
Citation: Kroc, J. Emergent

Information Processing: Observations,

Experiments, and Future Directions.

Software 2024, 3, 81–106. https://

doi.org/10.3390/software3010005

Academic Editors: Paulo Ferreira and

Francisco José García-Peñalvo

Received: 11 August 2023

Revised: 31 December 2023

Accepted: 24 January 2024

Published: 5 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Emergent Information Processing: Observations, Experiments,
and Future Directions
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Abstract: Science is currently becoming aware of the challenges in the understanding of the very root
mechanisms of massively parallel computations that are observed in literally all scientific disciplines,
ranging from cosmology to physics, chemistry, biochemistry, and biology. This leads us to the
main motivation and simultaneously to the central thesis of this review: “Can we design artificial,
massively parallel, self-organized, emergent, error-resilient computational environments?” The thesis
is solely studied on cellular automata. Initially, an overview of the basic building blocks enabling us
to reach this end goal is provided. Important information dealing with this topic is reviewed along
with highly expressive animations generated by the open-source, Python, cellular automata software
GoL-N24. A large number of simulations along with examples and counter-examples, finalized
by a list of the future directions, are giving hints and partial answers to the main thesis. Together,
these pose the crucial question of whether there is something deeper beyond the Turing machine
theoretical description of massively parallel computing. The perspective, future directions, including
applications in robotics and biology of this research, are discussed in the light of known information.

Keywords: emergent information processing; massively parallel computation; emergent logic;
complex systems; cellular automaton; error-resilient; self-organization; biocomputing; turing machine
equivalence

1. Introduction

Currently, science as a whole is facing an underlying challenge in the form of un-
derstanding emergent, error-resilient information-processing environments that have the
potential to eventually become artificial analogs of natural phenomena observed within
virtually all physical and biological systems. Such descriptions can become workhorses of
future information processing devices.

This challenge should be decomposed into three distinct steps: the decoding, under-
standing, and design of artificial non-living and living systems based on massively parallel
computations (MPCs), e.g., see documented examples in various systems and observed
natural phenomena [1–4] and the following tables.

To describe the width and depth of the research field, the methods used there, and pro-
cesses observed within complex systems, the following tables are presented: (i) Major
classes of mathematical and computational methods, Table 1. (ii) More specialized huge
databases and/or raw computational-power demanding methods, Table 2. (iii) The clas-
sification of major classes of processes operating within CSs; see Figure 1 and Table 3.
(iv) Their biological applications, Table 4.

Due to the highly complicated and still poorly understood nature of emergence
itself—and even more in its error-resilience against perturbations—this study is solely
focused on cellular automata as the prototypical example and test-bed of all massively
parallel computations. This enables us to focus on the foundations of emergence while
simultaneously not being lost in a multitude of computational methods. The methods
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are presented in Tables 1–4; together, they represent the road map of complex systems
through all scientific disciplines. Additionally, tables provide links to other related research
in physics, mathematics, computer science, biology, and medicine.

Replication

Emergence

Self-Organization

Figure 1. Complex systems contain immersed subsets that represent the following operational modes
(going from the simplest): self-organization, emergence, replication, and self-replication. Life forms
utilize them all within their different operational levels. Non-living systems utilize self-organization
and emergence, too.

Table 1. A description of the major classes of mathematical and computational methods that are
commonly used to study, quantify, and predict the behavior of complex systems.

Method Description Examples and Links

Dynamical Systems (DSs) use ordinary (ODE)
or partial differential equations (PDE)
(continuous time) or difference equations
(discrete time) to describe natural phenomena.

Recommended introduction [5], originally
developed for the three-body problem by
Poincaré [6–8]. Other very accessible
introductory books requiring calculus [9–11].
Fractals are covered in [12].

Self-Organization (SO) and Emergence (Em)
are found in the region between the
regular/periodic behavior and chaos (i.e.,
at-the-edge of chaos) of many DS.

The SO regime is explained in synergetics from
the physical point of view in [10,11];
SO-criticality is a subset of SO [13–15].
Emergence was initially coded
manually [16–18].

Chaos is either deterministic or continuous and
often arises from a predictably behaving
system by a cascade of bifurcations.

Chaos [19] is often operating next to a
self-organizing regime [10,11] and was
discovered by Poincare in 1890; see [6–8,20,21].

Cellular Automata (CAs) are defined above a
lattice where each element evolves according to
a local neighborhood in discrete steps.

The testbed for all massively parallel
computations [22–24], recommended
books [25,26], ‘Game of Life’ [27],
and software [28,29].

