc. However, meeting
such objectives is challenging due to dynamics of the market, e.g., changing wholesale
electricity prices, supply–demand fluctuations, etc.

As depicted in Figure 1, a broker typically performs three functions: (1) purchase or
sell power to its subscribers or customers in the retail market, (2) purchase or sell power in
the wholesale market, and (3) rectify any supply–demand imbalance within its portfolio
through the balancing market. In this work, we consider a simplified setting where the
broker performs the following two functions: (1) sell power to those customers in the
retail market who are electricity consumers, and (2) purchase power in the wholesale
market. Typical examples of consumers include offices, housing complexes, hospitals, and
villages. Furthermore, we focus on only those subset of consumers who have a shiftable
load component in their total or aggregate consumption in addition to the traditional fixed
or non-shiftable load, i.e., the consumption (e.g., appliance usage) at an hour that cannot
be moved to another hour. This shiftable load can be shifted from the originally preferred
hour to another hour in the day if the tariff for the latter is lower. The broker may want
to encourage such a behavior, known as demand response management [1], to maximize
profit or balance demand–supply.
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Figure 1. Various aspects and objectives in an electricity markets. In this work, we focus on a
sub-problem related to allocation of optimal time-of-use tariff (TOU Tariff) to each customer.

In this work, we consider the following out-of-distribution generalization problem:
given historical aggregated consumption of consumers to tariff profiles allocated to them,
forecast the aggregated consumption for new tariff profiles. These new tariff profiles are
part of the electricity broker or retailer’s plan to explore new profiles to further improve
the profits. This is different from standard forecasting problems as the exogenous variables
(tariff profiles) at test time are different from the exogenous variables at train time. Fur-
thermore, the allocation of tariff profiles in the past is not random, so the data is biased in
the sense that, for different consumer personas, not all historical tariff profiles would have
been tried. We note that the logic based on which the consumers respond to tariff profiles
is consistent irrespective of the tariff profile. We propose to capture that logic in the neural
network by using permutation equivariant networks and attention mechanisms.

The key contributions of this work can be summarized as follows:

• We consider the problem of electricity consumption forecasting under new tariff
profiles not encountered previously. This is then used for tariff profile allocation to
optimize electricity broker’s profits.

• We note that the forecasting problem can be seen as an out-of-distribution (OOD)
generalization problem with bias in the training data consisting of temporal and
confounding bias.

• To achieve OOD generalization, we leverage the logic behind how consumers respond
to tariff profiles in order to shift load, and propose a novel neural network architecture
to achieve better OOD generalization.

Through empirical evaluation, we show that the proposed approach is able to improve
upon vanilla methods that do not take into account suitable inductive biases guided by the
knowledge of how consumers respond to tariff profiles.
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2. Problem Formulation

The aggregated consumption ec,t ∈ R+ of a consumer c at time t has two components:
(1) Type-I consumption: this is non-shiftable consumption corresponding to the appli-

ances that have to be used at specific hours only and cannot be shifted to alternative hour;
(2) Type-II consumption: this is shiftable component of the consumption corresponding

to appliances whose usage can be planned. Refer to Figure 2a for more details.
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Figure 2. (a) Logic for Consumption Data generation in Electricity Markets and (b,c) Hourly Tariff
Rate Distributions depicting changing distribution across hours that poses generalization challenge.
(a) Causal Diagram. (b) Hourly Tariff Distributions in IID Profiles depicting temporal bias (Tin).
(c) Hourly Tariff Distributions in OOD Profiles (Tout).

Let ec,1:t denote the time series of electricity consumption for consumer c until time t.
We consider a consumer c ∈ C, where C is the set of consumers with non-zero Type-II
consumption, i.e., part of their load can be shifted in response to variations in tariff across
hours. Further, the i-th time-of-use (TOU) tariff profile is denoted as an ordered sequence or
H-length time series of hourly tariffs TOUi = TOUi

1 . . . TOUi
H , where TOUi

h (h = 1 . . . H)
denotes the tariff at hour h. In this work, we consider tariff profile with hourly rates over a
day such that H = 24, without loss of generality.

