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Abstract: Ticks and tick-borne pathogens are increasing public health threats due to emergence of
novel pathogens, expanding geographic ranges of tick vectors, changing ecology of tick communities,
as well as abiotic and biotic influences on tick–host–pathogen interactions. This review examines
the major human-biting ixodid tick species and transmitted pathogens of North America. Topics
addressed include current and projected tick geographic ranges, potential risks for introduction of
tick transmitted microbes into those regions, and drivers for these events. Health care providers,
public health authorities, and the general public need to be aware of existing, resurging, and emerging
tick and tick-borne disease threats. Knowing which ticks and tick-borne pathogens are present is
foundational to understanding and responding to these threats. Dominant tick species and pathogens
remain major foci of research, while limited attention has been directed to other human-biting
ticks for decades, resulting in questions about current distributions, population sizes, and diversity
of infectious agents they are capable of transmitting. Significant threats due to invasive ticks are
considered. Recommendations are made for establishment of a sustained North America network for
surveillance of ticks, characterization of their microbiomes and viromes, and for support of tick and
tick-borne disease ecology research.

Keywords: ticks; tick-borne diseases; emerging and resurging pathogens; zoonoses; vector ecology;
geographic range; public health importance

1. Introduction

Ticks and tick-borne pathogens are persistent and increasingly challenging global
public health threats due to expanding geographic ranges, emergence of previously unrecog-
nized tick transmitted infectious agents, and complex dynamic interactions among abiotic
and biotic factors that influence the tick–host–pathogen triad [1–4]. Among arthropod vec-
tors, ticks transmit the greatest diversity of infectious agents to humans and livestock [5].
Within the United States, 75 percent of reported vector-borne human infections are at-
tributed to ticks [6,7]. Tick and tick-borne pathogen range expansions are also occurring
in Canada [8,9]. Reflecting changing disease patterns and greater diversity of pathogens,
forty percent of tick-borne infectious agents in the United States were first recognized as
causing human disease during the years since 1980 [10]. The timeline for discovery of tick-
transmitted infectious agents in the United States as reported by Eisen and Paddock [11]
notes that some microorganisms were identified in ticks prior to their association with
human disease, whilst others were linked to human disease prior to knowing they were
tick-transmitted. Most notably, Ixodes scapularis has received greater attention over the past
decades due to increasing importance of multiple transmitted pathogens and the increasing
incidence and geographic range expansion of Lyme disease cases. Simultaneously, rela-
tively limited attention has been focused on some other human-biting tick species over the
years, resulting in questions about their current distributions, population sizes, ecology,
and diversity of infectious agents they transmit. Introduction of exotic tick species and
infectious agents they may transmit remains both a human and veterinary public health

Zoonotic Dis. 2022, 2, 126–146. https://doi.org/10.3390/zoonoticdis2030013 https://www.mdpi.com/journal/zoonoticdis

https://doi.org/10.3390/zoonoticdis2030013
https://doi.org/10.3390/zoonoticdis2030013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/zoonoticdis
https://www.mdpi.com
https://doi.org/10.3390/zoonoticdis2030013
https://www.mdpi.com/journal/zoonoticdis
http://www.mdpi.com/2813-0227/2/3/13?type=check_update&version=5


Zoonotic Dis. 2022, 2 127

concern. Sustained national tick and tick-borne pathogen surveillance programs are needed
that provide timely, accessible data that can inform healthcare providers, public health offi-
cials, and the general population about potential disease risks in their communities. Ticks
and the pathogens they transmit are increasingly transboundary. Therefore, establishing
integrated North American surveillance initiatives would be a logical strategy to protect
human health and livestock biosecurity.

Human tick-borne diseases are zoonoses [10]. Wildlife species are the origin or reser-
voir of tick-transmitted infections of humans, companion animals, and livestock [12,13].
In addition to their reservoir roles, wildlife can also serve as hosts that amplify tick pop-
ulations [4]. Knowledge of the biology of wildlife reservoirs/tick hosts is important for
understanding enzootic cycles of tick-borne pathogens, tick population density changes,
tick range expansion and contraction, human disease risk, and development of prevention,
management, and control measures. One Health integrated approaches can provide valu-
able insights for assessing disease burdens; establishing surveillance networks to detect
infections in humans, reservoir animal species, livestock, wildlife, and arthropod vectors;
strengthening laboratory capacity to diagnose infections; and developing multisectoral
response capabilities to mitigate, control, and prevent infections [14,15].

Tick-borne viruses, bacteria, and protozoa of currently unknown human pathogenicity
can be identified or predicted by application of increasingly powerful sequencing and
bioinformatic analyses of tick microbiomes and viromes [16,17] that result in discovery and
characterization of potential emerging or future infection threats [17–20]. A tick-associated
microbe discovered in this manner that was subsequently established to be a human
pathogen is Borrelia miyamotoi, an ixodid tick transmitted relapsing fever spirochete [21].
This emerging pathogen initially isolated from Ixodes persulcatus is transmitted in North
America by Ixodes scapularis and Ixodes pacificus [6,22]. Incidence of Borrelia miyamotoi in
human-biting ticks in the United States during the period 2013-2019 was 0.5% to 3.2%,
with 59% of those positive ticks also carrying another human pathogen, predominantly
Borrelia burgdorferi [23]. The power of this approach was also evident in high-throughput
sequencing of viromes of field-collected Amblyomma americanum, Dermacentor variabilis, and
Ixodes scapularis that resulted in identification of 24 novel viruses [24]. Well-established tick
populations can have previously unappreciated vector potential. Rhipicephalus sanguineus
emerged as a vector of Rickettsia rickettsii, a Rocky Mountain spotted fever causative agent,
in the southwestern United States [25], and it is an important vector of this pathogen in
Mexico [26]. In addition to disease transmission from established tick vectors, ongoing
concerns are health and biosecurity threats due to introduction of exotic tick species, such as
the recently recognized and expanding presence of Haemaphysalis longicornis in the United
States [27].

