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Abstract: Coffee leaf diseases are a significant challenge for coffee cultivation. They can reduce yields,
impact bean quality, and necessitate costly disease management efforts. Manual monitoring is labor-
intensive and time-consuming. This research introduces a pioneering mobile application equipped
with global positioning system (GPS)-enabled reporting capabilities for on-site coffee leaf disease
detection. The application integrates advanced deep learning (DL) techniques to empower farmers
and agronomists with a rapid and accurate tool for identifying and managing coffee plant health.
Leveraging the ubiquity of mobile devices, the app enables users to capture high-resolution images of
coffee leaves directly in the field. These images are then processed in real-time using a pre-trained DL
model optimized for efficient disease classification. Five models, Xception, ResNet50, Inception-v3,
VGG16, and DenseNet, were experimented with on the dataset. All models showed promising
performance; however, DenseNet proved to have high scores on all four-leaf classes with a training
accuracy of 99.57%. The inclusion of GPS functionality allows precise geotagging of each captured
image, providing valuable location-specific information. Through extensive experimentation and
validation, the app demonstrates impressive accuracy rates in disease classification. The results
indicate the potential of this technology to revolutionize coffee farming practices, leading to improved
crop yield and overall plant health.

Keywords: coffee leaf diseases; deep learning; cloud computing; precise agriculture

1. Introduction

Coffee is one of the most traded products worldwide. Sustainable coffee cultivation is
crucial for both economic stability and environmental conservation. According to the Inter-
national Coffee Organization’s 2020 report, during the 2019/2020 season, global coffee pro-
duction reached an estimated 169.34 million bags, priced at approximately 169.25 US cents
per pound. East Africa contributed 17.12 million bags, constituting 11% of the world’s
coffee production. The global revenue from the coffee trade in 2016 was estimated to be
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around USD 30.7 billion [1]. The industry can bring in more than USD 100 billion globally,
with USD 1.8 billion of that amount coming from sales in Africa. More than 120 million
people are employed in the coffee industry; of these, 67–70% are smallholder farmers in
developing nations [2]. According to the United Nations Conference on Trade and Develop-
ment (UNCTAD) report, the coffee sector is the source of 25% of foreign exchange earnings
in over 50 developing nations [1].

A significant quantity of Rwanda’s coffee production is destined for export, with the
local market accounting for a mere fraction, representing less than 1% of the country’s total
coffee output [3,4]. A total of 60% of Rwandan coffee goes to the European Union, 20%
to the US, and the remaining portion goes to Asia [3]. Agricultural exports have notably
increased from 2013/2014 to 2019/2020, and the National Agricultural Export Development
Board (NAEB) has set lofty goals to treble exports by 2023/2024. Rwanda’s agricultural
exports have increased, thanks in large part to the NAEB, whose efforts have seen revenue
rise from USD 225 million in 2013–2014 to USD 516 million in 2017–2018. By 2024, they
hope to export goods worth USD 1 billion, with coffee being a major contributor to this
growth [3]. To achieve this, enhancements in both coffee production and quality ranging
from 30% to 69% have been realized. This progress has been made possible through the
establishment of numerous coffee washing stations across various regions of the country, as
well as the provision of technical support to farmers by the NAEB and private investors [3].

Even though in different countries, various initiatives have been established to increase
the production of this cash crop, its production is greatly affected by pests and different
diseases. They may attack different parts of a coffee plant, such as root and trunk diseases
that lead to the overall weakening of coffee trees. It results in impairing their ability to
uptake water and minerals while interfering with the transfer of substances between the
roots and the shoots [5]. There are also dieback diseases where numerous pathogens
can infect young coffee branches, resulting in the withering and decline of the emerging
stems responsible for carrying the next season’s crop [6]. Coffee berries can be affected
by coffee berry disease (CBD), instigated by Colletotrichum coffeanum. It is especially
a devastating ailment that targets developing coffee berries, resulting in their decay or
premature shedding from the plant before the formation of coffee beans inside [7]. Lastly,
foliage diseases are a group of diseases that primarily affect the leaves of coffee plants.
These diseases are caused by various pathogens, including fungi, bacteria, and viruses.
They can lead to the development of symptoms such as leaf spots, wilting, discoloration,
and defoliation, which can significantly impact the health and productivity of coffee
trees. The common examples of coffee foliage diseases include coffee leaf rust and coffee
leaf spot [8,9].

Coffee leaf rust (CLR) is the most significant threat to Arabica coffee, with this coffee
species being the most vulnerable when compared to others. It affects both the quality
and quantity of the coffee [10]. CLR is caused by the fungus Hemileia vastatrix. It is the
most widespread and devastating coffee disease in Rwanda [11]. The CLR is identifiable
through the appearance of small, yellow–orange to rust-colored spots or pustules on the
upper leaf surfaces. This results in premature leaf drop, leading to defoliation. As the
disease advances, it impairs the plant’s photosynthetic capabilities, potentially affecting its
overall health and yield. Severe infections can stunt coffee plant growth, impacting both
the quantity and the quality of coffee beans [12–17].

Another common foliage disease is Cercospora coffeicola, which is a fungal pathogen
that causes coffee leaf spots. It is characterized by the appearance of small, dark, and
irregularly shaped lesions on coffee leaves. These lesions can coalesce, leading to extensive
damage to the foliage. Severe infections of Cercospora coffeicola can result in defoliation,
reduced photosynthesis, and decreased coffee plant health and productivity [18,19].

Managing and preventing these diseases is essential for maintaining the health and
yield of coffee crops. Coping with coffee leaf diseases, such as coffee leaf rust and coffee leaf
spot, requires a combination of preventive measures and management strategies such as
fungicide application, implementing good agricultural practices, including proper spacing
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between coffee plants to improve airflow, pruning and thinning of branches, planting
disease-resistant coffee varieties, nutrient management, etc. [14,20]. More importantly,
regular monitoring of coffee plants for disease symptoms is essential. Early detection
allows for timely treatment and the prevention of disease spread. The frequent inspections
by the farmers or other agents in charge of agriculture are challenged by different factors.
It requires skilled labor to inspect each coffee plant, and this can be time-consuming and
costly, especially on large plantations. In addition, coffee plantations are often situated
on challenging terrain, making it difficult to access and inspect all areas regularly. Also,
skilled personnel are needed to correctly identify disease symptoms, which may require
training and expertise. Recording and managing the data collected during monitoring can
be cumbersome, especially if it is conducted manually. There is a need for efficient data
reporting and management systems.