Let fc,1:t denote all features (static or time-varying) for consumer c at time t, including
e.g., past consumption time series, type of consumer (household, office, etc.), and ft denote
a vector of temporal features at timestamp t, e.g., hour of the day, day of the week, week
of the month, month of the year, etc. Note that fc,1:t refers to relevant features from entire
history, but in practice, we consider a window of length w over t− w + 1 : t for deriving
features at time t.

Further consider a tariff allocation policy function π such that

TOUc,t+τ = π(fc,:t, ft+τ , p̂t+1:t+H),

i.e., the tariff at a future time t + τ with τ = 1 . . . H is decided based on consumer features
at time t, the temporal features for time t + τ, where p̂t+τ denotes the estimate of electricity
price pt+τ in the wholesale market at time t + τ. Without loss of generality, we consider
the scenario where t + 1 corresponds to the first hour of the day, i.e., tariff profile for the
next day is decided using data until the end of the current day.

Consider historical time series data D = {ec,1:t, TOUc,1:t}c∈C , where the tariff time
series are a result of sequence of tariff profile allocations over days such that any profile
TOUi ∈ Tin is chosen from a fixed set of profiles Tin.

The goal for the broker is to allocate that tariff profile TOUi to a consumer that
maximizes the gain Gi

c over the next H hours:

Gi
c =

H

∑
t′=1

(TOUi
c,t+t′ − pt+t′)× ec,t+t′ . (1)

Importantly, the electricity consumption ec,t+t′ at t + t′ hour is a function of the entire
tariff profile on that day, as the consumer could choose to shift the shiftable part of the load
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from high tariff hours to low tariff hours by looking at the tariff profile allocated to the
consumer at the beginning of the day.

We consider the following two scenarios depending on the tariff profiles being consid-
ered for future allocations:
IID Scenario: when the profiles to be allocated to the consumers in future are from the
same set of profiles Tin used historically, i.e., TOUi ∈ Tin.
OOD Scenario: when the tariff profiles to be allocated to the consumers in future belong
to Tall = Tin ∪ Tout, where Tout is a new set of profiles not previously seen in D, i.e., are
out-of-distribution with respect to the training data, and not previously allocated to any
consumer by the broker who wants to consider these new profiles to improve future gains,
i.e., TOUi ∈ Tall .

3. Related Work

Our work relates to two bodies of literature: (1) demand response management in
electricity markets and the related sub-problem of electricity consumption forecasting
under exogenous variables, using reinforcement learning and deep learning methods [2–4],
and (2) out-of-distribution (OOD) generalization [5–8].

There have been many studies for (1); however, to the best of our knowledge, the
problem of bias in historical data in terms of the tariff profiles has been largely overlooked.
We draw attention of the community working on (1) to the potential of OOD generalization
by improving forecasts for previously unallocated tariffs by using the underlying structure
of the problem in terms of the particular way in which consumers shift loads in response
to changes in tariff. More specifically, we rely on the partial permutation equivariance
property of the response to time series of tariffs.

OOD detection and generalization is an emerging area of research, and aims at im-
proving the robustness of models to previously unseen scenarios. Many of the recent
approaches for (2) rely on changes in the objective function or different training procedures.
For example, the approaches based on meta-learning [9] are not applicable as there is no
notion of multiple tasks. We can consider each tariff profile as a task but then the forecasting
can involve different profiles in input versus output. In this work, we focus on using induc-
tive biases in the form of the neural network architecture to improve OOD generalization.
There is enough evidence to support the improvement in generalization abilities of neural
networks by using the structure of the problem to introduce suitable inductive biases
in the learning process. The most commonly used inductive bias is in the design of the
neural network architecture motivated by the structure of the problem. Recent examples
of this include using graph neural networks [10,11] and modular networks [12]. Recently,
using structural biases in deep neural networks motivated by the nature of bias and the
structure of the problem have been successfully evaluated for time series forecasting [13].
Data-dependent priors have been recently proposed in [14]. However, to the best of our
knowledge, using consumer behavior properties for electricity time series forecasting under
out-of-distribution exogenous variables to guide the design of neural network architecture
has not been considered so far in the literature.

