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Abstract: Multi-commodity flow problems concerned with the transshipment of more than one com-
modity from respective sources to the corresponding sinks without violating the capacity constraints
on the arcs. If the objective of the problem is to send the maximum amount of flow within a given
time horizon, then it becomes the maximum flow problem. In multi-commodity flow problems, the
flow of different commodities departing from their sources arriving at the common intermediate node
have to share the capacity through the arc. The sharing of the capacity in the common arc (bundle
arc) is one of the major issues in the multi-commodity flow problems. In this paper, we introduce the
maximum static and maximum dynamic multi-commodity flow problems with proportional capacity
sharing and present polynomial time algorithms to solve the problems. Similarly, we investigate
the maximum dynamic multi-commodity flow problems with flow-dependent capacity sharing and
present a pseudo-polynomial time solution strategy.

Keywords: multi-commodity; maximum flow; proportional capacity sharing; flow-dependent
capacity sharing

1. Introduction

A topological structure with links and crossings, known as arcs and nodes, respectively,
is a network in which entities are transshipped from one point to another. The initial and
the final points are termed as source and sink nodes, respectively. In a multi-terminal
network, the transshipment of more than one commodity from the respective sources to the
corresponding sinks satisfying the capacity constraints on the arcs is a multi-commodity
flow (MCF) problem. Supply chain networks, message routine in telecommunication, and
transportation networks are some examples of multi-commodity network topology.

Ford and Fulkerson [1] introduced the concept of the static multi-commodity flow
problem, and thereafter many researchers have contributed to the different aspects of the
multi-commodity flow problems [2–5]. If the demand and supply of each commodity is to
be maximized in the given time horizon, then the problem becomes a maximum dynamic
multi-commodity flow problem. The static multi-commodity flow problem is polynomial
time solvable by using the ellipsoid or interior point method, whereas the dynamic multi-
commodity flow problem is NP-hard [6]. Kappmeier [7] provided the solution to the
maximum dynamic multi-commodity flow problem using a time-expanded network in
a pseudo-polynomial time complexity. Pyakurel et al. [8] presented a polynomial time
algorithm for the maximum static flow problem and pseudo-polynomial algorithms for
the earliest arrival transshipment and maximum dynamic flow problems with partial
contraflow. A priority based multi-commodity flow problem can be found in Khanal
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et al. [9]. Using the concept of intermediate storage introduced by Pyakurel and Dempe [10],
Khanal et al. [11] presented a polynomial time algorithm for the maximum static—and a
pseudo-polynomial time algorithm for the maximum dynamic—multi-commodity flow
problems with intermediate storage.

The sharing of the bundle arc capacity is one of the major issues in the multi-commodity
flow problems. For each commodity, if the sharing of the capacity of the bundle arc is set
in proportion to the bottleneck capacity of path from their respective sources to the tail
node of the bundle arc, then it is known as proportional capacity sharing. In this case, the
shared capacity of the bundle arc for each commodity is fixed and the multi-commodity
flow problem is reduced to an independent single commodity flow problem. To avoid
the fractional flow, we can use ceiling and floor functions with an appropriate manner.
Similarly, if the sharing of the capacity of the bundle arc is made according to the inflow
rate of the flow of each commodity, then it is termed as flow-dependent capacity sharing. In
this method, the shared capacity of the bundle arc may not always be the same as the flow
on the arc may vary over the time. We investigate these two sharing techniques hereafter
in Sections 2.1 and 2.2.

In this paper, we introduce the maximum multi-commodity flow problem using
proportional as well as flow-dependent capacity sharing on the bundle arcs. We present
the polynomial time algorithms for the static as well as the dynamic multi-commodity
flow problems, using proportional capacity sharing in Section 3. Similarly, in Section 4 a
pseudo-polynomial time algorithm for the dynamic multi-commodity flow problem with
flow-dependent capacity sharing is presented. The paper is concluded in Section 5.

2. Basic Terminologies

Consider a network topology G = (N, A, K, u, τ, di, S, D, T) with commodity i ∈ K = {1,
2, . . . , k}, set of nodes N and set of arcs A. Here, di represents the demand/supply of each
commodity i ∈ K which is routed through a unique source–sink pair si-ti, where si ∈ S ⊆ N
and ti ∈ D ⊆ N. Each arc e = (v, w) ∈ A with head(e) = w and tail(e) = v is equipped with a
capacity function u:A → R+ that restricts the flow of the commodity and a non-negative
transit time function τ : A → R+ that measures the time to transship the flow from node v

to node w. Let
→
δ (v) and

←
δ (v) be the set of outgoing arcs from node v and the incoming arcs

to node v, respectively. We denote Pi as the set of all paths of the commodity i such that
P ∈ Pi is a si-ti path and P[si,v] ∈ Pi represents the path from si to the intermediate node v.
The time horizon is denoted by T = {0, 1, . . . , T} in discrete time settings and T = [0, T + 1)
in continuous time settings. In case of static flow, the time parameters T and τ are absent.