The main aim of this research is to develop a machine learning-integrated mobile
and web coffee leaf disease reporting and management tool. The objective is to support
farmers and their respective users to use little effort while reporting and managing huge
and critical data in real-time for coffee leaf diseases. The main contributions of this research
are (1) to assist the farmers in acquiring the needs and readiness for the solution; (2) to
train different transfer learning deep learning models on the collected coffee leaf-related
dataset; and (3) to develop a DL-integrated mobile and web application for farmers and
related users. The rationale for the selection of DL models used in this study is based
on their distinct architectural characteristics and performance trade-offs. Inception-v3 is
chosen for its efficient utilization of computational resources through inception modules,
while VGG16 offers a simple yet effective architecture with small convolutional filters,
aiding in interpretability. Xception is selected for its depth-wise separable convolutions,
promoting efficient spatial and channel-wise correlations. ResNet is included due to its
residual connections, addressing the vanishing gradient problem and enabling deeper
networks. DenseNet was chosen for its dense connectivity patterns, which encourage
feature reuse and alleviate vanishing gradient issues.

Due to the data collection activities conducted by meeting respective coffee washing
station cooperatives, the key outcome is to provide a testable AI-based mobile and web
application for farmers to report coffee leaf issues by themselves. Transmitting information
from the field to decision-makers for timely responses may be challenging, particularly in
remote or poorly connected areas.

The rest of the paper is organized as follows: Section 2 details the related work of the
research; Section 3 discusses the methods and tools used; Sections 4 and 5 elaborate the
research findings and their discussions, respectively; and Section 6 concludes the research
with future directions.

2. Related Works

To overcome the challenges associated with manual monitoring of coffee diseases,
technologies are used not only to enable more efficient monitoring but also to assist in data
analysis and decision-making, allowing for more precise and timely disease management in
coffee plantations. Technologies used in coffee disease monitoring include remote sensing
using drones and satellite imagery, which apply to large-scale coffee-growing areas. Mobile
applications, the Internet of Things (IoT), DL, and cloud computing can also be used to
monitor and manage coffee diseases. Recent research has been directed toward precision
agriculture, harnessing technologies like artificial intelligence (AI), remote sensing, machine
learning, IoT, and cloud computing to enhance crop yield and production quality [21].

The review of advancements in crop disease detection conducted by Tej et al. [22]
examined progress in the detection of crop diseases, with a particular emphasis on the ap-
plication of machine learning and deep learning techniques in conjunction with unmanned
aerial vehicle (UAV) remote sensing. Their research highlighted the importance of sensors
and image-processing methods in improving the accuracy of crop disease assessment using
UAV imagery. The authors introduced a systematic classification system to structure and
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categorize existing research related to crop disease detection using UAV imagery. Further-
more, they assessed the effectiveness of machine learning and deep learning approaches in
this specific domain.

Machiraju et al. presented an approach to reducing herbicide consumption by cat-
egorizing plant images into weeds and crops, allowing targeted herbicide application.
The initial stage involves distinguishing between crops and weeds, achieved through the
implementation of an image classification technique utilizing deep learning methods [23].
Multiple machine learning (ML) methods have been deployed for the identification of
coffee leaf diseases. For instance, the application of a convolutional neural network (CNN)
in Ethiopia achieved an impressive 99.49% accuracy [24], while a similar study [25] yielded
a performance accuracy of 99.08%.

An innovative research project explored the potential of employing CNN on edge
devices for coffee tree disease classification using leaf images. The primary aim of this
endeavor was to integrate the CNN model into an affordable embedded system, enabling
disease identification on coffee leaves at the source. The prototype demonstrated effective-
ness as a self-contained system, operating on battery power without the need for internet
connectivity and being accessible to individuals with limited tech expertise. Given its
affordability and self-sufficiency, this technology could particularly help small-scale coffee
producers with limited resources [26].

Many research efforts have focused on setting the foundation for the utilization of AI
in coffee leaf disease detection. Various models were investigated, and the most efficient
one has been selected for prospective applications. Deep learning models such as DenseNet,
ResNet50, Inception-v3, Xception, and VGG16 are used in classifying five distinct classes of
coffee plant leaf diseases [27]. The DenseNet model was observed to be simpler, mainly
due to its reduced number of trainable parameters and lower computational intricacy. This
attribute renders DenseNet exceptionally suitable for identifying coffee plant leaf diseases,
particularly when incorporating new coffee leaf conditions not originally included in the
training data, thus streamlining the overall training process.

Thi et al. introduced an innovative system designed to help in the identification and
treatment of plant leaf diseases, with a particular focus on tomato plants in Vietnam. This
practical framework has been put into action, providing web-based and mobile applications
that empower farmers to automatically recognize tomato leaf diseases and receive treatment
advice, whether automatically generated or from expert sources. Leveraging a cloud-based
machine learning model, the system achieves a remarkable degree of accuracy and rapid
disease detection and response [28].

Jafar A. et al. conducted a systematic review of the application of AI and modern
technologies in detecting plant diseases, highlighting limitations and suggesting future
directions involving IoT drones. However, no specific key solution was proposed to ad-
dress the challenges identified [29]. Barman U. et al. developed a smartphone-based
application for detecting tomato leaf diseases using Vision Transformer (ViT) and Incep-
tion V3-based deep learning models. Achieving 97.37% accuracy on a dataset comprising
10,010 images across 10 classes, ViT demonstrated high performance. Despite its deploy-
ment in a smartphone application, this research lacked certain features compared to our
research. Additionally, there was no mention of a centralized reporting repository, and the
trained model might lack precision in distinguishing leaves with complex backgrounds [30].

Jayshree A. et al. employed CNN techniques to classify coffee leaf rust with an
accuracy of 98.8%, using a dataset of 1560 images of robusta coffee leaves. However,
limitations included a relatively small dataset and a lack of comparative analysis with
recent trends. Furthermore, the integration of the model into practical solutions was not
considered [31]. Babatunde R. et al. developed a mobile application for early detection
of habanero disease using a modified VGG16 deep transfer learning model, achieving
98% accuracy with 1478 healthy images and 997 infected images. However, the focus was
solely on mobile-based features to support growers. The model’s performance may be
affected by the limited dataset and the risk of overfitting. Moreover, the application lacked
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features to support farmers, and the integration of the model into the application was not
assessed [32].

