
Academic Editors: Hicham Gibet Tani,

Mohamed Kouissi, Mohamed Ben

Ahmed and Anouar Abdelhakim

Boudhir

Published: 9 July 2025

Citation: Ben jouad, M.; Elaachak, L.

Overview of Training LLMs on One

Single GPU. Comput. Sci. Math. Forum

2025, 10, 14. https://doi.org/

10.3390/cmsf2025010014

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Proceeding Paper

Overview of Training LLMs on One Single GPU †

Mohamed Ben jouad * and Lotfi Elaachak

C3S Laboratory, Data and Intelligent Systems Team FSTT, Abdelmalek Essaadi University,
Tetouan 93000, Morocco; lelaachak@uae.ac.ma
* Correspondence: benjouad20@gmail.com
† Presented at the International Conference on Sustainable Computing and Green Technologies (SCGT’2025),

Larache, Morocco, 14–15 May 2025.

Abstract

Large language models (LLMs) are developing at a rapid pace, which has made it necessary
to better understand how they train, especially when faced with resource limitations. This
paper examines in detail how various state-of-the-art LLMs train on a single Graphical
Processing Unit (GPU), paying close attention to crucial elements like throughput, memory
utilization and training time. We find important trade-offs between model size, batch size
and computational efficiency through empirical evaluation, offering practical advice for
streamlining fine-tuning processes in the face of hardware constraints.
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1. Introduction
The advent of large language models has revolutionized natural language processing,

enabling breakthroughs in tasks like text generation, translation, question answering, etc.
However, training such models can be computationally costly; many models with billions
and trillions of parameters were trained with a massive number of GPU clusters, which
requires the use of a lot of power resources (DeepSeek R1 [1] took 2048 H800 GPU). While
much effort has been devoted to scaling LLMs to record-breaking sizes, there still remains a
critical need to optimize their training performance so that, at the very least, the necessary
modules can fit into the GPU’s memory without saturating it, which is a challenge that the
majority of students, educators and researchers face as they tend to rely on free hardware
provided from cloud platforms such as Kaggle and Google Colab.

This work addresses this gap by presenting a systematic report of finetuning perfor-
mance of a few LLMs on two specific free-to-use GPUs: a P100 GPU provided by the Kaggle
platform and a T4 from the Google Collab platform, also available on Kaggle. We have
focused on special key points such as training time, memory, throughput and convergence
behavior so that we can provide a perspective that covers different architectures and setups.
By analyzing these measurements, our aim is to produce a list of recommendations that
can help individuals to develop trade-offs between model size, effective batch size and
efficiency in terms of computation, offering actionable information for optimizing training
workflows within hardware and time limits.

Through empirical investigation and visualization, we highlight the impact of model
design choice on training efficiency and provide actionable advice to researchers and
practitioners. Our work contributes to the overall task of opening up LLM training to make
it more accessible, cheap and sustainable, paving the way for innovation in resource-scarce
contexts. In the next section, we introduce the different optimization techniques used in the
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fine-tuning process and the technical overview of the used GPUs, which are freely available
on Kaggle and Google Collab.

Our work is motivated by the growing need to democratize access to LLM devel-
opments so that advances in NLP are not limited to organizations with easy access to
computational power.

2. Related Works
Recent advances in LLMs, such as GPT [2], BERT [3] and T5 [4], have underscored the

requirement for cost-effective training methods; techniques like mixed-precision training [5],
gradient checkpointing [6] and dynamic batching [7] have been proposed to reduce memory
usage and maximize computational effectiveness.

This interaction between hardware capability and model architecture has also been an
important research focus. Naryanan and Shoeybi have investigated LLM optimization for
multi-GPU and multi-node setups, with a consideration of parallelism and communication
overhead. Out study diverts attention to single-GPU systems that are affordable for most
people but still impose distinctive challenges related to memory and computation. When
fine-tuning models on limited hardware, techniques such as knowledge distillation [8]
and model pruning [9] are widely applied to minimize the size as well as the memory
need for the model. Besides this, software such as Hugging Face’s Transformers [10] and
Pytorch [11] have introduced features that help facilitate successful training on mainstream
GPUs. However, these approaches are likely to focus on inference rather than training.