4. The Learning Problem

We consider a 2-step approximate solution to maximize the gain (Equation (1)):
Step 1: For each consumer, forecast/estimate the consumption under each potential tariff
profile allocation. Given features fc,1:t (including ec,1:t), history of allocated tariffs TOUc,1:t,
and values of potential future tariff TOUc,t+1:t+H , the goal is to estimate ec,t+1:t+H . This can
be seen as a multi-step time series forecasting problem with exogenous variables. We
provide the details of our proposed approach for this in the next section.
Step 2: Compute the profit using

Ĝi
c =

H

∑
t′=1

(TOUi
c,t+t′ − p̂t+t′)× êc,t+t′ (2)
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for each tariff in TOUi ∈ Tall for OOD scenario (Tin for IID scenario). Allocate the tariff
profile to consumer c which results in maximum Ĝi

c. Note that, in practice, the future
wholesale rates pt+t′ (t′ = 1 . . . T) are also not known and might need to be estimated. In
this work, we assume that pt+t′s are known in advance or estimable accurately and focus
on estimating êc,t+t′s which are the only terms controllable via TOUc,t+t′s.

In summary, the tariff profile allocation policy corresponds to estimating the gain for
each tariff profile for a consumer, and then allocating the profile with maximum estimated
gain. We use a deep neural network based architecture as the function approximator that
estimates E[ec,t+t′ |TOUc,t+1:t+T ] from the data.

4.1. Biased and Scarce Data

The OOD scenario is challenging as there is no historical data for the profiles in
Tout. More concretely, we consider three possible values of tariff at any time t: low
(0.2), medium (0.5), and high (0.8). Therefore, there are 3H unique profiles possible. For
H = 24, there can be ≈ 3 × 1011 profiles possible. However, in practice, the number
of allocated profiles would be significantly smaller than this. In this work, we consider
|Tin| ∈ {2, 5, 8, 10, 12, 15, 20, 30, 35}, which is a range of values encountered for |Tin| in prac-
tice. This poses serious OOD generalization challenge in estimating ec,t+1:t+T for previously
unseen profiles TOUi

t+1:t+T ∈ Tout.
We note that one peculiar type of bias that manifests in practice is the temporal bias: at

any hour h of the day, certain values of tariff are more common than others. We explain this
further using a practical scenario as depicted in Figure 2: In practice, it is common to use the
following heuristic for tariff profile allocation: Keep most expensive tariff rates during peak
demand periods, least expensive tariff rates during non-peak hours, and slightly cheaper
(medium) rates, typically between peak and off-peak periods. Every tariff profile is curated
on the basis of average aggregated consumption of each customer. High tariff is allocated
when the aggregated consumption is high, and for rest of the hours, low/mid tariff are
allocated. The distribution of tariff rates over hours would depend on the distribution of
peak consumption across customers (refer Figure 2c). Furthermore, there is confounding
bias [15] with latent consumer attributes affecting (1) past aggregated consumption which
in turn affects the treatment (tariff profile allocation), and (2) the outcome (electricity
consumption) in D both can depend on the consumer features (refer Figure 2a). We leave
the handling of confounding bias for future work, and focus on handling temporal bias in
this work.

We empirically show that temporal bias poses a generalization challenge for vanilla
feed-forward neural networks, and propose an attention-based architecture to deal with
the same, in the next section.

4.2. How Consumers Respond to Tariffs

Consider the following toy example with H = 6 where there is only one tariff profile
in Tin given by {HHMMLL}, i.e., tariff rate is high (H) for the first two hours, medium
(M) for the next two hours, and low (L) for the last two hours. Further assume that the
consumer has a certain Type-II load during the 1st hour. After looking at this tariff profile,
the consumer responds by shifting the load from the 1st (high tariff) hour to the 5th (low
tariff) hour. Now, consider a tariff profile in Tout as {HHLLMM}. Clearly, this profile is
different from the profile in Tin as the sequence of highs and lows over the hours is different.
However, importantly, the underlying decision-making behavior of the consumer remains
the same, i.e., shift the Type-II load from high tariff hour (1st hour in this case) to low tariff
hour (3rd hour instead of 5th hour in this case). Therefore, it is still possible to forecast
the behavior of the user for this OOD profile. In this work, we intend to leverage this
aspect of the consumer’s decision-making process that stays the same irrespective of the
IID-vs-OOD profiles.