In this research, we have developed a machine learning-driven application for identi-
fying, reporting, and managing coffee leaf diseases. Farmers can use their smartphones
to capture and diagnose the coffee leaves with the help of an AI-enabled application. Re-
porting can only be possible once the detected disease has a confidence level greater than
the set threshold. The report includes the type of disease, its image, the geolocation of
where the disease is found, and the reporter himself. The application has two possibilities:
being reported by an authenticated user or being reported by a guest user. This authen-
tication mechanism had been established for reporting accountability for farmers based
in cooperatives. The DL model had been deployed in a hybrid way: on the device to
reduce computation overhead due to network issues, and on the cloud for those who have
strong internet. The application switches both ways to ensure system accessibility. As far
as internet consumption is concerned with reporting multimedia data such as images, this
result observed the insufficient image dataset for the matter, and the solution is proposing
to accumulate a dataset in the meantime. Regarding the main contribution of this research
compared to the survey resources, this solution, with suggested features by the beneficia-
ries (farmers), guides the user in detecting, tracking, and reporting the diseases and the
data management.

3. Materials and Methods

To effectively manage and report plant diseases, it is crucial to promptly identify
diseases in coffee leaves to assist farmers. This section discusses a comprehensive technique
and the approaches employed in identifying the needs and readiness of farmers in our scope.
It details the method used in gathering coffee leaves, the techniques used in testing various
modeling methods, and the development of the solution. It delves into the procedure for
data collection and outlines the transfer-learning algorithm used, aiming to pinpoint the
most suitable model efficiency. Additionally, it covers the design and training process and
mobile, with cloud services used to come up with the solution.

3.1. Study Area

We conducted a survey and visited ten coffee washing stations situated across five
different districts, namely Ngoma, Rulindo, Gicumbi, Rutsiro, and Huye. These districts
were chosen to represent all 27 districts in Rwanda, taking into consideration their sensitiv-
ity to climate variations [33]. Within each district, we sampled 30 farmers, resulting in a
total sample size of 150. The purpose of the visit was to collaborate with agronomists and
farmers to learn together the proper way to support them in reporting the matter. On the
other hand, this collaboration aimed to support activities related to labeling coffee leaves.
The other idea behind this was to assess farmers and check their ability to identify various
coffee leaf diseases.

The visits were conducted during the harvesting season in March 2021 and the summer
season in June and July 2021. The dataset of images was collected from four distinct
provinces situated in the Eastern region (characterized by abundant sunlight, low altitude,
and absence of hills), the Northern region (known for its cold climate and high altitude),
the Southern region (experiencing a colder climate with varying altitudes), and the Western
region (featuring cold, highland terrain with high altitudes). A combination of quantitative
and qualitative methodologies was employed to examine the actual way of reporting the
issue and response time, as well as the self-identification of coffee diseases by farmers.

Figure 1 details the farmers’ responses to feedback interventions just when there is a
report shared with high authorities.

It is shown that the key overloaded person in the cooperative is the agronomist, who
must intervene once the farmers claim any inconveniences. The agronomist is the one to
report to the higher authorities (cooperative officer, SEDO, district, and NAEB officials),
which may result in inaccurate data.
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Figure 3 discusses the readiness of the farmers to use smart applications in identifying 
and reporting the issues from the coffee plantations for direct access by the officials in one 
searchable system. Figure 3a shows that 81% of respondents have phones while 19% have 
no phones. The key characteristic was concerned with caring for the telephone possessions 
so that we could target their infrastructure. 

Figure 1. Intervention is conducted when feedback is shared at an upper level.

Figure 2 shows the time it takes to receive a response once the report is shared with
the concerned users. This study shows that the quickest time to receive a response is within
a week. It was also observed that the response may even come from saying that they do
not have any treatment measures. It was observed as well that the farmers sometimes wait
for the response at an unpredicted time. The following conclusions were drawn together
with cooperative officials: either the report was not received in the same state as the sender,
or due to an improper channel of reporting, the receivers were overwhelmed with no way
to search in a common repository and analyze the case by considering the previous cases to
conclude the matter.
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Figure 3 discusses the readiness of the farmers to use smart applications in identifying
and reporting the issues from the coffee plantations for direct access by the officials in one
searchable system. Figure 3a shows that 81% of respondents have phones while 19% have
no phones. The key characteristic was concerned with caring for the telephone possessions
so that we could target their infrastructure.
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After realizing that most of the farmers are missing modern smartphones to apply
for the reporting as shown in Figure 3b, we made an assessment and found that even
though there are cooperatives, they have been divided into different zones. Each zone has
a group leader to receive and visit the farmer’s field individually before the agronomist
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intervenes. To take advantage of this leadership structure, each team leader must be given
a smartphone and trained to use the application.

3.2. Dataset

Apart from the qualitative data collected from farmers and cooperatives in general,
to apply scientific data analytics, the researchers compiled a dataset of 37,939 images in
RGB format, equivalent to approximately 3.3GB. Within the coffee images, there were
at least four distinct categories present in the dataset: rust, red spider mite, miner, and
healthy, making respective labels. Among the classes used in this context, the infection
distribution is 65% (20, 15, and 35 of rust, redspidermite, and miner, respectively), while the
non-infected is 35% (healthy images). Before feeding the images into the CNN architectures,
we performed preprocessing to ensure that the input parameters aligned with the CNN
model’s specifications. Following this step, each input image was resized to dimensions
of 224 × 224. To ensure uniformity in data representation, we subsequently applied
normalization (i.e., dividing the image by 255.0), which enhanced training convergence
and stability.

The preprocessing activity was conducted to avoid the model’s overfitting or underfit-
ting due to unbalanced data. To address this issue, regularization methods were utilized,
such as data augmentation post-preprocessing. To sustain data augmentation effectiveness,
various alterations were applied to the preprocessed images in this research. These alter-
ations comprised clockwise and counterclockwise rotations, horizontal and vertical flips,
adjustments in zoom intensity, and rescaling of the initial images. This approach not only
mitigated overfitting and minimized model loss but also bolstered the model’s resilience,
leading to enhanced accuracy during testing with authentic coffee plant images.

