Assessing the Utility of Organoid Intelligence: Scientific and Ethical Perspectives
Abstract
:1. Introduction
2. The Greely Dilemma and Premature Application of the Precautionary Principle
3. Ryle’s Category Mistake
4. Eroom’s Law and Neuromorphic Computing in Brain Organoids
5. OI Nomenclature May Rely on the Convergence of Reification and Neurorealism
6. Conflicts of Interest and Financial Incentives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OI | Organoid Intelligence |
iPSC | Human-Induced Pluripotent Stem Cell |
References
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Quadrato, G.; Nguyen, T.; Macosko, E.Z.; Sherwood, J.L.; Min Yang, S.; Berger, D.R.; Maria, N.; Scholvin, J.; Goldman, M.; Kinney, J.P.; et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 2017, 545, 48–53. [Google Scholar] [CrossRef]
- Trujillo, C.A.; Gao, R.; Negraes, P.D.; Gu, J.; Buchanan, J.; Preissl, S.; Wang, A.; Wu, W.; Haddad, G.G.; Chaim, I.A.; et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 2019, 25, 558–569.e7. [Google Scholar] [CrossRef]
- Durens, M.; Nestor, J.; Williams, M.; Herold, K.; Niescier, R.F.; Lunden, J.W.; Phillips, A.W.; Lin, Y.-C.; Dykxhoorn, D.M.; Nestor, M.W. High-throughput screening of human induced pluripotent stem cell-derived brain organoids. J. Neurosci. Methods 2020, 335, 108627. [Google Scholar] [CrossRef]
- Fitzgerald, M.Q.; Chu, T.; Puppo, F.; Blanch, R.; Chillón, M.; Subramaniam, S.; Muotri, A.R. Generation of ‘semi-guided’ cortical organoids with complex neural oscillations. Nat. Protoc. 2024, 19, 2712–2738. [Google Scholar] [CrossRef]
- Pașca, S.P.; Arlotta, P.; Bateup, H.S.; Camp, J.G.; Cappello, S.; Gage, F.H.; Knoblich, J.A.; Kriegstein, A.R.; Lancaster, M.A.; Ming, G.L.; et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 2022, 609, 907–910. [Google Scholar] [CrossRef]
- Maisumu, G.; Willerth, S.; Nestor, M.; Waldau, B.; Schülke, S.; Nardi, F.V.; Ahmed, O.; Zhou, Y.; Durens, M.; Liang, B.; et al. Brain organoids: Building higher-order complexity and neural circuitry models. Trends Biotechnol. 2025, 43, 456–468. [Google Scholar] [CrossRef]
- Costamagna, G.; Comi, G.P.; Corti, S. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids. Int. J. Mol. Sci. 2021, 22, 2659. [Google Scholar] [CrossRef] [PubMed]
- Dionne, O.; Sabatié, S.; Laurent, B. Deciphering the physiopathology of neurodevelopmental disorders using brain organoids. Brain 2025, 148, 12–26. [Google Scholar] [CrossRef]
- Domene Rubio, A.; Hamilton, L. A comprehensive review on utilizing human brain organoids to study neuroinflammation in neurological disorders. J. Neuroimmune Pharmacol. 2025, 20, 23. [Google Scholar] [CrossRef]
- Giorgi, C.; Lombardozzi, G.; Ammannito, F.; Scenna, M.S.; Maceroni, E.; Quintiliani, M.; d’Angelo, M.; Cimini, A.; Castelli, V. Brain organoids: A game-changer for drug testing. Pharmaceutics 2024, 16, 443. [Google Scholar] [CrossRef] [PubMed]
- Aili, Y.; Maimaitiming, N.; Wang, Z.; Wang, Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J. Cell. Mol. Med. 2024, 28, e18560. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, C.A.; Adams, J.W.; Negraes, P.D.; Carromeu, C.; Tejwani, L.; Acab, A.; Tsuda, B.; Thomas, C.A.; Sodhi, N.; Fichter, K.M.; et al. Pharmacological reversal of synaptic and network pathology in human MECP2-knockout neurons and cortical organoids. EMBO Mol. Med. 2021, 13, e12523. [Google Scholar] [CrossRef]
- Kagan, B.J.; Kitchen, A.C.; Tran, N.T.; Parker, B.J.; Bhat, A.; Bye, J.O.; Liddicoat, A.M.; Hernández, D.M.; Crouch, S.H.; Kearney, C.J.; et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022, 110, 4044–4059.e11. [Google Scholar] [CrossRef]