Agent-Based Models (ABMs). A generalization
of CAs in which independently deciding
entities called agents freely move throughout
the space while making decisions.

Examples of biologically observed agent
systems: D. discoideum [30], stigmergy [31], and
swarms [32]. Introduction [33,34],
advanced [35,36], and agent-based
software [34,37].

Complex Networks (CxN) are capturing
observed dependencies and processes within
all levels of living systems, from cells upwards.

CxN are divided into three major classes:
random, small-world, and scale-free;
introductory book [38], review [39],
and books [40,41].
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Table 2. A selection of more specialized methods, which require huge amounts of raw computer power,
that are used to study complex systems. Those methods utilize either evolution (GA and GP) or huge
databases (ANNs, ML, DL, and EnMEas) to distill inherent hypotheses hidden within them. Their main
deficiency is that they are not human-interpretable in the majority of cases (they are black boxes).

Method Description Examples and Links

Machine Learning (ML) is based on the idea of
automated hypothesis creation above data
using analytical and statistical methods
and other specialized algorithms.

Examples are regression, classification,
decision trees, support vector machines,
artificial neural networks, Bayesian networks,
and Gaussian processes [42–45].

Deep Learning (DL) is a subset of ML and uses
artificial neural networks with at least three
layers of neurons that learn in unsupervised
mode.

DL enables creation drive-less cars, design
clever systems, etc. Two major learning
methods exists: forward- and
back-propagation; see [45–47] for details.

Genetic Algorithms (GAs) are evolutionary
algorithms mimicking natural selection by
using mutation and crossover of genotypes,
leading to good solutions to a problem.

Used to global optimization problems,
engineering, scheduling problems, antennae,
aerodynamic bodies design, etc. [48,49]. Faces
problems with premature convergence to local
minima.

Genetic Programming (GP) uses evolutionary
algorithms that search through the space of
computer programs to solve a problem by
utilizing the program population evolution.

Founded by Koza’s research on the evolution
of algorithms [50–52]. Used to optimize (e.g.,
antennae), design electronic circuits, etc.
Requires huge amounts of computational time
for large problems.

Entropy Measures (EnMeas) represent a
powerful tool for assessing the operational
modes of CSs and MPCs by sampling their
signals and features, which is not attainable by
other means.

The concept was coined by Boltzmann in
statistical physics [53,54], improved by
Shannon on sending information [55],
and advanced by [56–60]. Applications
encompass [61–66].

Table 3. The classification of the major classes of CS processes, mathematical, and computational
methods that are employed to study complex systems (citations included). The toolkit of every CS
researcher should contain all of them, at least passively.

Processes Observed Examples and Links

Massively Parallel Computations (MPCs) are
indispensable in the description of physical,
chemical, and biological systems. Their descriptive
power is underestimated.

Cellular automata, agent-based models, dynamical
systems, and dynamical networks (CAs are a subset
of them); see Tables 1 and 2.

Self-Organization (SO). During SO, CSs are
spontaneously evolving towards the preferred
operational mode, irrespective of the initial
conditions.

Non-Newtonian liquids [67], by genetic
programming designed SO structures [18],
SO-criticality [13–15], self-assembly [68], and
stigmergy in insects (bees, wasps) [31].

Replication (Re) is the process that creates new
entities within the given level of CSs. It possesses a
unique place in the explanation of biochemical and
cellular processes on many functional levels.

Replication was originally designed manually [16,17].
It later evolved using GP [18]. There are existing
many replicators in CSs that are defined by CAs; see
this review and [4].

Self-Replication (SRe) is the sub-class of replication
that creates fully functional, identical copies of itself
without external influences and interference, exactly
like is observed living entities.

John von Neumann’s self-replicator (the seminal
work) [16] and Langton’s minimal
self-replicator [17] are the prominent examples.
Self-replication in biology and chemistry [69–72].

Emergence (Em). A CS generates new entities along
with its unique interaction rules at a higher-level of
the system, utilizing the pre-existing, lower-level
ones (emergent hierarchies observed). An example is
the Game of Life.

Emergence is observed in ant-colonies [73],
insect-colonies [31,74], flocks, cells [39–41],
organs [75], bodies [2,76–78], societies, and
ecosystems; see [4,74,79]. Emergent structures
operating within MPC systems such as CAs, ABM,
and CxN.
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Table 4. Emergent information processing is abundant in biological systems, which simultaneously
serve as the ultimate testbed for novel mathematical and computational approaches. The goal is to
develop models describing the functioning of biological systems from the first principles.