A variety of benchmarks like MLPerf [12] and Suite [13] have produced insightful
results regarding the performance of machine learning models on different hardware
configurations; nonetheless, such analyses focus on large-scale systems and hence provide
little attention to single-GPU performance. Our study contributes to the existing literature
by investigating how much we can efficiently fine-tune an LLM using only one free-to-
use GPUs.

3. Methodology
In this study, we evaluate the training performance of multiple LLMs on one GPU

using a combination of advanced optimization techniques and profiling tools; our method-
ology leverages the Transformer Reinforcement Learning (trl) library for fine-tuning and
the Pytorch profiler (version 2.6.0+cu124) to collect detailed performance metrics. The
experiments were conducted on two GPU architectures: the NVIDIA P100 manufactured
by TSMC in Taichung Taiwan (Pascal Architecture) and the NVIDIA T4 alsomanufactured
by TSMC in Taichung Taiwan (Turing Architecture), both available to use on Kaggle and
Google Collab, and both of which use hardware that offers high memory bandwidth and
computational throughput, with 16 GB of VRAM for the P100 and 15GB of VRAM for
T4 [14].

3.1. Model Fine-Tuning and Optimization Techniques

The selected models for the finetuning process are the following: DeepSeek Qwen
1.5 B, Gemini (770 M), Flan-T5-base (248 M), Instella 3B and Qwen2.5-1.5B-Instruct. To
optimize training efficiency, we employed several state-of-the-art techniques:

1. Parameter-Efficient Fine-Tuning (PEFT): This includes methods such as LoRA (Low-
Rank Adaptation) [15] which is used to reduce considerably the number of trainable
parameters making memory less loaded for training when adapting Large Language
models to downstream tasks;

2. 8-bit Adam Optimizer [16]: This is utilized to reduce memory usage during optimiza-
tion while maintaining training stability and convergence;
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3. Mixed-Precision Training: We employed both FP16 and BF16 [5] to accelerate compu-
tation and reduce memory overhead;

4. Gradient Checkpointing: This was implemented to trade-off computation memory,
enabling the training of larger models within limited GPU memory;

5. Effective Batch Size: The batch size was set to powers of two (2ˆN) to align with
hardware optimizations and ensure efficient memory utilization [17].

3.2. Dataset and Training Configuration

We used the CIDAR dataset [18] containing Arabic instructions mapped to their
corresponding answer, which was collected using translated instructions from the AL-
PAGASUS dataset [19] and carefully examined and analyzed. The dataset has around
10.000 instructions, averaging around 366 tokens per instruction, with the longest one hav-
ing 10,177 tokens. Using an instruction-based dataset can allow for practical uses, especially
when implementing an AI agent where interactions with users are important. The models
were fine-tuned using the TRL library provided by Hugging Face, as it is more compatible
with Pytorch and can facilitate the use of the above-mentioned optimization techniques.

3.3. Collected Metrics

We mainly focused on the following metrics to evaluate and analyze fine-tuning
performance for each model:

1. Peak GPU Usage: The maximum GPU memory utilization value during training
measured in MB;

2. Training Time: Total time taken to complete the fine-tuning process;
3. Iteration Speed: The number of iterations completed per second, reflecting computa-

tional throughput;
4. Training Loss: The final loss value, monitoring convergence and model performance.

With the use of all the mentioned techniques and tools, we can provide a compre-
hensive framework that will enable us to evaluate LLM training performance throughout
multiple configurations.

In the following sections, we present insights into the trade-offs between model size,
optimization strategies and memory.