- Smirnova, L.; Caffo, B.S.; Gracias, D.H.; Huang, Q.; Morales Pantoja, I.E.; Tang, B.; Zack, D.J.; Berlinicke, C.A.; Boyd, J.L.; Harris, T.D.; et al. Organoid intelligence (OI): The new frontier in biocomputing and intelligence-in-a-dish. Front. Sci. 2023, 1, 1017235. [Google Scholar] [CrossRef]
- Puppo, F.; Muotri, A.R. Network and microcircuitry development in human brain organoids. Biol. Psychiatry 2023, 93, 590–593. [Google Scholar] [CrossRef]
- Patton, M.H.; Thomas, K.T.; Bayazitov, I.T.; Newman, K.D.; Kurtz, N.B.; Robinson, C.G.; Ramirez, C.A.; Trevisan, A.J.; Bikoff, J.B.; Peters, S.T.; et al. Synaptic plasticity in human thalamocortical assembloids. Cell Rep. 2024, 43, 114503. [Google Scholar] [CrossRef]
- Gilbert, F.; Russo, I. Neurorights: The land of speculative ethics and alarming claims? AJOB Neurosci. 2024, 15, 113–115. [Google Scholar] [CrossRef]
- Niikawa, T.; Hayashi, Y.; Shepherd, J.; Sawai, T. Human brain organoids and consciousness. Neuroethics 2022, 15, 5. [Google Scholar] [CrossRef]
- Pereira, A.; Garcia, J.W., Jr.; Muotri, A. Neural stimulation of brain organoids with dynamic patterns: A sentiomics approach directed to regenerative neuromedicine. NeuroSci 2023, 4, 31–42. [Google Scholar] [CrossRef]
- Bassil, K. The end of ‘mini-brains’! Responsible communication of brain organoid research. Mol. Psychol. Brain Behav. Soc. 2023, 2, 13. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci. 2009, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Hyun, I.; Scharf-Deering, J.C.; Lunshof, J.E. Ethical issues related to brain organoid research. Brain Res. 2020, 1732, 146653. [Google Scholar] [CrossRef]
- Ludlow, K.; Smyth, S.J.; Falck-Zepeda, J.B. Risk appropriate, science-based innovation regulations are important. Trends Biotechnol. 2025, 43, 502–510. [Google Scholar] [CrossRef]
- Dixon, T.A.; Muotri, A.R. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Molecular 2023, 28, 83–95. [Google Scholar] [CrossRef]
- Balci, F.; Ben Hamed, S.; Boraud, T.; Bouret, S.; Brochier, T.; Brun, C.; Cohen, J.Y.; Coutureau, E.; Deffains, M.; Doyère, V.; et al. A response to claims of emergent intelligence and sentience in a dish. Neuron 2023, 111, 604–605. [Google Scholar] [CrossRef]
- Weintraub, K. “Mini Brains” Are Not Like the Real Thing. Scientific American. 30 January 2020. Available online: https://www.scientificamerican.com/article/mini-brains-are-not-like-the-real-thing/ (accessed on 28 February 2025).
- Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated information theory: From consciousness to its physical substrate. Nat. Rev. Neurosci. 2016, 17, 450–461. [Google Scholar] [CrossRef]
- Lunden, J.W.; Durens, M.; Nestor, J.; Niescier, R.F.; Herold, K.; Brandenburg, C.; Lin, Y.-C.; Blatt, G.J.; Nestor, M.W. Development of a 3-D organoid system using human induced pluripotent stem cells to model idiopathic autism. Adv. Neurobiol. 2020, 25, 259–297. [Google Scholar] [CrossRef]
- Greely, H.T. Human brain surrogates research: The onrushing ethical dilemma. Am. J. Bioeth. 2021, 21, 34–45. [Google Scholar] [CrossRef]
- Lavazza, A.; Chinaia, A.A. Human brain organoids and their ethical issues: Navigating the moral and social challenges between hype and underestimation. EMBO Rep. 2024, 25, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Acosta, N.D.; Golub, S.H. The new federalism: State policies regarding embryonic stem cell research. J. Law Med. Ethics 2016, 44, 419–436. [Google Scholar] [CrossRef]
- Ruiz, S.; Valera, L.; Ramos, P.; Sitaram, R. Neurorights in the Constitution: From neurotechnology to ethics and politics. Philos. Trans. R. Soc. B Biol. Sci. 2024, 379, 20230098. [Google Scholar] [CrossRef]
- Ryle, G. The Concept of Mind: 60th Anniversary Edition, 1st ed.; Routledge: London, UK, 2009. [Google Scholar] [CrossRef]