Bio-System Process Description Examples of Biological and
Biology-Mimicking Systems

Morphology Growth leads to the end-goal
system, which is defined by electric potential
distribution on cell membranes.

Embriogenesis [80], morphological
growth [75,81–83], rejuvenation and limb
re-growth [71,80,82–84], and cancer
treatment [85].

Bio-Chemistry. Abiotic compounds are
assembled into biochemicals that produce
other biochemicals.

Chemistry, bio-chemistry,
self-replication [75,77], and light-induced
bio-chemistry [86–88].

Replication is the process of novel species
creation from those already existing: in biology
and in silico.

It is utilized in the definition and simulation of
logic gates, processing units [4,79,89,90],
and ships breeding ships [79,90].

Self-replication represents a subset of
replication where an entity creates identical
copies, both in biology and in silico.

(Self-)Replication is utilized by all living
entities (at their many scales simultaneously) to
maintain their growth and long-term
function [69–71,86].

Bio-Computing is an approach that deals with
biological structures as the computing
environment.

There are existing interpretations of life as the
computing environment [76,81,82,84,91].

Emergent Information Processing is coined in
this review as the concept describing
multi-level information processing in living
and non-living systems.

A hierarchy of bio-molecules, cellular building
blocks, cells, tissues, organs, bodies,
and societies are understood as emergents [this
review] and [4,28,29,79,90].

1.1. Cellular Automata and Turing Machine

The initial motivation for the research directions presented in this review was provided
by the capability of CAs to simulate the Turing machine; for details see forthcoming
Section 1.8 (Table 6). Unexpectedly, in the past, it was demonstrated that a Turing machine
(TM) can be embedded in a cellular automaton [92–96]. One example is provided by a
well-known, ‘very primitive’, two-state CA called the ‘Game of Life’, which is proven to be
capable of performing universal computations [97].

Hence, CAs are proven to be more general than TM; it is unclear how much more
general CAs are and how much complicated systems can be simulated by them. Some
of the so-far unknown properties of CA models with a focus on emergence are going to
be uncovered.

1.2. Self-Organization and Emergence Observed in Natural Systems

Emergence is found in many, if not all, observed natural phenomena that operate
on scales ranging from quantum mechanics; across atoms, molecules, and bio-molecules;
to cells, organs, bodies, and ecosystems in biology. In non-living matter, it goes from
quantum mechanics; across atoms, molecules, solids, and liquids; to rocks, celestial bodies,
stars, galaxies, and the entire Universe.

All systems expressing emergence are part of self-organizing ones, and replicating
systems are part of self-organizing ones; finally, self-replicating systems are a part of
replicating ones; see Figure 1. For an introduction to the modeling and analysis of complex
systems [5], the books on emergence [25,74] provide a valuable introduction to the research
area of emergence, along with the software provided in this review.

An important subclass of SO emergent systems is represented by self-organized
criticality (SOC)-expressing systems [13,14]. Simply put, they are fed continuously by the
same amount of input energy, which is released in irregularly timed bursts of energy that
lead to a power-law distribution of avalanches of released energy. Examples encompass
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earthquakes, stock market crashes, multi-scale plasma instabilities, traffic flow jams [15],
and laser dynamics [98].

A CA model of quantum mechanics based on underlying deterministic principles was
proposed by G.’t-Hooft [99] and tested in [100]. When proven correct, it will join the group
of other deterministic models that yield complex and chaotic behaviors [6,7,15,20].

Yet another important class is represented by agent-based models (ABM) that are
applied to morphological development and embriogenesis [35,36], societal systems, stock
markets, socio-economic systems, opinion polls, etc.

Emergence is behind the occurrence of phenomena observed within solids, metals,
biological systems, societal opinions, electromagnetic properties of materials, or information
processing in material and biological systems; see Tables 3 and 4.

Random, small-world, and scale-free networks are very important in studying self-
organization and the emergence of irregular networks in biology, medicine, sociology,
the economy, and related areas; see the review [39] and books [40,41]. Important note: CAs
are possible to interpret as perfectly regular networks, unlike the above-mentioned ones.

1.3. Self-Organization and Emergence Observed in Biological Systems

A growing volume of research is confirming the possibility of manipulating morphol-
ogy, regeneration, and even limb re-growth in lower-level species, e.g., flatworms and
salamanders. Repeatedly, two-headed, two-tailed, or heads of different sub-species have
been demonstrated to grow in flatworms through the manipulation of the electric potential
of cell membranes [75] and salamanders. A more general understanding of body plan and
morphology growth is covered in [81–84]. To give a brief insight, genes serve as logo bricks;
their assembly is driven by the electric potentials on cell membranes and by the body’s
memories; see Table 4 for more examples.