2.1. Proportional Capacity Sharing

The multi-commodity flow problem differs from the single commodity flow problem
due to the bundle constraints and the unique source–sink flow for each commodity. Our
assumption is that the nature of flows inside the same commodity group are homogeneous
and between the commodity groups are heterogeneous yet uniform in the occupancy rate of
the arc capacity. To share the capacity of the bundle arc, we propose a proportional capacity
sharing technique depending on the minimum of the arc capacity of paths P[si,v], (that is,
bottleneck capacity of path P[si,v]) for each commodity i from their respective sources si to
the tail v of bundle arc e = (v, w) as follows: Let ue be the capacity of a bundle arc e, then
proportional sharing of capacity ue for each commodity i ∈ K is,

ui
e =

ui
a

∑aε P[si,v] :i ∈ K ui
a

ue (1)

where P[si,v] is the path from si to the tail v of bundle arc e, for all i ∈ K and a is an arc
in P[si,v] with minimum capacity. Here, ui

e represents the portion of the capacity of the
arc e allocated for the commodity i. Clearly, the sum of the shared capacities over each
commodity is equal to the original arc capacity, i.e., ∑i ∈ K ui

e = ue.
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The shared capacity may be in fraction, i.e., ui
e = int(ui

e) + fra(ui
e), the sum of the

integral part and the fractional part, respectively. The fractional capacities can be converted
into the integral capacities as follows:

• Find the sum ∑ fra(ui
e). If ∑ fra(ui

e) = p, then the first p fractional capacities with the
greatest fractional part (with descending order of the fractional part) are rounded up
using the ceiling function d.e and the remaining capacities are rounded below by the
floor function b.c.

• If the same fractional part occurs in more than one commodity then priority is given
to the capacity with the greatest integral part among them.

• In case of equal integral parts, priority goes to the commodity with the higher demand
among them. If the demand values are also the same, then either of them can be
rounded up.

It is to be noted that if ui
e < 1 and has no alternative path for commodity i, then it may

block the transshipment of the flow. In such a case, the fractional capacity is to be accepted.

2.2. Flow-Dependent Capacity Sharing

In the proportional capacity sharing technique the shared capacity of each commodity
remains fixed at each time step θ. In this subsection, we present the flow-dependent
capacity sharing technique, where the share of the capacity for each commodity depends
on the inflow rate of the flow f in the predecessor arcs. At any instance of time θ, if a
bundle arc e = (v, w) with the capacity ue holds more than one commodity i ∈ K, then the
flow-dependent capacity sharing of ue for each commodity i ∈ K is,

ui
e(θ) =

f i
a(θ − τa)

∑aε α(e):i ∈ K f i
a(θ − τa)

ue (2)

where α(e) is the set of the predecessor arcs of bundle arc e so that aε α(e)⇒ head(a) =
tail(e) and ui

e(θ) is the portion of the capacity of arc e for the commodity i at time θ. For
each time θ, the sum of the portion of the shared capacities ui

e(θ) over all the commodities i
∈ K is equal to the original arc capacity, i.e., ∑i ∈ K ui

e(θ) = ue. If the shared capacities are
in fraction, we can convert them into integer values as described in Section 2.1.

3. Maximum MCF with Proportional Capacity Sharing
3.1. Maximum Static Multi-Commodity Flow

In the static network G = (N, A, K, u, di, S, D) the multi-commodity flow ϕ with
proportional capacity sharing is the sum of the non-negative flows ϕi : A → R+ for each
i with demand di satisfying the proportional capacity sharing Equation (1) together with
the conditions (3) and (4).

∑
e∈
→
δ (v)

ϕi
e − ∑

e∈
←
δ (v)

ϕi
e =


di
−di

0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (3)

0 ≤ ϕi
e ≤ ui

e ∀ e ∈ A, i ∈ K (4)

The constraints in (3) represent the supply/demand at the source/sink nodes and
the flow conservation constraints at the intermediate nodes, whereas the constraints in (4)
represent the boundedness of the flow on the arcs by their capacities. By taking the sum
over each commodity in the later equation, we get the bundle constraints 0 ≤ ∑i∈K ϕi

e ≤
∑i∈K ui

e = ue for all e ∈ A. For a maximum static multi-commodity flow problem with
proportional capacity sharing the objective is to maximize the total flow value ∑i∈K di = |ϕ|
subject to the constraints (1), (3) and (4).