Further, consider five ways to process the sequence of tariff rates (Figure 3):
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Figure 3. How different methods process the sequence of tariff rates.

• Independent processing: Here, the tariff at each hour is processed independently [16,17]
and used to estimate the consumption at that hour. Of course, since the consumer’s
decision making is based on comparison of tariff rates across hours, such a processing of
tariff profiles will not be effective.

• All considered together or fully connected: Here, tariffs at all hours (the entire tariff
profile) are processed simultaneously, e.g., through a fully connected layer in a feed-
forward neural network. We argue that such processing of tariff profiles will be able
to effectively learn a good function approximator for the profiles in Tin. However, it
will be highly biased to the profiles in Tin since it does not effectively learn the way
consumers are processing the tariff rates for shifting the loads. This leads to biased
tariff profile processing modules due to the temporal bias in the historical profiles, as
discussed above.

• Focusing on relevant information or Attention: Here, the tariffs rates in a day are
considered as tokens and hours of a day are used as a positional information. This
information is processed through a self-attention layer. We argue that such processing
of tariff profiles will mimic the logic of how consumers respond to a tariff profile.
However, it will be biased towards the profiles in Tin since the tariffs and hour of the
day are correlated (due to temporal bias in the historical tariff profiles).

• Permutation Equivariance: As discussed earlier, permutation equivariance is an
important aspect of the consumer decision-making logic. To mimic the same in the
processing of tariffs by the neural networks, we expect that if trained on one of the
tariff sequences, say, HHMMLL in the earlier example), it should perform equally well
on other sequence (i.e., HHLLMM). In other words, processing of tariffs by neural
networks should be Permutation Equivariant. We propose two ways to achieve
approximate permutation equivariance:

– Attention w/o Hour of Day (Att.-HOD): As explained above, the standard self-
attention method can mimic the logic of how consumers respond to tariffs, but
due to temporal bias in the data, the attention method does not generalize well
to Tout. We propose a simple variant that does not take HOD as input in the
self-attention module to obtain the permutation equivariance property.

– Attention with Permutation Equivariant Query Processing Module (Att.+PE):
Here, the tariff rates in a day are considered as a set and processed in such a way
that ordering of the tariff rates does not matter, i.e., the processing is permutation
equivariant [18,19].

In the next section, we explain how we achieve permutation equivariance while
forecasting the consumption given a consumer’s consumption history, sequence of past
tariff profiles, and a future tariff profile.

5. Forecasting Architecture

Consider the consumption history of a consumer along with past allocated tariffs
to be a time series of vectors f1:t including dimensions for past aggregate consumption
and past allocated tariff rates {e1:t, TOU1:t}, and the candidate tariff profile for the next
H hours to be TOUt+1:t+H . The goal is to estimate et+1:t+H while ensuring permutation
equivariance in processing TOU1:t+H in the sense of [19], e.g., if the output of process-
ing {TOU1, TOU2, TOU3} is {o1, o2, o3}, then the output of processing a permutation
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of the input, say {TOU2, TOU1, TOU3}, is given by the permutation {o2, o1, o3} of the
original output.

To achieve the above-stated goal, we consider the following modularized neural
network architecture as depicted in Figures 4 and 5:
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• Dilated Convolutional Neural Networks (DCNN) branch for processing of past con-
sumption time series. (Since we have large input time series (t = 168 in our case), we
consider 1D-Convolution Neural Networks for computational efficiency instead of
Recurrent Neural Networks based architecture such as LSTMs [20].)