Public health impacts of all tick-transmitted infections remain largely unquantified [28].
However, direct effects of tick infestation and tick-borne infectious diseases have broad
economic and societal repercussions [28]. Ticks and tick-borne infections are a signif-
icant concern for livestock producers and food security. Globally, 80 percent of cattle
are at risk of tick infestations that result in decreased weight gain, reduced milk produc-
tion, hide damage, and tick-borne infections, resulting in an estimated annual cost of
USD 22 to USD 30 billion dollars [29]. Among human tick-borne diseases, Lyme disease
is the most commonly reported tick transmitted infection in North America [30]. Thus,
it has become a major research focus since its discovery. During the period from 2010
to 2018, yearly estimated frequency of human Lyme borreliosis in the United States was
476,000 cases [31]. Annual economic burden of Lyme borreliosis is estimated to range from
USD 786 million [32] to potentially USD 1.3 billion [33].
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2. Ticks and Tick-Borne Pathogens: Change Is Normal

Cases of tick-borne bacterial and protozoan diseases more than doubled in the United
States during the period of 2004 and 2016 [7]. Expansion of tick geographic ranges have
been occurring since the mid-twentieth century [2,34]. Bishopp and Trembley in 1945 [35]
published an extensive review of the distribution of tick species in North America based
upon 35 years of specimens collected and submitted by multiple contributors and an
extensive review of the literature. This review provided both foundational material for
current distribution maps of multiple tick species and, when compared with current distri-
bution maps for important human-biting ticks in North America, reflects the significant
changes, for some species, in geographic distributions over the subsequent years. Although
published 77 years ago, Bishopp and Trembley [35] along with the extensive work by
Gregson [36] remain as valuable baseline records of tick geographic distributions and host
species in the United States and Canada, respectively.

Climate and environmental changes are drivers that influence the incidence of tick-
borne diseases [1,37–40]. Ticks are susceptible to the environment in multiple intercon-
nected ways. The tick life cycle involves significant free-living periods of months to years
that are interspersed with intervals of host attachment and blood feeding [2,41]. Free-living
ticks are susceptible to climate variations that can impact survival, spatiotemporal ranges,
and transmitted pathogens in ways unique from other vector arthropods [42,43].

Tick biology and ecology are influenced by variations in temperature, humidity, soil
moisture, vegetation, leaf litter, shade, and availability of host species [2,44,45]. Changing
climate is resulting in a warmer environment, drier soils, vegetation stress, greater aridity,
and river flow declines in North America [46]. Increasing temperatures will continue to
be a determinant of changing tick population sizes and geographic distributions [1,45].
Decreased rainfall and resultant drier environment could increase tick mortality [43].
However, the influence of rain events of increased intensity and flooding on tick ecology
are basically unknown. Warmer temperatures can increase both the seasonal duration
of tick and human activities that result in increased potential for exposure to ticks and
pathogen transmission [47]. Increased temperatures also can expand the habitat ranges of
tick-transmitted pathogen reservoirs and tick-amplification host species [9]. In response to
environmental warming in the northern hemisphere, tick geographic ranges are anticipated
to both expand northward and to higher altitudes whilst potentially accompanied by
contractions from subtropical and tropical ranges [1,2,45,48].

Factors influencing geographic range and population size are dynamic and dependent
upon the complex interplay among micro and macro climate variations, vegetation patterns, land
use, land fragmentation, habitat or landscape modification (agricultural, residential, recreational),
host animal diversity (domestic, wild and exotic species), human behavior, travel, commerce,
economics, government policies, human and animal population growth, population movement,
and evolutionary changes in ticks and tick-borne pathogens [1,2,9,12,14,45,49]. Each of these
continually evolving factors, to differing degrees, influences tick and pathogen ecology,
enzootic cycles of tick-transmitted infectious agents, disease incidence, epidemiology, and
selection of appropriate control approaches [2,3,40].

These climate changes impact animal movement and thus geographic distribution
and availability of both tick hosts and pathogen reservoirs, resulting in changes of foci
where tick-borne diseases occur [2,9,38,40,50]. An additional consideration is the impact of
climate variations on the behaviors and routes of migratory birds, an important factor in
the distribution of ticks and pathogens into areas where they might not have previously oc-
curred [51]. A comprehensive study at multiple sites in eastern Canada established the role
of migratory birds in both introduction and northward range expansion of Ixodes scapularis
and the associated human pathogens, Borrelia burgdorferi and Anaplasma phagocytophilum,
transmitted by this tick [52]. Landscape determinants impacting bird and mammal move-
ment are important determinants in the northward expansion of Ixodes scapularis in Ontario
and Quebec [53]. On the Canadian prairie, the range of Dermacentor variabilis is expanding
northward and westward and now overlaps with Dermacentor andersoni in Saskatchewan,
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where three bird and multiple mammalian species are infested with different life-cycle
stages of these three host tick species [54].