Surprisingly, as confirmation of the above statement, Levin and coworkers observed [101]
that flatworms can re-build their dissolved heads, including neurons in the head, when
they get exposed to a neurotoxic agent, in this case BaCl2. The flatworm is capable of
reassembling a new head that is boron-resistant. This all happens despite the fact that,
obviously, the worm has always operated above the identical genome [101]. This clearly
shows that the genome is creating, as already said, building blocks like Lego bricks, and the
electric environment is deciding the assembly of those building blocks into a certain living
structure. Using the words of the authors, “Anatomical homeostasis results from dynamic
interactions between gene expression, physiology, and the external environment [101]”.

As already said, the morphological growth of cells, tissues, organs, and bodies is
affected by changes in the electric potential of the cell membranes. One application in
human medicine is the healing of breast tumors by specific changes in the electric potential
of tumor cell membranes [85]. Such observations are far-reaching and direct us towards
the development of an understanding of emergent information processing, which leads us
directly towards the theoretical studies of flexibility and robustness/error-resilience of the
living systems presented in this review (see Table 4).

1.4. Emergence in Theory of Computing

Physics, chemistry, biology, and the theory of computing are mutually interwoven
research disciplines when observed from the computational point of view. Without physics,
chemistry, and biology, many essential insights into the very principles of computing would
be missing.

All of this started with the theoretical concept of Turing machines [102] simulating the
functions of a computer in 1930s, which was followed by von Ulam’s cellular automata
definition [103] and the development of von Neuman’s self-replicating automata [16] in
the 50s. In parallel, Turing had been developing the theory of biological pattern formation
on fur and other similar phenomena using reaction-diffusion systems [104], which was
experimentally studied and confirmed in cyclic chemical systems studied by Belousov [105]
and Zhabotinski [106].
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Self-replication was later revisited by Langton in the design of the minimal self-
replicator [17], which has a much lower number of states and lower complexity due to
sacrificing its universality. Those studies lead to the idea of self-replicating structures using
simple CA-like robots, utilizing stigmergy, that was developed by Chou and Reggia [18].
Genetic programming was applied [50] to find the local rules that lead to the recreation of
the given end-goal structure.

CAs relationship to other mathematical methods like difference and differential equa-
tions can be found in [23,24]. The space of CA rules leading to emergence, replication,
and self-replication often lies outside of the space of discretized differential equations.
CA-rules space is richer when compared to discretized differential equations.

The definition of ’Game of Life’ using eight nearest neighbors (N, NE, E, SE, S, SW, W,
and NW) is shown in [27]. Many emergent structures are observed there; some examples
follow. Additionally, we know that replication and self-replication are observed in biology
and chemistry [69–71], which deserves greater attention. The above reasons motivated
the study of generalized versions of GoL [28,29], with results presented in this review, see
the text.

Importantly, sometimes it is necessary to discern relationships among a huge number
of data to be capable of designing the evolution rules of CAs; this is where ML becomes
useful, see introduction [42,43,45–47].

1.5. Distinguishing between Traditional and Massively Parallel Computing

A side-by-side comparison of two major computational methods known in the theory
of computation: (a) the classical von Neumann architecture that is based on the sequential
processing of information using logic gates, and (b) the emergent one [74] that is based
on the utilization of massively parallel computations (MPC) (cellular automata, movable
agents, atomic and molecular interactions, etc.), see Table 5.

Table 5. A side-by-side comparison of two major approaches known in the theory of computing:
(a) the standard, classical, sequential von Neumann architecture; and (b) the future, massively parallel
information processing observed in natural phenomena and living systems (as well-developed by S.
Ulam and J. von Neumann [16,103] in the 1940s).

Computation Type Classical Emergent

Implementation method artificial, designed, engineered, sequential,
mechanical, liquid, and in silico

natural, self-assembling, automatic, massively parallel,
in physical and biological systems

Constituting units AND, OR, NOT, and XOR logic-gates atoms, molecules, cells, agents, graph nodes . . .