Given the seriousness of the issue, within a particular class, one might come across
various images exhibiting similar infections at different stages. This is because, at a certain
stage, the model may be capable of tracking and categorizing the actual or approximate
name of the diseases.

3.3. Deep Learning Algorithms

Deep learning techniques have demonstrated remarkable performance across various
fields like image recognition, speech understanding, natural language processing, and
even emotion detection when provided with a substantial amount of training data [34].
We evaluate the effectiveness of deep learning, particularly its cutting-edge application
in digital image processing. Unlike conventional approaches that require explicit feature
extraction from images before classification and prediction, convolutional neural networks
(CNNs), also known as ConvNets, excel at processing data with grid-like structures, such
as images and multi-dimensional data [35–37]. In comparison to networks relying on
fully connected layers, CNNs exhibit advanced feed-forward engineering and exceptional
generalization capabilities.

In the scope of the activities of this research regarding the complexity of the coffee
leaves as well as the modeling complexity, in order to give the model for the application, the
comparative analysis was discussed in [27]. Five different transfer learning model versions
of CNN were implemented, and their evaluation measures were discussed. Among them,
Inception-v3, DenseNet, ResNet50, VGG16, and Xception were tested. According to their
outcomes, it was shown that the accuracy score varies based on the model and the image
characteristics, even though DenseNet shows a good score of 96.99%. Before its proven
feature extraction and classification in the tested dataset, DenseNet was chosen to be
deployed to the on-demand mobile application to support farmers.

Figure 4 shows the dense layers of the approved best model in the context of Rwandan
Arabica coffee leaf disease detection and classification purposes.

As illustrated in Figure 4, DenseNet provides a pivotal advantage in automatic feature
extraction. In the initial stage, the input data are introduced to a network specialized in
extracting features. These extracted features are then transmitted to a classifier network. The
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feature extraction network is composed of multiple sets of convolutional and pooling layers.
The convolutional layer employs a series of digital filters to perform convolution operations
on the input data. Meanwhile, the pooling layer serves to decrease dimensionality and
establish thresholds.
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For this endeavor, we utilized Python 3.10 in conjunction with TensorFlow 2.9.1, along
with libraries including numpy (version 1.19.2) and matplotlib (version 3.5.2) to manage
dataset preparation and establish the development environment. These tools have demon-
strated their efficacy in tasks related to data preprocessing and modeling [38,39]. The
experiment integrated CNN deep learning models, specifically Inception-v3, Resnet50,
VGG16, Xception, and DenseNet models. The hardware employed was an HP Z240 work-
station equipped with two Intel(R) Xeon(R) Gold 6226R processors and a Tesla V100s 32GB
memory NVIDIA GPU, providing a total of 64 cores. This configuration significantly accel-
erated the training process of deep neural networks. In the ensuing section, the performance
score measurements used for this experiment will be comprehensively examined.

3.4. Performance Score Measurements

To assess the effectiveness of transfer learning techniques, a range of metrics were
considered. These included the performance accuracy matrix and precision–recall metric
for evaluating segmentation performance. The evaluation of the classifier’s performance is
carried out using these metrics to identify the most effective ones for subsequent utilization.

3.4.1. Precision–Recall Curve

The confusion matrix serves as a valuable tool for evaluating performance by compar-
ing actual and predicted values. To adapt the precision–recall curve and compute average
precision for multi-class or multi-label classification, it was essential to convert the output
into binary form. While it is possible to create one curve for each label, an alternative
approach involves constructing a precision–recall curve by treating each element of the
label indicator matrix as a binary prediction.

Precision =
TP

TP + FP
(1)
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Recall =
TP

TP + FN
(2)

where TP means true positive, FP means false positive, and FN means false negative. Speci-
ficity and accuracy were referred to as the positive predicted value and defined in Equation (1).
Recall, or the probability of detection, was calculated by dividing the number of correctly
classified positive outcomes by the total number of positive outcomes (Equation (2)).

3.4.2. F1 Scores

F1 score =
2 × TP

2 × TP + FP + FN
(3)

The F1 score ranges from 0 to 1, reaching its minimum value when there are no true
positives (TP), indicating the misclassification of all positive samples. In contrast, the
highest value is attained when there are no false negatives (FN) or false positives (FP),
indicating perfect classification.

3.5. Mobile and Cloud Computing Techniques

The merging of mobile and cloud computing for coffee leaf disease classification and
detection combines the advantages of both technologies, resulting in a robust tool for
farmers and agronomists. This integration facilitates precise, instantaneous disease identi-
fication, safeguards data privacy, and guarantees the application’s operation portability.
Ultimately, this method enhances the overall efficacy and productivity of the management
of coffee plant status through disease mapping.

Utilizing cloud computing for distributed processing has been employed to tackle the
intensive computational requirements and resource limitations of deep learning models.
Nonetheless, cloud computing encounters challenges like restricted data transfer band-
width and substantial latency when dealing with substantial multimedia data [40,41]. To
counteract these challenges, edge computing is emerging as a viable solution. In this
approach, dedicated servers running deep learning models are positioned in the pipeline
with a dedicated server in closer proximity to the application server running application
programming interfaces (APIs) where image data originates. This enables data to be pro-
cessed and analyzed first at the dedicated servers and updated at the application (shared)
servers [42,43]. The edge computing paradigm mentioned in this research is to allow
the model to be deployed on portable mobile devices to limit computation latency and
bandwidth costs.

Figure 5 details the architectural illustration showing the configuration of the devel-
opment modules by leveraging each computation with enough resources to overcome
the system response overhead. A dedicated server is equipped with robust Intel Xeon or
AMD EPYC CPUs to efficiently manage demanding workloads. It boasts terabytes of RAM
and offers SSD storage with capacities ranging from hundreds of gigabytes to multiple
terabytes, ensuring smooth operations under Linux OS distributions like Ubuntu. For
shared servers, we utilize Dell R430 or Dell R440 hardware with specifications including
Dual Intel Xeon CPUs (E5-2660 v4 @ 2.00GHz or Xeon Gold 6140 2.3G), 256GB RAM, and
RAID6 SSD. These servers host Apache, MySQL, PHP, Perl, and other services to support
databases and web services, with MariaDB for databases and Laravel Framework 10.0 for
web solutions. Additionally, a mobile application targeting Android users is developed in
Java. The deployed DL models are containerized as microservices using Docker volumes.