Tick establishment in new regions is accompanied by the introduction of the tick-
borne pathogens for which that tick is a competent vector [3,55]. Physicians, veterinarians,
public health workers, and the general public need to be made aware in a timely manner
of these potential threats as they emerge in a new area. Knowing where ticks and tick-
borne pathogens are present is foundational to understanding the health threats they
pose. Currently, data and maps describing occurrence and distribution of pathogens in
field-collected ticks in the United States are limited, fragmented, and in many instances
not published [11]. Surveillance of ticks and tick-borne pathogens provides essential
information needed to inform medical care providers, public health officials, and the
public of disease risks and to determine measures that may be utilized as appropriate
vector and disease-control interventions [11,55–57]. Geographic level of data resolution
across the range of a tick species is important for knowing variations of risk and thus
tailoring responses based upon disease threat in a specific area [58,59]. Control measures
are dependent upon the different populations and balance among tick species present
within a region [60]. Surveillance of ticks and tick-borne pathogens has to be an ongoing
process. A “one and done” approach to surveillance will only provide a snapshot in time
that will very likely become obsolete based upon the changes in tick ranges that have
been observed over the past two decades. This process will require both political will
and financial commitment necessary to detect, inform those at risk, and respond with
appropriate interventions.

3. Ixodes scapularis

Significant geographic range expansions are occurring among multiple human-biting
tick species of North America. Ixodes scapularis receives the most attention due to its role,
along with Ixodes pacificus, as a primary vector of Lyme borreliosis, the most frequently
reported tick-borne infection in the United States [30,61]. Ixodes scapularis is undergoing
changes in ecology concomitant with its emergence as a vector of multiple pathogens and
expansion of geographic range [6].

The established geographic range of Ixodes scapularis in the United States doubled to
44.7 percent of counties during the period 1996 to 2016 [34] with further expansion in the
upper Midwest during 2016 to 2019 [45]. The greatest expansions occurred in the north-
eastern and north central states [34]. Ixodes scapularis is also more northerly established and
expanding its range at a rate of approximately 46 km per year in Ontario, Canada [62]. As
tick ranges expand, so do the risks and incidences of diseases. Borrelia burgdorferi infections
are emerging in Canada with a dramatic increase in cases in Ontario and Quebec [62,63].
As anticipated, Babesia microti infection is both acquired and increasing in prevalence in
Canada [64,65]. Further geographic range expansion of Ixodes scapularis is anticipated to
continue as it reclaims its historical range over eastern and midwestern North America [6].
This expanding range of Ixodes scapularis in the United States and Canada will contribute to
an increasing number of Lyme borreliosis and other Ixodes scapularis transmitted pathogen
infections with greater social and economic impact.

While Ixodes scapularis has expanded its range, Ixodes pacificus has maintained a steady
range along the Pacific coast from California to Washington and in the less-arid regions
of Arizona, Nevada, and Utah [34]. Ixodes pacificus and Borrelia burgdorferi are present in
southern British Columbia [66]. Gregson [36] reported multiple records of Ixodes pacificus in
British Columbia during the early to mid-20th century.
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4. Ixodes scapularis- and Ixodes pacificus-Transmitted Pathogens

The majority of human tick-borne infections within the United States are those trans-
mitted by Ixodes scapularis and Ixodes pacificus [6,30]. Borrelia burgdorferi is estimated
to account for an annual incidence of 476,000 cases [31]. The annual economic bur-
den of Lyme borreliosis is estimated to range from USD 786 million [32] to potentially
USD 1.3 billion [33]. Ixodes scapularis was elevated to an important human-biting tick after
1970, when it was found to be a competent vector of Babesia microti and over the subsequent
fifty years to be a vector of Borrelia burgdorferi, Anaplasma phagocytophilum, Powassan virus,
Ehrlichia muris eauclarensis, Borrelia miyamotoi, and Borrelia mayonii [6,10].

Recently, Fleshman et al. [67] reported distributions of Ixodes scapularis- and Ixodes pacificus-
transmitted human pathogens for the contiguous United States at the spatial resolution
of individual counties. Tick vectors occurred over a wider distribution than the human
pathogens for which they are competent vectors. Borrelia burgdorferi was detected in
30 of 41 states, whilst Borrelia mayonii, also a Lyme disease agent, occurred in one county in
both Indiana and Michigan [67].

Lyme borreliosis is the topic of comprehensive reviews [61,68] as well as ones that
are more focused upon epidemiology [30], diagnosis [69–72], clinical manifestations and
treatment [73–75], pathogenesis [76], and the challenges posed by post-treatment syndrome
and chronic Lyme disease [77,78]. Significant advances have been made in characterizing
immune responses to Borrelia burgdorferi infection and the multiple pathways of spirochete
evasion of both host innate and adaptive immune defenses [79–84].

Borrelia burgdorferi spirochete molecular adaptations are determinants of tick vector
colonization that include midgut binding, microbiome modulation upon infection, translo-
cation across the gut to the hemolymph, adapting to tick defenses, salivary gland infection,
and adaptations associated with the transition from the tick to the mammalian host tis-
sue environments [85–88]. Changes occur in Borrelia burgdorferi numbers in tick tissues
when an infected nymph begins to blood feed. Spirochete numbers in midguts of infected
Ixodes scapularis nymphs increased six-fold by 48 h of host attachment [89]. Spirochete
transmission from infected nymphs to a population of 14 hamsters found that infection
occurred in one hamster at 24 h of feeding, five hamsters at 48 h, and thirteen hamsters after
72 h or longer [90]. The likelihood that Borrelia burgdorferi spirochetes would be transmitted
during the first 24 h of tick feeding is low [91]. Compare this transmission profile with that
described below for Powassan virus.

