

Correction

Correction: Khanipour et al. Ileal Digestible and Metabolizable Energy of Corn, Wheat, and Barley in Growing Japanese Quail. Poultry 2024, 3, 190-199

Sousan Khanipour ¹, Mahmoud Ghazaghi ¹, Mohammad Reza Abdollahi ^{2,3} and Mehran Mehri ^{1,*}

- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan 98661-5538, Iran; sousan.khanipour136@gmail.com (S.K.); ghazagh207@yahoo.com (M.G.)
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; m.abdollahi@massey.ac.nz
- A2Z Poultry Feed DynamikZ, 69100 Lyon, France
- Correspondence: mehri@uoz.ac.ir; Tel.: +98-912-041-5519

There was an error in the original publication [1]. A correction has been made to Abstract, "The estimated AMEn values of corn, wheat, and barley were 3255, 2676, and 2281 kcal/kg, respectively". The updated version should be as follows: "The estimated AMEn values of corn, wheat, and barley were 3483, 2903, and 2532 kcal/kg, respectively".

In the original publication [1], there was a mistake in Tables 3 and 4 as published. The corrected Tables 3 and 4 appears below.

There was an error in the original publication in Section 3.2. The corrected Section 3.2 appears below.

The estimated IDE of corn, wheat, and barley in younger quails (15 to 21 d) were 2954, 3441, and 3194 kcal/kg, respectively, the corresponding values in older quails (22 to 28 d) were 2894, 3439, and 3260 kcal/kg, respectively (Table 3). According to the estimates (Table 4), the AME values of corn, wheat, and barley in younger quails (from 15 to 21 d) were 3340, 2899, and 2663 kcal/kg, respectively, while in older quails (from 22 to 28 d), the corresponding values were 3698, 3058, and 2757 kcal/kg, respectively. The AMEn values of corn, wheat, and barley in younger quails (from 15 to 21 d) were 3300, 2831, and 2506 kcal/kg, respectively, while in older quails (from 22 to 28 d), the corresponding values were 3665, 2976, and 2558 kcal/kg, respectively. Age significantly affects the Δ AME

(AME - AMEn), where it increased from 88.6 to 105 kcal with advancing age.

Table 3. Ileal digestibility coefficients of dry matter (iDM), crude protein (iCP), and ileal digestibl	.e
energy (IDE) at two age groups (I: 15–21 d; II: 22–28 d) of growing Japanese quail ¹ .	

Ingredient	Age	iDM (%)	iCP (%)	IDE (kcal/kg)
Corn	I	72.5 ^b	56.1 ^c	2954
Wheat	I	89.4 ^a	65.3 ^b	3441
Barley	I	85.1 a	69.0 ^b	3194
Corn	II	74.8 ^b	64.0 ^b	2894
Wheat	II	86.7 a	63.7 ^b	3439
Barley	II	84.0 a	83.2 ^a	3260
SEM		2.41	1.99	79.2

Received: 27 December 2024 Accepted: 20 January 2025 Published: 12 March 2025

Citation: Khanipour, S.; Ghazaghi, M.; Abdollahi, M.R.; Mehri, M. Correction: Khanipour et al. Ileal Digestible and Metabolizable Energy of Corn. Wheat, and Barley in Growing Japanese Quail. Poultry 2024, 3, 190-199. Poultry 2025, 4, 13. https://doi.org/10.3390/ poultry4010013

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

Poultry 2025, 4, 13 2 of 4

Table 3. Cont.

Ingredient	Age	iDM (%)	iCP (%)	IDE (kcal/kg)	
Ingredient					
Corn		73.6	73.6 ^b	60.0 ^c	
Wheat		88.1	88.1 a	64.5 ^b	
Barley		84.6	84.6 a	76.1 ^a	
SEM		1.70	1.70	1.41	
Age					
I		82.3	82.3	63.5 ^b	
II		81.8	81.8	70.3 ^a	
SEM		1.39	1.39	1.15	
		<i>p</i> -value			
Feed		< 0.001	< 0.001	< 0.001	
Age		0.801	< 0.001	0.983	
Feed \times A	ge	0.575	0.003	0.733	

Means in a column not sharing a common letter (a–c) are significantly different (p < 0.05). ¹ Each value is the mean of five replicate pens with 15 birds per pen.

Should be changed to (Bold indicates modified content)

Table 3. Ileal digestibility coefficients of dry matter (iDM), crude protein (iCP), and ileal digestible energy (IDE) at two age groups (I: 15–21 d; II: 22–28 d) of growing Japanese quail ¹.

ngredient Age		iDM (%)	iCP (%)	IDE (kcal/kg)	
Corn	I	72.5 ^b	56.1 ^c	2954	
Wheat	I	89.4 a	65.3 ^b	3441	
Barley	I	85.1 a	69.0 ^b	3194	
Corn	II	74.8 ^b	64.0 ^b	2894	
Wheat	II	86.7 ^a	63.7 ^b	3439	
Barley	II	84.0 a	83.2 ^a	3260	
SEM		2.41	1.99	79.2	
Ingredi	ent				
Corr	1	73.6	60.0 ^c	2924 ^c	
Whea	nt	88.1	64.5 ^b	3440 a	
Barley		84.6	76.1 ^a	3227 ^b	
SEM	Í	1.70	1.41	56.0	
Age					
I		82.3	63.5 ^b	3196	
II		81.8	70.3 ^a	3198	
SEM	[1.39	1.15	45.7	
		<i>p</i> -value			
Feed		< 0.001	< 0.001	< 0.001	
Age		0.801	< 0.001	0.983	
Feed ×	Age	0.575	0.003	0.733	

Means in a column not sharing a common letter (a–c) are significantly different (p < 0.05). ¹ Each value is the mean of five replicate pens with 15 birds per pen.