We now introduce the maximum static multi-commodity flow problem with propor-
tional capacity sharing as follows:
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Problem 1. For the given static multi-commodity network G = (N, A, K, u, di, S, D) the maximum
static multi-commodity flow problem with proportional capacity sharing is to transship the maximum
flow from si to ti, where the shared capacity for each commodity i ∈ K on the bundle arc is depending
on the minimum capacity of paths from the respective source to the tail node of the bundle arc.

To solve the problem, we first reduce the multi-commodity flow problem into k
independent single commodity flow problems by sharing the capacity of the bundle arc
using Equation (1). For each commodity i maximum static flow ϕi is obtained and the sum
of the flows for the commodities is the maximum static flow value |ϕ|. We now present the
algorithm to solve Problem 1.

Theorem 1. Algorithm 1 solves the maximum static MCF problem correctly in polynomial time
complexity.

Algorithm 1: Maximum static MCF algorithm with proportional capacity sharing

Input: Given static multi-commodity flow network G = (N, A, K, u, di, S, D).

1. Construct k independent sub-problems by proportional capacity sharing (1) on bundle arcs
for all i ∈ K.

2. Compute the solution ϕi to the static maximum flow problem for all i.
3. Maximum flow |ϕ| = ∑i∈K ϕi.

Output: Maximum static MCF on G with proportional capacity sharing.

3.2. Maximum Dynamic Multi-Commodity Flow

For a given dynamic network G with constant transit times τ on arc e, the MCF over
time function f with proportional capacity sharing is the sum of the flows f i : A× T→ R+,
satisfying the proportional capacity sharing Equation (1) together with the constraints (5)
and (7).

∑
e∈
→
δ (v)

T

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

T

∑
θ=0

f i
e(θ) =


di

−di
0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (5)

∑
e∈
→
δ (v)

β

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

β

∑
θ=0

f i
e(θ) ≤ 0 ∀ v /∈ {si, ti}, i ∈ K, β ∈ T (6)

0 ≤ f i
e(θ) ≤ ui

e ∀ e ∈ A, i ∈ K and θ ∈ T (7)

Here, the constraints in (5) represent the supply/demand at the sources/sinks and the
flow conservation at the intermediate nodes on time horizon T. The non-conservation of
the flow at the intermediate nodes in any time step β in T = {0, 1, . . . , T} are represented by
the constraints in (6). Similarly, (7) represents that the flows on the arcs are bounded above
by their capacities. With these constraints, together with Equation (1), we introduce the
maximum dynamic MCF problem with proportional capacity sharing, which maximizes
the total flow value ∑i∈K di = | f | within the given time horizon T as follows:

Problem 2. For given dynamic multi-commodity network G = (N, A, K, u, τ , di, S, D, T), the
maximum multi-commodity flow problem with proportional capacity sharing is to transship the
maximum amount of flow from si to ti within the given time horizon T, where the shared capacity
for each i ∈ K on the bundle arc is depending on the minimum capacity of paths from the respective
source to the tail node of the bundle arc.

We now present an algorithm to solve Problem (2).
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Theorem 2. Algorithm 2 provides the feasible solution to the maximum dynamic MCF problem
with proportional capacity sharing in polynomial time.

Algorithm 2: The maximum dynamic MCF algorithm with proportional capacity sharing

Input: Given static multi-commodity flow network G = (N, A, K, u, di, S, D).

1. Construct k independent sub-problems by proportional capacity sharing (1) on the bundle
arcs for all i ∈ K.

2. Compute the maximum static flow ϕi for all i using Algorithm 1.
3. Decompose the flow ϕi into path flows ϕi

P.
4. Determine the maximum dynamic flow for each i ∈ K using temporally repeated flow such

that f i = ∑P ∈ Pi
(T + 1− τP)ϕi

P.
5. Maximum flow | f | = ∑i∈K f i.

Output: Maximum dynamic MCF on G with proportional capacity sharing.

4. Maximum MCF with Flow-Dependent Capacity Sharing

For a given dynamic network G with constant transit times τ on arc e, the multi-
commodity flow over time function f with flow-dependent capacity sharing is the sum of
flows f i : A× T→ R+, satisfying the constraints (8)–(12).