Borrelia miyamotoi is present in 21 states and the District of Columbia within the range
of Ixodes scapularis and present in Ixodes pacificus in California, Oregon, and Washing-
ton [67]. Borrelia miyamotoi is an example of a microbe identified in ticks by molecular
methods prior to it being established as a human pathogen [21]. This relapsing fever
spirochete, transmitted by ixodid rather than argasid ticks, may cause a range of clini-
cal manifestations that include meningoencephalitis observed in immunocompromised
patients [22,92]. Borrelia miyamotoi and Borrelia burgdorferi occur concurrently across the
northern hemisphere, where they share both tick and vertebrate reservoir hosts [93].

Anaplasma phagocytophilum occurs in association with Ixodes scapularis in 23 northeast-
ern and midwestern states and the District of Columbia and with Ixodes pacificus in northern
California and Washington [67]. A finding that has implications for the future distribution
of Anaplasma phagocytophilum is the detection of this infectious agent in field-collected,
questing Haemaphysalis longicornis in the United States [94]. A meta-analysis of the global
human seroprevalence of Anaplasma phagocytophilum revealed a pooled seropositivity rate
of 8.4 percent with wide variations observed in different studies and regions [95]. An
important conclusion derived after analysis of data from 56 studies is that infection surveil-
lance misses mild and asymptomatic infections [95]. Clinical features and pathogenesis of
human granulocytic anaplasmosis caused by Anaplasma phagocytophulum were reviewed by
Ismail and McBride [96] along with emerging Anaplasma agents.

Babesia microti infection is present in approximately 20 percent of Ixodes scapularis
nymphs in endemic foci [97,98]. Babesia microti infections are endemic in 17 northeastern
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and upper midwestern states but not reported from western states [67]. Human babesiosis
caused by Babesia microti is an emerging infectious disease that is a particular threat to
immunocompromised individuals and when acquired by transfusion [99]. Clinical fea-
tures, diagnosis, and treatment of human babesiosis are reviewed by Vannier et al. [98]
and Krause [99]. Significant effort is directed toward development of improved, novel
approaches for the diagnosis of early infections, particularly before seroconversion and to
distinguish active from prior infections [100].

Ehrlichia muris eauclairenis was found in Ixodes scapularis from limited foci in both
Michigan and Minnesota [67]. This emerging Ehrlichia species was first detected during
2009 in a series of four patients in the two states just cited [101]. Ehrlichia muris eauclairenis
can be transmitted in a cycle between Ixodes scapularis and rodents with wide tissue dis-
tribution and high virulence for mice and hamsters [102]. Amblyomma americanum is not
a competent vector for this pathogen [102]. Ehrlichia muris eauclairenis was described as
a novel subspecies infecting Ixodes scapularis and Peromyscus leucopus in Minnesota and
Wisconsin [103].

Powassan virus infections are infrequent; however, they are recognized as an increas-
ing public health threat [104]. Powassan-virus-infected Ixodes scapularis exist as foci in New
England, the mid-Atlantic, and upper midwestern states [67]. Incidence of Powassan virus
infection was reported to have increased 671 percent during an 18-year period prior to the
publication by Fatmi et al. [105] that described Powassan virus as a newly remerging infec-
tion. In addition to Ixodes scapularis, Ixodes cookei is an established Powassan virus vector in
the midwestern United States and Canada, and Haemaphysalis longicornis is a competent vec-
tor in Russia [105]. Consideration should be given to potential for Haemaphysalis longicornis
to become a vector of this virus in North America, with implications for an expanded
geographic range for infections. Interest in Powassan virus is reflected in recently increased
surveillance, basic research, and animal model development [106]. Clinical presentation,
clinical course, diagnosis, and pathogenesis of Powassan virus infection were recently
reviewed [107].

In contrast to other Ixodes scapularis-vectored pathogens [91], Powassan virus is trans-
mitted to mice as soon as 15 min of feeding, with maximum efficiency of virus transmission
at 180 min [108]. This rapid transmission of Powassan virus post host attachment was
confirmed for human clinical cases [109].

Significantly, Peromyscus leucopus is a reservoir host for these human pathogens
for which Ixodes scapularis is a competent vector [10,103,110]. Ixodes scapularis nymphs
are the source of the vast majority of human infections with Anaplasma phagocytophilum,
Babesia microti, and Borrelia burgdorferi based upon seasonal incidence of infections [10].
Co-infection of Ixodes scapularis with multiple human pathogens is an established phe-
nomenon [111,112]. A recent prevalence study of Borrelia miyamotoi infection of Ixodes scapularis
revealed that 59 percent of ticks had anywhere from dual to quadruple coinfections [23].
The potential for co-infections should be taken into account in any diagnostic workup in a
suspected case of tick bite.