The proposed configuration architecture, as shown in Figure 5, is composed of three
main components. (1) encompass the end user perspective where he can use the authenti-
cated web application solution. The solution serves to manage respective resources such as
farmers, production, and reporting of coffee leaf disease. For prediction purposes, he/she
can use the deployed model through the endpoint, and the system records the model
results. On the other hand, the farmer representative and agronomist (known as reports)
utilize a model-integrated mobile app. By taking leaf photos, the model can detect, classify,



Software 2024, 3 155

and report the disease with the geolocation of the reporter. The best model was deployed
to the mobile application for portability purposes. Its update ability shall be configured to
be conducted automatically once the updated model version is released. (2) The configured
server for APIs to manage cooperatives and respective coffee disease-related data runs
through the shared server. The APIs sync data from mobile and web applications to the
backend database. Two servers are set to work together to ensure resource distribution
by reducing computation overhead for deep learning models. (3) Model retraining and
evaluation are configured to be conducted on a dedicated server. Docker volume and fast
API services are set to run under the Docker environment to ease the update ability of the
model in case the new model evaluated is better than the current one.
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In the study referenced in [44], the authors utilized freshly captured images taken
in field conditions using mobile devices to establish their dataset, which contained both
healthy and diseased plum images. They applied additional data augmentation techniques,
resulting in the generation of 19 distinct versions for each image, ultimately culminating
in a comprehensive dataset comprising 100,000 images. The authors then categorized
these plum images into five classes: healthy, brown rot, nutrient deficiency, shot hole,
and shot hole on the leaf. They employed four developed models—AlexNet, VGG16,
Inception-v1, and Inception-v3—for classification. The findings reported in [40] indicated
that the Inception models exhibited superior performance. The highest-performing model
demonstrated an overall accuracy of 88.42% when evaluated using a test set consisting of
100 images. Our research findings proved to outperform this in terms of accuracy.

3.5.1. Docker and APIs

Docker is a revolutionary technology that has transformed the way applications
are deployed and managed [45]. In this research context, it enables us to package their
applications and dependencies into self-contained packages known as containers. These
containers encapsulate everything needed for an application to run, including the code,
libraries, and system settings. Docker’s lightweight nature and resource efficiency make it
an ideal choice for modern software development workflows. To optimize model training
and evaluation complexity, we dockerized all modules as services. This scheme shall allow
the best model to be selected and returned to be consumed by the end users’ applications.

To adopt the Docker configuration for independent service management support,
a dedicated server was used. It gave us the flexibility to tailor the server’s hardware
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and software configurations to meet the specific requirements of their applications. With
the ability to scale resources as needed, dedicated servers are well-suited for demanding
applications and high-traffic websites.

To manage the generated model and feed the end users for prediction purposes,
the application’s APIs were used to exchange data from users to servers and vice versa.
Fast APIs and Rest APIs were used in the implementation of this research. Fast API
emerges as a modern Python web framework that stands out for its efficiency and per-
formance [46]. It leverages Python’s standard type hints to enable fast and intuitive API
development. It supports asynchronous programming, which allows it to handle many
concurrent connections with ease. Additionally, Fast API’s combination of speed, scalability,
and automatic documentation makes it an excellent choice for building robust APIs for
deep learning [47]. The abovementioned tools helped in creating a powerful environment
with DL computational capability by caring about all software dependencies. The Fast API
model module acts as a container for these encapsulated functions, providing a structured
and well-organized approach.

Within this module, Python functions can be triggered via HTTP requests directed at
specific API endpoints. It underscores the significance of adhering to RESTful principles
for effective API design, where API endpoints align with distinct functions, allowing users
to interact with the Python model using HTTP methods [48]. The seamless incorporation
of Python scripts into the Fast API framework facilitates the development of robust and
easily accessible web-based applications.

3.5.2. System Flow with Sequence Diagram

The smart agriculture web and mobile applications orchestrate a seamless flow of
information and actions, integrating user interfaces, data processing, and disease detec-
tion with classification and analytical insights. Figure 6 details the system actors for the
proposed solution.
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Figure 6 illustrates the applications from a user perspective. The manager with data
management capability will add, edit, and deactivate any users, report wrong data, and
so on through the HTTP web services. Through the web application, we can predict
the collected coffee leaf images for reporting purposes. On the other hand, the diagram
details the re-training capability of the dataset accumulated. The reporter selected from
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the farmer’s zone shall be registered to report using a mobile application. The mobile
application has a DL model integrated for offline prediction to save execution overhead
while loading from the cloud.

Although previous studies have explored the utilization of DL networks and the
development of basic mobile application prototypes for plant image classification [49,50],
our methodology introduces a distinctive viewpoint. Our research’s investigative goals, the
specific neural networks selected, and the evaluation criteria for our models, along with our
emphasis on constructing a mobile-friendly model capable of identifying coffee leaf disease
classes in a robust multi-label classification system, collectively represent an innovative
approach in our field. Additionally, our system incorporates a range of comprehensive
features that extend beyond image classification, further distinguishing our work, such as
web management and reported disease localization on Google Maps.

The primary sources of reference for this research are citations [51,52]. Our specific
objective is to enhance the model performance outcomes presented in [51]. This entails
replicating the networks while incorporating the suggested optimized hyperparameters
and adjusted base network retraining components. These modifications, developed through
the transfer learning techniques detailed in [52], are aimed at elevating the accuracy levels
of the models mentioned in the references.

In essence, our research acknowledges and draws inspiration from existing solutions.
It combines established concepts with our novel methods and functionalities to deliver
efficient and all-encompassing mobile and web application solutions tailored to the chosen
coffee industry and target audience.

4. Results

This section details the CNN pre-trained models used with their respective measure-
ments and the functional visual representation of the outcome of the research from the end
user’s perspective.

4.1. Network Architecture Model

The choice of pre-trained network models was determined by their appropriateness
for classifying plant diseases. Table 1 provides comprehensive details regarding the archi-
tecture of each model. These models utilize varying filter sizes to capture specific attributes
from the feature maps. Filters are pivotal in this process of attribute extraction. Each filter,
when applied to the input, identifies unique features, and the characteristics extracted from
the feature maps are contingent on the filter values. This research experiment made use of
the unaltered pre-trained network models, integrating the configurations of convolution
layers and filter sizes employed in each model.