• Exogenous branch: This branch consists of Attention with Permutation Equivariant
Query Processing Module (Att.+PE) branch for processing of tariff rates, and other
modules for processing of features like hour of day, day of week, etc.

• Implicit Quantile Network (IQN) branch for generating the quantile estimates for
future consumption.

Next, we provide details of the exogenous branch which is the key novel component
of the proposed approach and helps to mitigate temporal bias.

To achieve permutation equivariance and handle temporal bias, we consider process-
ing the tariff rates TOUt+1:t+H (same processing is done for past tariffs as well) via an
attention mechanism where a part of the processing is done independently for tariff at
each time step t + t′ (t′ = 1 . . . H) while still taking into account the global information
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TOUt+1:t+H in order to mimic the behavior of the consumer as explained in the previ-
ous section.

More specifically, we consider key K and value V for the attention mechanism to
be dependent on a single time step t + t′, while the query Q depends on the entire tariff
profile TOUt+1:t+H for the day. In other words, Kt+t′ = fK(TOUt+t′ , t + t′, θK), Vt+t′ =
fV(TOUt+t′ , t + t′, θV), and Qt+t′ = fQ(TOUt+1:t+H , θQ). Subsequently, the output for the
part of the exogenous branch processing the tariffs at time t + t′ is given by

Att(Qt+t′ , Kt+t′ , Vt+t′) = softmax(
Qt+t′KT

t+t′√
d

)Vt+t′ , (3)

where d is the dimension of Q, K, and V. While the fK and fV are implemented as simple
linear layers, fQ is implemented as a permutation equivariant network as follows:

f (x) = σ(xΛ− 1maxpool(x)Γ) (4)

where x = ReLU(TOUt+1:t+H , θTOU) ∈ RH×d and θ shared across timesteps t + 1 . . . t + H,
Λ, Γ ∈ Rdxd′ , matrix of ones 1 ∈ 1H×H , maxpool is taken along columns implying that the
resulting value for any timestep contains information from all timesteps and is independent
of a particular timestep. In this work, we use d = 10, d′ = 20.

Objective function: We use quantile loss for training the DCNN model given by:

Lquantile =
1

b× n

b

∑
i=1

qn

∑
q=q1

max(q× ei, (q− 1)× ei), (5)

where ei = yi − ŷi indicates the error of the forecasted consumption ŷi with respect to
ground-truth consumption yi of i-th window instance, b is the batch size and n is the
number of quantiles used for training.

6. Experimental Evaluation

The goal is to evaluate the efficacy of the proposed approach to deal with OOD
scenarios. For this, we compare the proposed approach with various baselines in the IID
as well as OOD settings. We use the simulated data from a high-fidelity and popular
PowerTAC (https://powertac.org/, accessed on 12 November 2021) [21] simulator that
uses complex state-of-the-art user-behavior models and real world weather data to simulate
the complex dynamics of a smart grid system.

We consider ‘Office Complex Controllable type’ consumers where consumers’ daily
behavior depends on factors such as number of sub-customers, number of appliances,
weather information, hour of day, month, day of week, etc. The various values these factors
can take across consumers is given in Table 1.

Table 1. Dataset details.

S.N. Properties of Consumers Value(s)

1 Number of consumers 12
2 Number of sub-consumers 3, 5
3 Working days 3, 4
4 Work Start hour {8, 9, 10} (+/−) 1 h
5 Break Start hour {13, 14} (+/−) 1 h
6 Work duration 8 (+/−) 1 h
7 Shiftable consumption( in KW) 600, 2400
8 Total data duration (in months) 6

To obtain train, validation, and test split, we divide the total data of 6 months into 4, 1,
and 1 month, respectively. The time series of hourly data for each consumer is divided into

https://powertac.org/
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windows of length t = 168 (corresponding to 7 days) with window-shift of 24 to forecast one
day-head consumption, i.e., output window size is 24. We consider varying number of tariff
profiles in historical data, i.e., |Tin| ∈ {2, 5, 8, 10, 12, 15, 20, 25, 30, 35}, and an additional
set of |Tout| = 40 profiles. As the number of profiles |Tin| in the training set increases, we
expect the bias in the training data to reduce.