5. Ixodes cookei

Ixodes cookei, a tick occasionally reported to bite humans, occurs in a broad area
of eastern North America where it infests a variety of small and midsized mammals
and is an established vector of Powassan virus [105,113]. Powassan virus was isolated
from adult and nymphal Ixodes cookei recovered from skunks and long-tailed weasels in
New England [114]. Ehrlichia muris-like DNA was detected by molecular methods in
Ixodes cookei in the northeastern United States, suggesting an enzootic cycle different from
that of Ehrlichia muris eauclairenis in Michigan and Minnesota and a potential human health
threat [115]. Due to the overlapping geographic range of Ixodes cookei and Borrelia burgdorferi,
it is important to note that Ixodes cookei is a poor vector of the spirochete causing Lyme
borreliosis [116].
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Ixodes cookei geographic range in the United States extends northward from Tennessee
and North Carolina into southern Canada [113]. Modeling of suitable Ixodes cookei habitat
in Canada includes Nova Scotia, eastern Labrador and Newfoundland, New Brunswick,
Quebec, and Ontario [113]. Gregson [36] described Ixodes cookei as a common eastern tick
in Canada with reported locality records from the following provinces: Prince Edward
Island, Nova Scotia, New Brunswick, Quebec, and Ontario. A recent analysis of ticks
submitted in a passive tick surveillance program from 2007 to 2015 in Quebec, Canada,
revealed that 91.2 percent of submitted ticks that were species other than Ixodes scapularis
were Ixodes cookei [8].

6. Amblyomma americanum

Amblyomma americanum is thought to be more widely distributed in North America
than currently realized [117]. Amblyomma americanum is an aggressive tick that is an im-
portant pest of humans and livestock with larvae, nymphs, and adults readily feeding
on large mammals [118]. Amblyomma americanum is a competent vector of an increas-
ing number of zoonotic pathogens of medical importance [119]. Contributing to these
concerns, Amblyomma americanum is expanding northward from its traditionally recog-
nized southeastern United States range into the mid-Atlantic states, New England, and
the provinces of Ontario and Quebec in southern Canada [2,63,119–122]. Westward ex-
pansion of Amblyomma americanum includes the midwestern states of Michigan, Nebraska,
and South Dakota, whilst climate-change-induced range contraction could occur along
the Gulf coast and lower Mississippi river region [2,120]. Modeling future distribution
of Amblyomma americanum predicts expansion along the eastern seaboard into the mar-
itime provinces of Canada and further northward in the Upper Midwest with the po-
tential for loss of range in the current southern limits of the species [117]. Significantly,
Amblyomma americanum is increasing in incidence, while Dermacentor variabilis populations
decline in regions where both species occur [119,123]. Changes in population balance have
significant implications for tick-control measures since specific management strategies
differ depending upon the tick species to be controlled [57].

7. Amblyomma americanum Transmitted Pathogens

Amblyomma americanum is a tick whose public health importance has steadily increased due
to its role as a vector of both established and newly recognized zoonotic pathogens [118,119]. In
addition to Dermacentor andersoni and Dermacentor variabilis, Amblyomma americanum is a
vector of Francisella tularensis, a causative agent of tularemia [10,124], and the primary vector
for Ehrlichia chaffeensis and Ehrlichia ewingii, largely under-recognized and under-reported
ehrlichioses that are now present in regions into which this tick recently expanded its
range [10,118,119]. White-tailed deer are reservoir hosts for both of these Ehrlichia species,
and it is important to note that larvae, nymphs, and adults of Amblyomma americanum
readily acquired blood meals from white-tailed deer [118,125,126]. Amblyomma americanum
is capable of acquiring, maintaining, and transmitting Rickettsia rickettsii, a causative agent
of Rocky Mountain spotted fever, under laboratory conditions [127].

Expanding number of microbes transmitted by Amblyomma americanum increases the
public health importance of this tick. Panola Mountain Ehrlichia, an organism of unclear hu-
man pathogenicity, is transmitted by Amblyomma americanum, and it infects deer [128,129].
Heartland virus transmitted by Amblyomma americanum is an emerging human infection
that is closely related to severe fever with thrombocytopenia syndrome virus, an emerging
tick-borne hemorrhagic fever with a high fatality rate that is endemic in central and eastern
China, Korea, and Japan [130–133]. White-tailed deer are implicated as a Heartland virus
reservoir due to their widespread antibody seropositivity for this virus [131,134]. Bourbon
virus is another emerging pathogen transmitted by Amblyomma americanum [135–137]. Hu-
man hypersensitivity to saliva proteins of Amblyomma americanum introduced during blood
feeding can stimulate development of alpha-Gal (galactose-α-1,3-galactose) syndrome, a
red meat allergy that is a unique food allergy of increasing frequency [138–140].
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8. Amblyomma maculatum

Geographic range of the Gulf Coast tick, Amblyomma maculatum, is expanding in
multiple directions [141]. Historical range of this species in the United States was the
southeastern states bordering the Gulf of Mexico to the Atlantic coast of South Carolina
with a 150 miles inland extension along that range [142,143]. Amblyomma maculatum moved
northward into North Carolina, Virginia, eastern Maryland, and Delaware, accompanied by
expansion further inland from the coast and into Kentucky, Tennessee, Arkansas, Oklahoma,
and Kansas [2,11,143]. Recently, populations of this tick were found in Illinois [144],
Arizona, and New Mexico [145]. The northward expansion of Amblyomma maculatum
continues with recent detection of an established population in Connecticut [146], New
Jersey, and New York City [147].

9. Amblyomma maculatum Transmitted Pathogens

Amblyomma maculatum is a competent vector for Rickettsia parkeri, a spotted fever
group rickettsia that was recognized as a human pathogen in 2002 [148]. This rickettsia
was described decades prior to it being established as a cause of rickettsiosis [149,150].
Rickettsia parkeri has been detected in Amblyomma maculatum collected over much of the
geographic range of this tick, including the northern-most reported established popu-
lation in Connecticut [10,146]. Rickettsia parkeri are present in an established popula-
tion of Amblyomma maculatum in New York City [147,151]. Although a vertebrate reser-
voir(s) is not determined, Rickettsia parkeri-infected Amblyomma maculatum have been col-
lected from white-tailed deer, feral swine, and other wildlife species [10]. These same
wildlife species along with migratory birds and movement of infested cattle are linked to
Amblyomma maculatum range expansion [142].