Table 1. Trained Model Architecture.

Parameters Inception-v3 Xception ResNet50 DenseNet VGG16

Total layers 314 135 178 430 22
Max pool layers 4 4 1 1 5

Dense layers 2 2 2 2 2
Dropout layers - - 2 - 2
Flatten layers - - 1 - 1

Filter size 1 × 1, 3 × 3, 5 × 5 3 × 3 3 × 3 3 × 3, 1 × 1 3 × 3
Stride 2 × 2 2 × 2 2 × 2 2 × 2 1

Trainable parameters 23,905,060 22,963,756 25,689,988 8,091,204 15,244,100

Table 1 offers a range of metrics for diverse network models, such as Inception-v3,
Xception, ResNet50, VGG16, and DenseNet. These metrics encompass the overall count of
layers, maximum pooling layers, dense layers, dropout layers, flattened layers, filter size,
stride, and trainable parameters. These metrics are crucial for comprehending the structure
and intricacy of each model. In this research, all models were standardized with a learning
rate set at 0.01, a dropout rate of 2, and four output classes for classification purposes.
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The dataset containing coffee leaves was split into training, testing, and validation
sets. To train the models (Inception V3, VGG16, ResNet50, Xception, and DenseNet), 80%
of the coffee leaf samples were employed, while 20% were used for testing purposes. Each
model underwent ten epochs, and it was noted that all models began to converge with
high accuracy after four epochs. The techniques used to enhance model performance, con-
vergence speed, and efficiency encompass the use of adaptive moment estimation (Adam)
for dynamically adjusting the learning rate throughout training. Additionally, regular-
ization techniques were implemented to mitigate overfitting and enhance generalization.
Stochastic gradient descent (SGD) was utilized to iteratively update model parameters by
computing the gradients of the loss function concerning those parameters.

Given that the validation accuracy and precision, recall, and f1-score serve as a signifi-
cant gauge of a model’s overall performance across its supported classes, it can be deduced
that DenseNet demonstrated superior performance compared to the other models, based
on the descriptions mentioned in Figures 7–10.
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Figure 8. ResNet50 model performance analysis using the collected dataset. (a) Model training;
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Figure 7a showcases the validation accuracy of the Inception-v3 model, attaining a
training accuracy of 99.34%. Figure 7b displays the class-wise measurements for the dataset
used. It shows 0.7982, 0.7831, and 0.7012 for precision, recall, and F1-score, respectively,
concerning healthy coffee leaves; 0.6002, 0.6912, and 0.7391 for miner disease; 0.6011, 0.8033,
and 0.8033 for red spider mite; and 0.5043, 0.6912, and 0.7392 for rust.

Moreover, the ResNet50 model was subjected to training, utilizing 80% of the dataset,
with 10% of the samples reserved for testing and an additional 10% employed for validation
and further testing. Through the process of hyperparameter tuning, the findings depicted in
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Figure 8a reveal that this model emerged as the second-best performer, exhibiting an initial
recognition accuracy of 96.00% within the first three epochs, subsequently demonstrating
enhanced stability to achieve an accuracy of 98.70%. In contrast, Figure 8b illustrates the
precision, recall, and f1-score, which recorded values of around 0.8023, 0.7732, and 0.7103,
respectively, for healthy coffee leaves; 0.7813, 0.7121, and 0.6511 for miner disease; 0.6502,
0.8012, and 0.7724 for red spider mite; and 0.7914, 0.6013, and 0.6326 for rust.
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The third model used in this experiment was VGG16. As depicted in Figure 9a, the
recognition accuracy reached approximately 98.81% within the first four epochs and remained
almost consistent up to the 9th epoch. Meanwhile, as shown in Figure 9b, the model’s
class-wise metrics showed precision, recall, and F1-score values around 0.9007, 0.8763, and
0.8002, respectively, for healthy coffee leaves; 0.8201, 0.9607, and 0.8401 for miner disease;
0.8763, 0.6701, and 0.7902 for red spider mite; and 0.7502, 0.8263, and 0.7781 for rust.

The Xception model ranked fourth in performance within this study. As illustrated in
Figure 10a, the highest performance was evident in epochs #1, 4, 7, and 10, boasting a training
accuracy of approximately 99.40%. Additionally, Figure 10b depicts that the class-specific
metrics for this model were in the vicinity of 0.8002, 0.8202, and 0.9111 for precision, recall, and
F1-score, respectively, concerning healthy coffee leaves; 0.8132, 0.7721, and 0.6823 for miner
disease; 0.7311, 0.6701, and 0.6711 for red spider mite; and 0.7824, 0.7221, and 0.5782 for rust.

According to Figure 11a, the final model in this experiment was DenseNet, with
the training accuracy reaching its peak in the 10th epoch, achieving a training accuracy
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of 99.57%. Simultaneously, the best validation performance occurred in the 4th epoch,
with an accuracy of 99.09%. As depicted in Figure 11b, the performance scores by data
class (coffee leaves) were as follows: 0.9934, 0.9321, and 0.9621 for precision, recall, and
F1-score, respectively, for healthy coffee leaves; 0.9824, 0.9815, and 0.9532 for miner disease;
0.8901, 0.9169, and 0.8901 for red spider mite; and 0.9111, 0.8957, and 0.9009 for rust.
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Table 2 provides a comparison of different network models based on their training
and validation performance.

Table 2. Comparative analysis of various network model performances for the coffee leaf dataset.

Model Types Training
Accuracy (%) Training Loss (%) Validation

Accuracy (%)
Validation
Loss (%)

Inception-v3 99.34 0.0167 99.01 0.0306
ResNet50 98.70 0.0565 97.80 0.0577
Xception 99.40 0.0140 98.84 0.0337
VGG16 98.81 0.0291 97.53 0.0668

DenseNet 99.57 0.0135 99.09 0.0225

4.2. Mobile Application as a Disease Detection, Classification, and Reporting Tool

A mobile app with an integrated DL model for leaf disease detection and classification
represents a groundbreaking advancement in precision agriculture. By harnessing the capa-
bilities of artificial intelligence, this app empowers farmers and gardeners to swiftly identify
and address plant diseases. The app operates by utilizing a comprehensive database of
leaf images, encompassing both healthy and diseased specimens, which serves as the
foundation for training the DL model. Through this process, the model becomes adept
at distinguishing between healthy and afflicted leaves based on a range of visual cues,
including color variations, patterns, and textural irregularities.