∑
e∈
→
δ (v)

T

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

T

∑
θ=0

f i
e(θ) =


di

−di
0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (8)

∑
e∈
→
δ (v)

β

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

β

∑
θ=0

f i
e(θ) ≤ 0 ∀ v /∈ {si, ti}, i ∈ K, β ∈ T (9)

∑
i∈K

f i
e(θ) ≤ ue ∀e ∈ A (10)

ui
e(θ) =

f i
a(θ − τa)

∑aε α(e):i ∈ K f i
a(θ − τa)

ue ∀e ∈ A (11)

f i
e(θ) ≥ 0 ∀ e ∈ A, i ∈ K and θ ∈ T (12)

Here, the constraints in (8) and (9) have the usual meanings as represented in Section 3.2.
The bundle constraints bounded by the arc capacities are presented by (10). The constraints
in (11) represent the flow-dependent capacity sharing and the non-negativity of flows
are represented by the constraints in (12). We now present the maximum dynamic MCF
problem with flow-dependent capacity sharing satisfying the above constraints as follows:

Problem 3. For a given multi-commodity network G = (N, A, K, u,τ , di, S, D, T), the maximum
multi-commodity flow problem with flow-dependent capacity sharing is to transship the maximum
amount of flow from si to ti within the given time horizon T, where shared capacity for each i ∈ K
on the bundle arc is depending on the inflow of incoming arcs of the bundle arc.

To solve the problem, we use a time-expanded layer graph.

Multi-Commodity Time-Expanded Layer Graph

The multi-commodity time-expanded layer graph is a three-dimensional graph that
contains the copy of nodes from the underlying static network for every discrete time step
and for each commodity. It is applicable to solve the variety of flow over time problems
by applying the algorithms and techniques developed for the static network flows. For a
given network G with integral transit time on the arcs and the time horizon T, the T-time-
expanded layer graph GT is obtained by creating T + 1 copies of node set N, which are
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labeled as N(0), N(1), . . . , N(T), together with an θth copy of node v labeled as v(θ), θ ∈ T
and the commodities i ∈ K. For every arc e = (v, w) ∈ A and θ ∈ {0, 1, . . . , T − τe}, there is
an arc ei(θ) from vi(θ) to wi(θ + τe) with the same capacity of arc e for a single commodity
arc and the sharing capacity for bundle arc e. If intermediate storage is allowed at node v,
then the arc from vi(θ) to vi(θ + 1) represents the holdover arc with infinite capacity that is
used to hold the flow for the unit time interval [θ, θ + 1) for all θ ∈ {0, 1, . . . , T}.

For the graphical representation, we present a three-dimensional layer graph GT with
the set of node N, time T, and commodity K as the coordinate axes (see Figure 1). Each
commodity i ∈ K preforms the layers of the graphs in a vertical line. In Figure 1, network
(a) represents a two-commodity network in which commodity-1 is transshipped from
s1 to t1 and commodity-2 from s2 to t2. Arc (x, y) is the bundle arc, which carries both
commodities. Figure 1b represents the time-expanded layer graph of Figure 1a with the
time horizon T = 6, where parallel arcs on (x, y) share the capacity for each commodity with
the flow-dependent capacity sharing technique. At time step θ = 0 and θ = 1, no flow of
commodity-1 reaches arc (x, y), so only commodity-2 is transshipped on it; however, the
capacity is shared after among the commodities. Similarly, the bundle arc transships only
commodity-1 at time θ = 4 due to the absence of commodity-2.
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Figure 1. (b) represents the time-expended layer graph GT of given network (a).

Depending on the time-expanded layer graph, we now present the algorithm to solve
Problem 3.

Theorem 3. A feasible solution to the maximum dynamic MCF problem with flow-dependent
capacity sharing can be obtained by using Algorithm 3 in pseudo-polynomial time.

Algorithm 3: Maximum dynamic MCF algorithm with flow-dependent capacity sharing

Input: Given dynamic multi-commodity flow network G = (N, A, K, u, τ, di, S, D, T).

1. Construct a multi-commodity time-expanded layer graph GT.
2. Share the capacity on the bundle arcs (parallel arcs in GT) with flow-dependent capacity

sharing (2) at each θ ∈ T.
3. Decompose the static flow ϕi into path flows ϕi

P(θ) in GT at each time step θ.
4. Maximum flow | f | = ∑i∈K ϕi

P.

Output: Maximum dynamic MCF on G with proportional capacity sharing.

5. Conclusions

The maximum MCF problem deals with the transshipment of the maximum amount
of flow of more than one different commodity from respective sources to the corresponding
sinks within the given time horizon. Allocation of the capacity of the bundle arc to each
commodity is one of the major issues in the multi-commodity flow problem. To deal
with this problem we have proposed proportional capacity sharing and flow-dependent
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capacity sharing. We have presented polynomial time solutions for the static—as well as
the dynamic—maximum MCF problems with proportional capacity sharing and a pseudo-
polynomial time algorithm with flow-dependent capacity sharing. To the best of our
knowledge these solution strategies for the maximum MCF problems are introduced for
the first time.
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