10. Dermacentor andersoni and Dermacentor variabilis

Open shrubby, semiarid grasslands are habitat for Dermacentor andersoni, the Rocky Moun-
tain wood tick, whose range is intermountain and Rocky Mountain western North America
from southern British Columbia, Alberta, and Saskatchewan in Canada to northern New Mex-
ico, Arizona, eastern California, Oregon, and Washington in the United States [10,36,152,153].
Significantly, the geographic range of Dermacentor andersoni has remained essentially
stable since 1932 [152]. Big sagebrush is associated with a greater risk of exposure to
Dermacentor andersoni adults, and grass was a favored substrate for host seeking ticks [153].

Dermacentor variabilis occurs in 45 states, particularly in old fields and woodlands,
east of the Rocky Mountain region and with established populations in California, Oregon,
Washington, and Idaho [10,154,155]. The geographic range of Dermacentor variabilis is ex-
panding westward in the United States. The western distribution of Dermacentor variabilis
into the Rocky Mountain region of the United States might be changing based upon
the observation that it is the predominant tick removed from cats and dogs rather than
Dermacentor andersoni [156]. While this might reflect simply host preference, the distribu-
tion of Dermacentor variabilis merits further investigation. Recent molecular analyses of
ticks from the eastern and western sides of the described range support the concept that
Dermacentor variabilis consists of two species with the western populations comprised of a
new species, Dermacentor similis n.sp. [157].

A survey of the geographic range of Dermacentor andersoni in Alberta, Canada, revealed
decreasing numbers of ticks with northerly sampling to 51.6◦ N with greatest abundance in
dry mixed grass and montane regions [158]. Distribution of Dermacentor andersoni has re-
mained essentially stable in Saskatchewan, Canada, when compared with 1960s data [54]. In
contrast, Dermacentor variabilis range expanded westward and northward in Saskatchewan,
resulting in a zone of overlap approximately 200 km wide with Dermacentor andersoni that
was not evident in earlier data [54].



Zoonotic Dis. 2022, 2 134

11. Dermacentor andersoni- and Dermacentor variabilis-Transmitted Pathogens

Causative agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is linked to
transmission by both Dermacentor andersoni and Dermacentor variabilis [10]. The vector
roles of these two ticks require further study. Rickettsia rickettsii infection is associated
with tick mortality raising the question as to the actual prevalence of infection of this tick
species in nature and pathogen transmission rates [159]. Similar questions arise regarding
the Rocky Mountain spotted fever vector role of Dermacentor variabilis due to the high
frequency of non-pathogenic spotted fever group rickettsia found in ticks removed from
infested humans [160]. Rocky Mountain spotted fever was the subject of comprehensive
reviews [161–163].

Both Dermacentor andersoni and Dermacentor variabilis are vectors of Francisella tularensis,
causative agent of tularemia [10,124]. Common North American tick vectors of Francisella tularensis
are Amblyomma americanum, Dermacentor andersoni, Dermacentor occidentalis, and
Dermacentor variabilis [124]. Ecology of Francisella tularensis was recently reviewed [164].
Dermacentor andersoni is the primary vector of Colorado tick fever virus to humans in the
range of this vector in Canada and the United States [10,165]. Colorado tick fever has been
the topic of several reviews [165–167].

Tick paralysis is characterized by an acute ascending flaccid paralysis of humans and
other vertebrate species that is a relatively uncommon occurrence induced by feeding
of multiple ixodid and argasid species [168–172]. Commonly encountered North Ameri-
can human-biting tick species that can induce paralysis include Amblyomma americanum,
Amblyomma maculatum, Dermacentor andersoni, Dermacentor variabilis, Ixodes scapularis, and
Rhipicephalus sanguineus [173]. Dermacentor andersoni is the predominant tick associated with
livestock and human tick paralysis in the northwestern United States and British Columbia,
Canada [174–176]. Significantly, cattle can develop immunity to Dermacentor andersoni tick
paralysis [177].

12. Rhipicephalus sanguineus

Rhipicephalus sanguineus is the most widely distributed tick species globally [178]. This
tick predominantly infests dogs; however, it will also infest a range of domestic and wild
hosts, including birds, cats, humans, and rodents [178,179]. In North America, the northern
and western extent of Rhipicephalus sanguineus populations is reflected in their presence in
Alaska [180]. An examination of early Canadian records revealed Rhipicephalus sanguineus
populations associated with dogs in the provinces of Ontario, Quebec, and Nova Scotia [36].
Analysis of 9423 ticks, other than Ixodes scapularis, examined as submitted specimens in
passive survey in Quebec revealed 4.0 percent were Rhipicephalus sanguineus, and 4.1 percent
were Dermacentor variabilis, the American dog tick [8]. Factors contributing to successful
adaptation of Rhipicephalus sanguineus, a hunter tick, to widely diverse habitats include
the ability of all life cycle stages to obtain blood meals from the same host species and off
host life stages that are adapted to living indoors, such as kennels, as well as outdoors in
environments with sheltering features, such as rock walls; and, although a three-host tick,
Rhipicephalus sanguineus is capable of completing four generations a year, dependent upon
host availability and environmental conditions [178].