4. Results
In this section, we will present the different observation throughout all fine-tuning

processes, focusing mainly on GPU memory consumption, time consumption and conver-
gence to obtain an idea of the difference between each configuration and obtain a good
understanding of the recommended trade-offs when aiming to work with LLMs with only
free resources.

4.1. Memory Consumption

The following graph represents the memory utilization in MB for each effective batch
when using either mixed precision FP16 or BF16, which has been collected using the
Pytorch profiler.

We can make multiple observation regarding these data. First, we can see that for
Gemini and Flan-T5, we could go up to 64 effective batch size since their parameter number
is below 1B, which when reached we can start seeing memory allocation difficulties; that
is also the case for DeepSeek, Qwen and Instella, where we see a limit that we cannot
overcome. We can conclude that a 3B parameter is the highest that we can go when fine-
tuning a model. Another key observation is the influence of the model’s architecture on the
GPU’s consumption. We can see that Qwen reached its limit before Instella, even though
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the latter has higher parameters, making the choice of the model’s architecture also an
important point that will influence the memory needed for fine-tuning. Moreover we can
clearly conclude, based on the graphs, the memory difference between FP16 and BF16,
with FP16 consuming less memory across all effective batch sizes, with one exeption for
DeepSeek when using an effective batch size of 2. We could not explain this discontinuity
but we can assume that for most cases, FP16 is the best option for memory efficient training.

4.2. Time Consumption

The following graphs (Figures 1–3) represent the time taken for a fine-tuning process
to finish, giving us an idea of how feasibly a model can be trained within a prefered
time interval. Knowing that we fine-tuned using 10,000 mapped instructions, we can
approximate the time that it will take to for a larger dataset, enabling us to plan for a
training more efficently.

  

Figure 1. Max memory allocation in MB for the effective sizes going from 1 to 64 for DeepSeek
and Gemini.

 

Figure 2. Max memory allocation in MB for the effective sizes going from 1 to 64 for Flan-T5-base
and Instella.

The first important observation from Figures 4–6 is the efficency of the FP16 mixed
precision, since throughout all the fine-tuning processes, it was considerably quicker across
all tests, except for Flan-T5 when using an effective batch size of 4. We do not know the
cause of that expection but we can safely assume that for quicker training, FP16 is the best
choice. Also, the reason for the graph reaching zero for the model above 1B parameters is
because of memory capacity reaching the maximum GPU limit. The precise time it took for
each model is displayed in the following table.
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Figure 3. Max memory allocation in MB for the effective sizes going from 1 to 64 for Qwen.

 

Figure 4. Time consumption in seconds for DeepSeek and Gemini.

 

Figure 5. Time consumption in seconds for Flan-T5 and Instella.

The highest and lowest time records shown in Table 1 are reached, respectively, using
the highest and lowest effective batch sizes.

Table 1. Precise time consumption for each model, indicating lowest and highest time record.

Model DeepSeek Gemini Flan-T5 Instella Qwen

Highest (FP16) 1 h 27 m 32 s 1 h 19 m 04 s 35 m 40 s 3 h 24 m 09 s 1 h 24 m 43 s
Highest (BF16) 2 h 34 m 19 s 1 h 50 m 15 s 43 m 32 s 5 h 22 m 10 s 2 h 37 m 03 s
Lowest (FP16) 59 m 22 s 29 m 33 s 11 m 21 s 3 h 19 m 31 s 1 h 24 m 43 s
Lowest (BF16) 1 h 34 m 30 s 37 m 58 s 13 m 51 s 5 h 16 m 39 s 2 h 37 m 03 s
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Figure 6. Time consumption in seconds for Qwen.

4.3. Convergence Differences

This section shows the convergence of each model on each configuration by observing
the evolution of the loss across all the steps of a fine-tuning process; this can show us
how accurate the training becomes for the dataset used. It is worth mentioning that the
reason we did not specify the mixed precision used for the configuration combination is
because the results obtained for both FP16 and BF16 are nearly the same, making these two
parameters irrelevant in terms of convergence.