6.1. Baselines Considered

For comparison, we consider the following approaches all using DCNN as the core
time series processing module:

• No future exogenous variable (NoX) is the simple univariate time series forecasting
approach which uses only history of aggregated consumption without any additional
future information. This can be considered as a lower bound in the sense that the
network does not have access to any future tariff rates to estimate where a consumer
will shift the load.

• Independent tariff-based method (Ind.) is an approach that treats each tariff rate
independently, and uses the tariff at time t+ t′ to estimate the aggregated consumption
at that time. Importantly, this approach has no means to capture comparison of the
tariff rates in order to figure out whether the tariff at time t + t′ is high or low in
comparison to another timestep.

• Fully-Connected Approach (FC) utilizes the information of all timesteps to estimate
the aggregated consumption at each timestep. As explained previously, we expect
such an approach to perform well in the IID scenario but struggle in the OOD scenario
where new profiles are included.

• Permutation Equivariant (PE) method uses only the permutation equivariance idea
from our approach and ignores the attention mechanism. This method can be thought
of as an ablation over our approach.

• Attention (Att.): This is another ablation over our approach which uses standard
attention module for processing the tariffs along with hour of the day information
without any permutation equivariance property.

• Upper Bound (UB): This is an oracle approach that assumes knowledge about the
hours at which the consumer is going to shift the load. In this, a binary value indicating
whether the shiftable load will be shifted to this hour or not is passed as an additional
feature to the exogenous branch of the Att.+PE network.

6.2. Hyperparameters Used

We use z-normalized consumption time series. DCNN has three layers with each layer
having 16 convolutional filters of length 2, and dilation rate 1, 2, and 4, respectively. We
use batch normalization and L2 filter regularizer (λ = 0.001) for regularization purposes.
ReLU layers are applied on each CNN layer. The output of the DCNN layer is processed
by a channel-wise fully connected layer, which has 24 hidden units (equal to the output
window size) i.e., 24, followed by locally connected layer with 10 filters which are applied
at each time-step independently (filter size = 1).

To obtain categorical feature (hour of day, day of week, month of year) embeddings
and tariff rate embeddings, we use a separate feed-forward network with ReLU layer
followed by linear layer, having 5 hidden units and 10 hidden units respectively. Similarly,
we use 10 hidden units for each feed-forward network fQ, fK, fV . Finally, the output layer
is a small feed-forward network that has 2 layers followed by a linear layer having 40,
10, and 1 hidden unit, respectively. We use batch size of 16, number of epochs 200, and
Adam optimizer with fixed learning rate of 0.0001 for training the neural network. During
training, quantiles are sampled from uniform distribution while during validation and
testing, we use three quantiles 0.1, 0.5, and 0.9. All hyperparameters were obtained via grid
search based on validation quantile loss on the IID set.
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6.3. Results and Observations

We make following key observations from the results in Figures 6 and 7:

10 20 30
# tariff profiles

0.02

0.04

0.06

0.08

AQ
L

10 20 30
# tariff profiles

0.04

0.06

0.08

0.10

0.12

0.14

AQ
L

NoX
Ind.
FC
PE
Att.
PE+A (ours)
UB

(a) (b)

Figure 6. Forecasting performance Comparison of different approaches (in terms of Average Quantile
Loss). (a) IID Scenario. (b) OOD Scenario.
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Figure 7. %gains of the proposed Att.+PE, Att.-HOD, and Att. approaches over the vanilla FC
approach. (a) Option-1. (b) Option-2.

• Observations from forecasting results as shown in Figure 6:

– In the IID scenario, the average quantile loss (AQL) for all approaches increases
with increasing number of tariff profiles as the complexity of the dataset increases.
The FC approach performs better than other approaches for |Tin| ≤ 15, indicating
higher expressivity of the FC approach to fit to a smaller number of IID profiles,
indicating potential overfitting.