Rhipicephalus sanguineus was the unexpected vector of human Rickettsia rickettsii, or
Rocky Mountain spotted fever, infections in eastern Arizona [181]. Both Rickettsia rickettsii
and Bartonella henselae were detected in questing adult Rhipicephalus sanguineus collected
in southern California [182]. Globally, Rhipicephalus sanguineus is a competent vector of
multiple additional pathogens of medical and veterinary importance that include: Mediter-
ranean spotted fever (Rickettsia conorii), Q fever (Coxiella burnetii), equine piroplasmosis
(Theileria equi), equine babesiosis (Babesia caballii), bovine anaplasmosis (Anaplasma marginale),
canine babesiosis (Babesia canis, Babesia gibsoni), canine hepatozoonosis (Hepatozoon canis),
and canine monocytic ehrlichiosis (Ehrlichia canis) [183]. Warmer temperatures result in
more rapid attachment and feeding by Rhipicephalus sanguineus [178].
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13. Haemaphysalis longicornis: Invasive Vector Tick

Haemaphysalis longicornis, the Asian longhorned tick, is native to East Asia [184] and
extended its range into Australia, New Zealand, and several Pacific Islands [185,186].
Initial detection of a free-living population of Haemaphysalis longicornis in the United States
occurred on sheep in New Jersey in 2017 [187]. Haemaphysalis longicornis has spread to
at least 12 predominantly eastern states within the United States [188]. Examination of
archived tick specimens revealed that Haemaphysalis longicornis was present in the United
States in 2010 if not before [189]. Identification of three mitochondrial DNA cox 1 haplotypes
among field-collected Haemaphysalis longicornis populations across three states indicates
that at least three unrelated female ticks were introduced into the United States [188].
Phylogeographic analysis indicates that the introduced ticks were from northeast Asia [188].

Reproductive characteristics contribute to the potential for geographic spread for
this tick species. One form of reproduction is bisexual populations that are essentially a
50:50 ratio of females:males, and the second form of reproduction is parthenogenetic, with
the vast majority of adults possessing a female morphology [184,188]. Parthenogenetic
reproduction results in large numbers of progeny from a single female [189]. Medium- and
large-sized vertebrates but not small mammals or birds have large numbers of infesting
Haemaphysalis longicornis in nature [190]. This parthenogenetic pattern is the reproductive
form present in the United States [188].

Models developed to project the geographic range of Haemaphysalis longicornis in
North America indicate suitable habitat across the eastern and the midwestern United
States from the Gulf of Mexico coast into southern Canada as well as a narrow region along
the Pacific coast from southern California into British Columbia [117,191]. The potential
exists for Haemaphysalis longicornis to establish in the maritime provinces of Canada [117]
as well as in southern Quebec, Ontario, and Manitoba [192]. Ability of this tick to infest
a wide variety of vertebrate hosts means that the potential for movement and spread of
range are significant [117]. Haemaphysalis longicornis has the ability to adapt to a wide
range of climate conditions and habitats such as woodlands, open pastures, and shrubby
brush [186]. Haemaphysalis longicornis will expand over suitable range and continue to
spread northward and westward, as is generally predicted for tick species in a warming
northern hemisphere [122].

Haemaphysalis longicornis is a competent vector of an array of pathogens of human and
veterinary public health importance [117]. Severe fever with thrombocytopenia syndrome
is a potentially lethal bunyavirus for which Haemaphysalis longicornis is both a vector
and reservoir in Asia [130,133]. Although severe fever with thrombocytopenia syndrome
virus has not been detected in ticks in North America, the closely related Heartland virus
occurs across the central Midwest into southeastern states where Haemaphysalis longicornis
occurs [117,191,193]. Potential exists for significant emergence of Heartland virus as a
public health threat as the enzootic cycle becomes more widely established, and this tick
bites more humans. Haemaphysalis longicornis transmits Heartland virus transovarially,
and experimentally infected ticks transmit the virus to mice [194]. Bourbon virus, an
emerging Thogotovirus, was detected in field-collected Haemaphysalis longicornis in Virginia,
indicating a possible additional tick vector for this pathogen [195]. Haemaphysalis longicornis
is vector of the virulent veterinary pathogen Theileria orientalis genotype Ikeda strain that
it is being transmitted to livestock in Virginia [196]. This finding represents an emerging
threat to cattle producers in North America.

14. Tick and Pathogen Control

The examples just described are characteristic of the broad phenomena of tick species
range expansions, population growth, and emergence of tick transmitted pathogens that
have significant implications for human and veterinary health. Nowhere is the impact
of these changes more challenging than in the efforts to manage, control, and suppress
ticks and tick-borne diseases. Effective control of tick vectors and tick-borne pathogens of
humans remain vexing and evolving challenges [56,57].
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Although the focus of this review is human health, the problems encountered over
decades by cattle producers are illustrative of the difficulties in achieving effective tick
control [197–199]. Acaricides have remained a mainstay of tick control on livestock since
the introduction of arsenic tetraoxide just prior to the start of the twentieth century [199].
With the first report of tick resistance to arsenic as an acaricide in 1936, the ongoing search
for new acaricidal compounds and the sequential development of resistance by multiple
tick species to each successive generation of acaricides began [198–200]. Acaricide classes
synthesized and to which ticks developed recurring resistance include organochlorines,
organophosphates, carbamates, formamidines, pyrethroids, macrocytic lactones, neon-
icotinoids, growth regulators, and phenylpyrazoles [198–200]. Considerable effort has
been directed toward defining tick acaricide resistance mechanisms and exploring resis-
tance prevention mechanisms that include addition of enzyme inhibitors as well as use
of combinations and rotations of acaricides [199–201]. Research continues to focus on
development of novel acaricides that are more selective, less likely to induce tick resis-
tance, and have greatly reduced environmental impact, including the problem of meat
and milk residues [202]. Pasture management and reduced acaricide treatments are being
incorporated into development of integrated tick management programs for cattle tick
control [203–205]. There clearly exists a need for innovative methodologies for the control
of cattle ticks that can become an additional tool for use in integrated tick management
programs. Anti-tick vaccines are one approach that have proven efficacy for reducing
infestations of cattle, and their development remains a significant research focus [206].