Figure 12 details the mobile reporting tools. Figure 12a shows the localization func-
tionalities with two language options. After being authenticated, Figure 12c shows the
reporter’s dashboard with the current information.

Figure 13 shows the mobile reporting features with different functionalities after
logging. To support its usability, the menus are organized to ease their use by end-users, as
mentioned in Figure 13a. Figure 13b details the information about the application and the
policy data for the users to comply with.

Figure 14 discusses model detection and disease identification. One of the most
compelling advantages of this mobile app is its accessibility and ease of use. With a simple
snap of their smartphone camera, users can capture an image of a leaf and upload it to the
app, as shown in Figure 14a. The DL model then promptly processes the image, providing
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an accurate diagnosis in real-time, as indicated in Figure 14b. The data can be reported
to the cloud with the geolocation information of the reporter. Figure 14c indicates how
the reporter himself can view what he has been reporting, with the possibility to share
information instantly with other users through email, SMS, or WhatsApp. This rapid
response is instrumental in enabling early intervention, which can be pivotal in curbing the
spread of diseases and mitigating potential crop losses.
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The application has been piloted with 10 coffee cooperatives to report diseases for
data management and intervention purposes. Overall, the integration of the DL model in
a mobile app for leaf disease detection not only revolutionizes plant health management
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but also empowers a wider community of farmers and horticulturists with accessible,
data-driven solutions.

Software 2024, 3, FOR PEER REVIEW 18 
 

 

an accurate diagnosis in real-time, as indicated in Figure 14b. The data can be reported to 
the cloud with the geolocation information of the reporter. Figure 14c indicates how the 
reporter himself can view what he has been reporting, with the possibility to share 
information instantly with other users through email, SMS, or WhatsApp. This rapid 
response is instrumental in enabling early intervention, which can be pivotal in curbing 
the spread of diseases and mitigating potential crop losses. 

   
(a) (b) (c) 

Figure 14. Mobile application’s functionalities: (a) Loading image; (b) DL-based detection and 
classification; (c) reported history. 

The application has been piloted with 10 coffee cooperatives to report diseases for 
data management and intervention purposes. Overall, the integration of the DL model in 
a mobile app for leaf disease detection not only revolutionizes plant health management 
but also empowers a wider community of farmers and horticulturists with accessible, 
data-driven solutions. 

4.3. Web Application as a Data Management and Visualization Tool 
A web app with an integrated deep learning model for leaf disease detection and 

classification is a transformative tool in modern agriculture and horticulture [53]. This 
technology combines the power of artificial intelligence with the convenience of web-
based accessibility. It operates by utilizing a vast database of leaf images, comprising both 
healthy and diseased specimens, as training data for the DL model. Through extensive 
training, the model becomes proficient at distinguishing between healthy and afflicted 
leaves based on a variety of visual features, including color variations, patterns, and 
textural irregularities [54]. 

Figure 15 discusses the normal reporting feature with no deep learning model 
integrated. All diseases had been mapped with their respective images and descriptions 
to support reporting similar findings. This module was thought to support the regular 
report to district and national officials for intervention purposes. 
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4.3. Web Application as a Data Management and Visualization Tool

A web app with an integrated deep learning model for leaf disease detection and
classification is a transformative tool in modern agriculture and horticulture [53]. This
technology combines the power of artificial intelligence with the convenience of web-
based accessibility. It operates by utilizing a vast database of leaf images, comprising both
healthy and diseased specimens, as training data for the DL model. Through extensive
training, the model becomes proficient at distinguishing between healthy and afflicted
leaves based on a variety of visual features, including color variations, patterns, and textural
irregularities [54].

Figure 15 discusses the normal reporting feature with no deep learning model inte-
grated. All diseases had been mapped with their respective images and descriptions to
support reporting similar findings. This module was thought to support the regular report
to district and national officials for intervention purposes.
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On the other hand, the solution has another mechanism to detect, classify, and report
the findings on the imported image, as shown in Figure 16. Due to the experimental analysis
of the DL model performance, we realized that all five models do perform somehow well,
so we decided to integrate them all so that the user could switch them. To manage the
submissions, when the confidence is less than the set threshold, the report button is not
activated. We decided to make the confidence threshold editable for research purposes.
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Figure 16. Web-based application with integrated DL model for disease detection and classification.

The most critical module is to gather and manage the submissions from the distributed
mobile applications for different reporters. The key idea was to map the traced findings
on Google Maps to allow visualization of the distribution of coffee disease occurrences
nationally. Figure 17 details the Google map with red pinning.
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The system provides a way of exporting all compiled data for decision-making pur-
poses, as shown in Figure 18.

One of the remarkable advantages of this web app is its wide accessibility. Farmers,
researchers, and enthusiasts can access the app from any device with an internet connection,
making it a versatile and powerful tool in plant health management.



Software 2024, 3 164

Software 2024, 3, FOR PEER REVIEW 20 
 

 

 
Figure 17. Web-based application, the visualization on Google Maps for reported diseases. 

The system provides a way of exporting all compiled data for decision-making 
purposes, as shown in Figure 18. 

 
Figure 18. Web-based application, the aggregated reports are generated on a monthly and 
quarterly basis. 

One of the remarkable advantages of this web app is its wide accessibility. Farmers, 
researchers, and enthusiasts can access the app from any device with an internet 
connection, making it a versatile and powerful tool in plant health management.  

5. Discussion 
A mobile app with GPS-enabled reporting for on-site coffee leaf disease detection 

using an integrated DL model, as illustrated in Figure 1, is a game-changer for the coffee 
industry. This technology combines the power of artificial intelligence with the 
practicality of mobile devices and location tracking. The app functions by leveraging a 
robust DL model trained on a diverse dataset of coffee leaf images, encompassing both 
healthy and diseased samples. Through this process, the model becomes proficient at 
accurately distinguishing between healthy and afflicted coffee leaves based on visual 
features like discoloration, texture, and shape. 

To develop this tool, the need assessment phase was conducted to collect the real 
facts, as mentioned in Figures 1–3. It was observed that most intervention is conducted by 
agronomists to investigate the problems found in the field. Having one agronomist for the 
whole sector seems overwhelming, which requires the farmer to self-see his farm. 