Poultry 2025, 4, 13 3 of 4

Table 4. Metabolizability coefficients of dry matter (mcDM), crude protein (mcCP), nitrogen retention (NR), and apparent metabolizable energy (AME), apparent metabolizable energy corrected for zero nitrogen retention (AMEn), and difference of the AME and AMEn (Δ AME = AME – AMEn) at two age groups (I: 15–21 d; II: 22–28 d) of growing Japanese quail 1 .

Ingredient	Age	mcDM (%)	mcCP (%)	NR (%)	AME (kcal/kg)	AMEn (kcal/kg)	ΔAME (kcal)
Corn	I	83.7	82.5	86.2 a	3340	3300	39.6
Wheat	I	78.5	83.9	74.9 ^b	2899	2831	68.5
Barley	I	86.2	88.8	81.7 ab	2663	2506	158
Corn	II	81.4	80.3	74.7 ^b	3698	3210	33.3
Wheat	II	83.9	77.9	76.6 ^b	3058	2521	82.6
Barley	II	87.0	80.8	87.8 a	2757	2056	198
SEM		2.47	3.79	3.11	133	188	18.4
Ingredient							
Corr	ı	82.6	81.4	80.5 ab	3519 a	3483 a	36.3 ^c
Whea	nt	81.2	80.9	75.8 ^b	2979 ^b	2903 ^b	75.5 ^b
Barle	y	86.6	84.8	84.7 a	2710 ^b	2532 ^c	178 ^a
SEM	[1.74	2.68	2.20	93.8	98.5	13.0
Age							
I		82.8	85.1	80.9	2968	2879	88.6
II		84.1	79.7	79.7	3171	3066	105
SEM	[1.43	2.19	1.79	76.6	109	10.6
			p-va	lue			
Feed		0.101	0.549	0.033	< 0.001	< 0.001	< 0.001
Age		0.529	0.098	0.631	0.077	0.117	0.297
Feed ×	Age	0.313	0.737	0.029	0.592	0.530	0.465

Means in a column not sharing a common letter (a–c) are significantly different (p < 0.05). ¹ Each value is the mean of five replicate pens with 15 birds per pen.

Should be changed to (Bold indicates modified content)

Table 4. Metabolizability coefficients of dry matter (mcDM), crude protein (mcCP), nitrogen retention (NR), and apparent metabolizable energy (AME), apparent metabolizable energy corrected for zero nitrogen retention (AMEn), and difference in the AME and AMEn (Δ AME = AME – AMEn) at two age groups (I: 15–21 d; II: 22–28 d) of growing Japanese quail 1 .

Ingredient	Age	mcDM (%)	mcCP (%)	NR (%)	AME (kcal/kg)	AMEn (kcal/kg)	ΔAME (kcal)
Corn	I	83.7	82.5	86.2 a	3340	3300	39.6
Wheat	I	78.5	83.9	74.9 ^b	2899	2831	68.5
Barley	I	86.2	88.8	81.7 ab	2663	2506	158
Corn	II	81.4	80.3	74.7 ^b	3698	3665	33.3
Wheat	II	83.9	77.9	76.6 ^b	3058	2976	82.6
Barley	II	87.0	80.8	87.8 a	2757	2558	198
SEM		2.47	3.79	3.11	133	188	18.4
Ingredi	ent						
Corr	1	82.6	81.4	80.5 ab	3519 a	3483 ^a	36.3 ^c
Whea	ıt	81.2	80.9	75.8 ^b	2979 ^b	2903 ^b	75.5 ^b
Barle	y	86.6	84.8	84.7 a	2710 ^b	2532 ^c	178 a
SEM		1.74	2.68	2.20	93.8	98.5	13.0
Age							
I		82.8	85.1	80.9	2968	2879	88.6
II		84.1	79.7	79.7	3171	3066	105
SEM		1.43	2.19	1.79	76.6	80.4	10.6
			p-va	lue			
Feed		0.101	0.549	0.033	< 0.001	< 0.001	< 0.001
Age		0.529	0.098	0.631	0.077	0.117	0.297
$Feed \times 1$	Age	0.313	0.737	0.029	0.592	0.530	0.465

Means in a column not sharing a common letter (a–c) are significantly different (p < 0.05). ¹ Each value is the mean of five replicate pens with 15 birds per pen.

Poultry 2025, 4, 13 4 of 4

The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

1. Khanipour, S.; Ghazaghi, M.; Abdollahi, M.R.; Mehri, M. Ileal Digestible and Metabolizable Energy of Corn, Wheat, and Barley in Growing Japanese Quail. *Poultry* **2024**, *3*, 190–199. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.