Tick bite and tick-borne disease prevention relies largely upon individual decisions to
utilize personal protective measures that are the primary manner by which humans protect
themselves from these threats [191,207,208]. Those personal protective measures include
repellents, protective clothing, tick checks to remove any infesting ticks, avoidance of tick
habitat, preventive behaviors, education, and permethrin-treated clothing [207]. Additional
risk reduction measures include domestic or wider area environmental modification of tick
habitat by landscape modification and application of approved acaricides [207]. Perceived
risk is an important factor in individual implementation of personal protection [209].

The problem of significantly increasing numbers and diversity of tick-borne infections
in the United States has increased calls for a national strategy to address tick-transmitted
disease threats [56]. Concomitant with this initiative is an effort to raise awareness of the
need for focused and area-wide integrated tick management programs; increasing incen-
tives to academic and industry to develop, test, and register new tick-control technologies;
update strategies to address the increasingly more complex tick and disease threats occur-
ring in a changing landscape; and to expand educational initiatives for both professions
and the public [57,210,211]. An issue that will require ongoing research and monitoring
is selection of appropriate tick control or suppression methods since approaches differ
based upon the different human-biting tick species in an area [57]. Essential to all of this is
knowing what the threats are and where they exist.

15. Current Situation

Tick geographic range changes require surveillance that is ongoing to capture the
dynamic processes that vary for different species. Table 1 provides links to websites that
provide information regarding tick species geographic ranges in Canada and the contiguous
United States. Table 2 lists major human-biting ixodid ticks of Canada and the United
States and the human infectious agents for which their vector competence is established.
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Table 1. Links to websites in Canada and United States that provide maps of tick distributions based
upon recent surveillance data.

Organization Website

Canadian Veterinary Medical Association
Tick Talk

Provides information regarding tick species
occurring in each province, tick habitat, tick

geography, and tick season.

https:
//ticktalkcanada.com/geographic-expansion/

(accessed on 8 August 2022)

eTick Canada
Map points reflect the different locations where ticks

were reported and not the total number of
submissions. Only the most recent 20,000 data points

are displayed on the map.

https:
//www.etick.ca/etickapp/en/ticks/public/map

(accessed on 8 August 2022)

Government of Canada Lyme Disease Risk
Area Maps

https://www.canada.ca/en/public-health/
services/diseases/lyme-disease/surveillance-lyme-

disease.html#a4
(accessed on 8 August 2022)

Ixodes scapularis Risk Areas in Manitoba, Canada
https://www.gov.mb.ca/health/publichealth/cdc/

tickborne/surveillance.html
(accessed on 8 August 2022)

United States Centers for Disease Control and
Prevention: Regions Where Ticks Live

Maps show the general distribution of human-biting
ticks in the contiguous United States.

https://www.cdc.gov/ticks/geographic_
distribution.html

(accessed on 8 August 2022)

Table 2. Major human-biting ixodid tick species of Canada and the United States and infectious
agents for which their vector capacity is established.

Human-Biting Tick Human Infectious Agents Transmitted

Amblyomma americanum

Ehrlichia chaffeensis
Ehrlichia ewingii

Panola Mountain Ehrlichia
Francisella tularensis

Heartland virus
Bourbon virus

Amblyomma maculatum Rickettsia parkeri

Dermacentor andersoni
Rickettsia rickettsii

Francisella tularensis
Colorado tick fever virus

Dermacentor variabilis Rickettsia rickettsii
Francisella tularensis

Haemaphysalis longicornis Laboratory competence for Heartland virus
and Bourbon virus

Ixodes cookei Powassan virus

Ixodes pacificus
Anaplasma phagocytophilum

Borrelia burgdorferi
Borrelia miyamotoi

Ixodes scapularis

Anaplasma phagocytophilum
Babesia microti

Borrelia burgdorferi
Borrelia miyamotoi
Borrelia mayonii

Ehrlichia muris euclairensis
Powassan virus

Rhipicephalus sanguineus Rickettsia rickettsii
Q fever

https://ticktalkcanada.com/geographic-expansion/
https://ticktalkcanada.com/geographic-expansion/
https://www.etick.ca/etickapp/en/ticks/public/map
https://www.etick.ca/etickapp/en/ticks/public/map
https://www.canada.ca/en/public-health/services/diseases/lyme-disease/surveillance-lyme-disease.html#a4
https://www.canada.ca/en/public-health/services/diseases/lyme-disease/surveillance-lyme-disease.html#a4
https://www.canada.ca/en/public-health/services/diseases/lyme-disease/surveillance-lyme-disease.html#a4
https://www.gov.mb.ca/health/publichealth/cdc/tickborne/surveillance.html
https://www.gov.mb.ca/health/publichealth/cdc/tickborne/surveillance.html
https://www.cdc.gov/ticks/geographic_distribution.html
https://www.cdc.gov/ticks/geographic_distribution.html
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