From the dataset acquired and insight from the farmers, we made a deep learning 
analysis for coffee leaf disease detection and classification. We surveyed five transfer-

Figure 18. Web-based application, the aggregated reports are generated on a monthly and
quarterly basis.

5. Discussion

A mobile app with GPS-enabled reporting for on-site coffee leaf disease detection
using an integrated DL model, as illustrated in Figure 1, is a game-changer for the coffee
industry. This technology combines the power of artificial intelligence with the practicality
of mobile devices and location tracking. The app functions by leveraging a robust DL model
trained on a diverse dataset of coffee leaf images, encompassing both healthy and diseased
samples. Through this process, the model becomes proficient at accurately distinguishing
between healthy and afflicted coffee leaves based on visual features like discoloration,
texture, and shape.

To develop this tool, the need assessment phase was conducted to collect the real
facts, as mentioned in Figures 1–3. It was observed that most intervention is conducted by
agronomists to investigate the problems found in the field. Having one agronomist for the
whole sector seems overwhelming, which requires the farmer to self-see his farm.

From the dataset acquired and insight from the farmers, we made a deep learning
analysis for coffee leaf disease detection and classification. We surveyed five transfer-
learning CNN algorithms and conducted a comparative study. Performance analysis
was investigated and highlighted in Figures 7–11. The DenseNet model proved to be
the best-performing model among others, and it was chosen to be deployed on-device
(mobile application). Table 2 presents a comparative analysis of various models along
with their respective accuracy scores. The training accuracy and loss metrics reflect the
models’ performance on the training dataset, while the validation accuracy and loss metrics
indicate their performance on previously unseen validation data. Among the models,
DenseNet demonstrated the highest training accuracy (99.57%) and validation accuracy
(99.09%), showcasing its remarkable capacity to learn and extrapolate from the provided
data. Conversely, ResNet50 exhibited the lowest validation accuracy (97.80%), suggesting
it may face some challenges in effectively generalizing to new data compared to the
other models.

For the used dataset, Figures 7b, 8b, 9b, 10b, and 11b show the performance mea-
surements of the transfer learning classifiers in terms of precision, recall, and f1 values.
The precision for identifying health leaves is 0.9934 for DenseNet, which is higher than
those identified by Xception, Inception-v3, and VGG16, which are 0.8002, 0.7982, and
0.9007, respectively. The recall for identifying health leaves is 0.9321 for DenseNet, which is
higher than those identified by Xception, Inception-v3, and VGG16, which are
0.8202, 0.7831, and 0.8763, respectively. The f1-score for identifying health leaves is
0.9621 for DenseNet, which is higher than those identified by Xception, Inception-v3,
and VGG16, which are 0.9111, 0.7012, and 0.8002, respectively.

Among the three classes of diseases used in this case, DenseNet experienced low
scores on rust disease due to the small datasets compared to other classes. DenseNet can
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be considered superior to other tested models for providing higher performance measures.
Analyzing all bar chart graphs, it is proven that DenseNet performs better in classifying
data than other models. However, both models can be implemented in the deployed
system as they exhibit overwhelming accuracy because other tested models also show
promising performance.

One of the standout features of this mobile app is its ability to provide real-time,
on-site analysis, as shown in Figures 12–14. Coffee farmers and workers can use their
smartphones or tablets to capture images of leaves directly in the field. The integrated DL
model processes these images instantly, offering a rapid diagnosis of any coffee leaf disease
present. The GPS-enabled reporting adds an extra layer of functionality, allowing users to
document the location where the image was taken.

Users can simply upload a photo of a leaf, and the DL algorithm will rapidly analyze
the image, providing an accurate diagnosis in real-time, as shown in Figures 15–18. The
integration of DL into a web app for leaf disease detection revolutionizes plant health
management by providing an accessible, data-driven solution for a broad audience. This
feature not only aids in creating a comprehensive record of disease prevalence but also
facilitates targeted interventions and management strategies in specific areas, optimizing
the response to outbreaks.

The significance of this research in agriculture, specifically in identifying and reporting
plant diseases, is apparent. However, it is vital to recognize and tackle the challenges
impeding the effectiveness of these models. Here, we highlight key limitations that reduce
the efficiency of this solution, including issues such as image noise and background analysis,
variations in image acquisition conditions like light intensity and blurriness, difficulties in
identifying and isolating combined disease symptoms, and data imbalances across different
diseases and those with similar symptoms.

6. Conclusions

The integration of GPS tracking with DL-based disease detection in a web and mobile
application has been developed and tested in this research. It has the potential to revo-
lutionize the way coffee farms and their respective diseases are detected, classified, and
managed. To investigate the farmer’s problem, need assessment activities were conducted
to acquire the basic intervention and the time it takes for feedback.

Five transfer learning CNN algorithms have been experimented with on the captured
Arabica dataset. Inception-v3, VGG16, Xception, ResNet, and DenseNet models were
compared. DenseNet demonstrated the highest training accuracy (99.57%) and validation
accuracy (99.09%), showcasing its remarkable capacity to learn and extrapolate from the
provided data. On precision, recall, and f1-score, DenseNet performs better in classifying
data than other models on all classes of the leaf (health, miner, rust, and red spider mite).
Based on this fact, it was chosen to be deployed on the developed mobile device for portable
detection, classification, and reporting purposes. By aggregating location-specific data
over time, decision-makers can identify patterns and trends in disease occurrence through
the web application. This information is invaluable for making informed decisions about
planting, harvesting, and disease control measures. It also enables proactive strategies for
disease prevention, helping to safeguard the health of coffee crops and improve overall
yield and quality.

This innovative mobile app with GPS-enabled reporting and an integrated DL model
for coffee leaf disease detection is a significant step forward in modernizing coffee farming
practices and ensuring sustainable, high-quality coffee production. In future work, address-
ing challenges such as image noise and background analysis in coffee leaf disease detection
may involve specialized CNN architectures tailored to coffee leaf images. Mitigating vari-
ations in image acquisition conditions, such as light fluctuations and blurriness, could
be achieved through robust preprocessing or data augmentation. Exploring advanced
CNNs capable of identifying multiple diseases simultaneously could enhance detection
accuracy. Overcoming data imbalances may require collecting more balanced datasets or
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using techniques like data resampling or GANs for augmentation. Also, due to the growth
of the users, the scalability and interoperability capabilities shall be considered.
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