– On the other hand, for the OOD scenario, the performance of all approaches
improves with increasing number of IID profiles which is expected as more
IID profiles implies less bias and better generalization to OOD profiles as well.
Interestingly, the FC approach which was the best approach for the IID profiles
for |Tin| ≤ 12, is the worst approach (except the lower bound NoX) in the OOD
setting, because it uses a fully connected layer to process the tariffs of the day,
and due to temporal bias in the data, the weights of fully connected layer will try
to overfit on |Tin| and thus not generalize to OOD profiles|Tout|.
On the other hand, our proposed approaches Att.+PE and Att.-HOD are con-
sistently better than FC for all values of Tin, which shows that FC struggles
with the temporal bias in the historical data. We also analyze that Att.-HOD as
well as Att.+PE are also consistently better than Att. for all values of Tin, which
shows that permutation equivariant way of handling tariff profiles provide better
generalization on OOD profiles.
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• We further analyze whether the gains of Att.+PE and Att.-HOD over other methods
on the OOD scenario translate into more profitable tariff profile allocation for the
retailer. We compare the gain G of Att.+PE, Att.-HOD, and Att. in comparison to FC.
We consider two kinds of profiles for wholesale prices p, one with two values (0.2 and
0.8, referred to as Option-1) and one with three values (0.2, 0.5, and 0.8, referred to as
Option-2).

– Comparison with FC: We observe that all attention-based proposed approaches
Att., Att.-HOD, and Att.+PE depict significant positive gains over FC. We also
observe that Att., Att.-HOD, and Att.+PE approaches have higher positive gain
in fewer IID tariff profiles scenarios |Tin| ≤ 12 (except |Tin| = 2, where data is
too little to claim any generalization), and the gains tend to diminish as |Tin|
increases.

– As expected, we note that it is not important that the gains in forecasting translate
directly into monetary profits, as the optimization objective involves other terms
such as wholesale costs p. Therefore, the best approach on forecasting (Att.+PE)
in the OOD scenario is not necessarily the best approach in terms of profit always.

– Comparison with Att.: For Option-1, Att.-HOD has significantly better gains
than Att. for all values of Tin except |Tin| = 2, which shows that the permutation
equivariant way of handling tariff profiles is helpful. For Option-2, the gains of
Att.-HOD are better or close to the gains of Att. approach (except |Tin| = 2).

In Figure 8, we also provide sample forecasts comparing Att., Att.-HOD, Att.+PE, and
FC with the ground truth (GT) on an OOD profile, indicating better generalization ability
of Att.-HOD and Att.+PE, especially around points where Type-II load gets shifted. On the
other hand, all methods perform well in the IID setting as shown in Figure 9.
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Figure 8. Sample results comparing the proposed approaches Att.-HOD and Att.+PE with FC on an
OOD tariff profile. Here, GT: Ground Truth time series. FC struggles to capture the subtle changes in
consumption due to shifting of load, while both Att.-HOD and Att.+PE are able to forecast better.
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Figure 9. Sample results comparing the proposed approaches Att.-HOD and Att.+PE with FC on an
IID tariff profile. Here, GT: Ground Truth time series. In IID scenario, all proposed attention-based
approaches and baselines perform well.

7. Conclusions and Future Work

In this work, we consider the problem of demand response management from an
electricity broker or retailer’s perspective. We highlight temporal bias as an issue in
optimizing profits via suitable tariff profile allocations. We motivate the need for better
generalization to out-of-distribution profiles, and note that this is possible by leveraging the
fact that consumers respond with same logic across profiles. We propose suitable inductive
biases in deep neural networks-based approach for forecasting electricity consumption in
response to new tariff profiles. This takes the form of a permutation equivariance-enabled
attention mechanism that can leverage the property of consumer behavior to respond in a
certain way across profiles. In the future, it will be interesting to look at the generalization
from the perspective of handling confounding bias as the historical profile allocation and
the outcome are affected by the historical allocation policies, which in turn rely on the latent
consumer attributes acting as confounders. The current optimization objective takes into
account broker’s profit but ignores the cost of electricity for the end consumer—bringing
this into the optimization objective is a potential next step.
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