The first thing we notice from Table 2 is the increase in the loss relative to higher batch
size, meaning that even though we want rapid training, we still need to take into consideration
the convergence that struggles to find an optimum for that batch size. In other words, it is
important to choose the effective batch size depending on the time constraint and the accuracy
desired. Another observation is the irregularity of the loss for both Gemini and Flan-T5. This
is probably because they do not have the vocabulary of the Arabic words used in the datasets.
As for Instella and Qwen, there is not much data since the fine-tuning stops early.

Table 2. Loss difference between the multiple configurations used for fine-tuning.

Model DeepSeek Gemini Flan-T5 Instella Qwen

Effective size 1 2.5252 0.009 0.0063 1.0631 1.6211
Effective size 2 5.3273 0.0119 0.0721 1.0945 None
Effective size 4 5.5068 0.161 0.0116 None None
Effective size 8 11.7354 0.0256 0.0188 None None

Effective size 16 24.3662 0.0376 0.0257 None None
Effective size 32 None 0.0624 0.0329 None None
Effective size 64 None 0.128 0.0749 None None

5. Discussion
The results of our analysis provide valuable insights into the possible trade-off when

fine-tuning LLMs on one single GPU. Let us summarize the key observations and their
implications for optimizing training workflows.

Our findings indicate that the optimum model size for single GPU training lies at
around 3B parameters, since we observed difficulties when working with models of these
sizes. Memory becomes hard to manage, even with all the optimization techniques we
used, and prior work on memory-efficient training [20] claims the same thing, which
highlights the challenges of scaling LLMs on limited hardware. Another key observation
is the efficiency of the mixed precision FP16, which consumes less memory and requires
less time than BF16 while still maintaning the same convergence as the latter, making



Comput. Sci. Math. Forum 2025, 10, 14 7 of 8

FP16 the best choice for training models in resource-constrained systems. Moreover, we
do see that the model’s architecture influences the memory, with Instella going up to two
effective batch sizes and Qwen only going up to one, meaning that choosing the architecture
carefully might lead to better memory management. In terms of convergence behavior, on
all fine-tuning steps, the loss remained the same when using either FP16 or BF16, which
means that mixed precision does not impact on the final model’s accuracy. However, we do
see an increase in the loss the higher the effective batch size, which can be attributed to the
reduced gradient variance associated with larger batch sizes, leading to lower convergence
and high loss values during early stages of training [21]. While larger batches improve
throughput and hardware utilization, they may require careful tuning of learning rates and
optimization schedules to maintain model performance.

When planning for a training workflow, we suggest carefully considering the above-
mentioned observations by finding the best trade-offs that will work best on specific use
cases. This will save time and prevent memory problems from arising when running the
training script. A lot of individuals find it difficult, even impossible, to train LLMs with
their own setup or by using free online resources and we want to show that it is not the case
and encourage innovation no matter the situation and resources used. Moreover, in future
work, we want to provide additional data and more techniques that will prove to be useful
when training models on limites resources, so that it does remain an obstacle to innovation.

6. Conclusions
In this study, we conducted a evaluation of the training performance of multiple large

language models using single GPU systems, focusing on memory efficiency, training time,
convergence bhavior and the impact of batch sizes and mixed precision. By leveraging
state-of-the-art optimization techniques such as mixed-precision training (FP16 and BF16,
Adam optimization, gradient checkpointing and Parameter efficient Fine-Tuning), we
demonstrated that it is feasible to train models with up to 3B parameters on publicly
available GPUs.

Our study also revealed that FP16 offers significant memory saving and faster training
times compared to BF16, while still maintaining the same convergence behavior across on
fine-tuning steps, making it a practical choice for resource-constrained environments. Also,
we observed that convergence behavior becomes slower the high the batch size is, making it
important to carefully tune the training parameters in order to achieve the desired accuracy.
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