- Kumar, S. Fundamental limits to Moore’s law. arXiv 2015, arXiv:1511.05956. [Google Scholar]
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [CrossRef]
- Duval, M.X. The inadequacy of the reductionist approach in discovering new therapeutic agents against complex diseases. Exp. Biol. Med. 2018, 243, 1004–1013. [Google Scholar] [CrossRef]
- Date, P.; Kay, B.; Schuman, C.D.; Patton, R.; Potok, T. Computational complexity of neuromorphic algorithms. In Proceedings of the International Conference on Neuromorphic Systems, Knoxville, TN, USA, 27–29 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Yao, Y.; Pankow, R.M.; Huang, W.; Wu, C.; Gao, L.; Cho, Y.; Chen, J.; Zhang, D.; Sharma, S.; Liu, X.; et al. An organic electrochemical neuron for a neuromorphic perception system. Proc. Natl. Acad. Sci. USA 2025, 122, e2414879122. [Google Scholar] [CrossRef]
- Te Meerman, S.; Freedman, J.E.; Batstra, L. ADHD and reification: Four ways a psychiatric construct is portrayed as a disease. Front. Psychiatry 2022, 13, 1055328. [Google Scholar] [CrossRef]
- Qian, X.; Song, H.; Ming, G. Brain organoids: Advances, applications and challenges. Development 2019, 146, dev166074. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef]
- Racine, E.; Bar-Ilan, O.; Illes, J. fMRI in the public eye. Nat. Rev. Neurosci. 2005, 6, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.; Thompson, R.B.; Gayton, W.; Markowski, V. A reexamination of the neurorealism effect: The role of context. J. Sci. Commun. 2016, 15, A01. [Google Scholar] [CrossRef]
- Weisberg, D.S.; Keil, F.C.; Goodstein, J.; Rawson, E.; Gray, J.R. The seductive allure of neuroscience explanations. J. Cogn. Neurosci. 2008, 20, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.S.; Peng, H.; Fosse, H.B.; Woodruff, T.K.; Uzzi, B. Use of promotional language in grant applications and grant success. JAMA Netw. Open 2024, 7, e2448696. [Google Scholar] [CrossRef]
- Redford, K.H.; Padoch, C.; Sunderland, T. Fads, funding, and forgetting in three decades of conservation. Conserv. Biol. 2013, 27, 437–438. [Google Scholar] [CrossRef]
- Aral, S. The Hype Machine: How Social Media Disrupts our Elections, Our Economy, and Our Health—And How We Must Adapt; Crown Currency: Sydney, Australia, 2020. [Google Scholar]
- Simons, D.J.; Boot, W.R.; Charness, N.; Gathercole, S.E.; Chabris, C.F.; Hambrick, D.Z.; Stine-Morrow, E.A.L. Do “brain-training” programs work? Psychol. Sci. Public Interest 2016, 17, 103–186. [Google Scholar] [CrossRef]
- Heyes, C.; Catmur, C. What happened to mirror neurons? Perspect. Psychol. Sci. 2021, 16, 917–931. [Google Scholar] [CrossRef]
- Willcoxon, M. Overexposure Distorted the Science of Mirror Neurons. Quanta Magazine, 2 April 2024. Available online: https://www.quantamagazine.org/overexposure-distorted-the-science-of-mirror-neurons-20240402/ (accessed on 28 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestor, M.W.; Wilson, R.L. Assessing the Utility of Organoid Intelligence: Scientific and Ethical Perspectives. Organoids 2025, 4, 9. https://doi.org/10.3390/organoids4020009
Nestor MW, Wilson RL. Assessing the Utility of Organoid Intelligence: Scientific and Ethical Perspectives. Organoids. 2025; 4(2):9. https://doi.org/10.3390/organoids4020009
Chicago/Turabian StyleNestor, Michael W., and Richard L. Wilson. 2025. "Assessing the Utility of Organoid Intelligence: Scientific and Ethical Perspectives" Organoids 4, no. 2: 9. https://doi.org/10.3390/organoids4020009
APA StyleNestor, M. W., & Wilson, R. L. (2025). Assessing the Utility of Organoid Intelligence: Scientific and Ethical Perspectives. Organoids, 4(2), 9. https://doi.org/10.3390/organoids4020009