Evaluation methods fixed wiring of logic-gates in fixed circuits self-organized and emergent information processing circuits

Design micro-mechanic, micro-flow, micro-electric
elements, and connective paths

any medium enabling massive parallelism and definition of the
local rules

Information flow predominantly sequential or slightly parallel inherently massively parallel

Output single-state or value everything between single value and multidimensional array

Error-resilience virtually non-existent quite high in a subset of generalized r-GoL

1.6. Brief Introduction to Cellular Automata and Complex Systems Simulations

Figure 2 depicts the very principle of massively parallel computation demonstrated on
cellular automata: (a) a uniform lattice of square cells defining the computational medium;
and (b) a uniform cell’s neighborhood identical to each cell.

The cellular space L is in this description defined by the two-dimensional lattice of
square cells □i,j (see the more general definition in [26])

L = {□i,j|∀i ∈ ⟨1, N⟩, ∀j ∈ ⟨1, N⟩}, (1)

where each cell □i,j has the associated state si,j. The top and down, and left and right, edges
of the lattice are connected together, which creates a toroid.
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(a) (b)
Figure 2. The principles of massively parallel information processing are described in the prototype of
all such systems: a cellular automaton. (a) The lattice definition. (b) From the extended neighborhood
of 24 cells, eight of them are chosen and assigned as neighbors to each cell (the neighborhood of just
one cell is shown). Each cell evaluates its next state in the next step according to the states of itself and
its defined neighbors. (a) An example of a cellular automaton lattice having a size of 9 × 9. The real
lattices are substantially larger than neighborhoods. (b) One instance of neighborhood (selected
from 735,471 possible within extended 5 × 5 neighborhood); details are presented in forthcoming
Section 3.4 (see simulations shown in Figure 7 there).

In our case, the state of each cell can attain only two values

si,j = {0, 1}, (2)

where the 0 state (depicted as a white square, □i,j) is often called the dead state and the 1
state (depicted as a black square, ■i,j) is called the alive one.

The uniform neighborhood, which is identical for each cell, is defined by eight neigh-
bors N, which are selected from the extended neighborhood Nradius = {given i, j|∀i ∈
⟨i − 2, i + 2⟩, ∀j ∈ ⟨j − 2, j + 2⟩} = 5 × 5 − 1 = 24 cells; see Figure 2. This gives a total of
(n

k) = 735,471 possible neighborhoods:

N = {ni,j|∀i, j ∈ {8 pre-selected □i,j from-within Nradius}}. (3)

The uniform evolution rule E (known as the transition function or local rule) defines
the change of the state of each cell going from step N to step N + 1 independently among
all cells (the evaluation of the next cell’s state is always centripetal; no change of the state
of any neighboring cell is allowed):

st+1 = E({st
i,j|∀ cells □i,j ∈ N}). (4)

The global transition function, which describes the evolution of the whole system

GN+1 = E(GN) = {E(si,j)|∀i ∈ ⟨1, N⟩, ∀j ∈ ⟨1, N⟩)} (5)

has no closed analytic solution in the vast majority of cases.
The principle of the program that simulates cellular automaton is described by the

pseudo-code of the Algorithm 1; as examples, see simplified GoL software in [28] and full
GoL-N24 software in [29]. The major stages of each simulation by GoL-N24 are depicted in
Figure 3.
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Algorithm 1 The algorithm, describing GoL-N24, is performed simultaneously in all cells
during one time-step within the function UpdateCell, which itself is called from the main()
function. This algorithm was used to generate all simulations except r-GoL ones.

1: function NEIGHBORSALIVE(i, j)
2: Count number of alive neighbors when state ≥ AliveThreshold
3: end function
4: function UPDATECELL(i,j)
5: if NeighborsAlive == 3 then
6: state = 9 “# Cell becomes alive”
7: else if (NeighborsAlive == 2) and (cell >= AliveThreshold) and (cell <=

DeadThreshold) then
8: state = 9 “# Cell becomes alive”
9: else

10: state = 0 “# Cell dies or stay dead”
11: end if
12: end function
13: function MAIN( )
14: for t = 0,t < End do
15: for i = 0,i < M do
16: for j = 0,j < N do
17: UpdateCell(i,j)
18: end for
19: end for
20: end for
21: end function

(a) (b)

(c) (d)
Figure 3. The principles of CA simulations and emergence are explained in the simulation of the
cellular automaton ‘Game of Life’ [4,29]: (a) empty matrix, step #298; (b) random matrix, step #0;
(c) predefined initial configuration, step #0; and (d) simulation of the case ‘c’, step #298. Those
simulations are not error-resilient. (a) No output: an empty matrix without any initialized alive
cells with a embedded local rule gives empty output. (b) Random input: step #0, a matrix with a
random initial configuration; the local rule will lead to the evolution. (c) The logic-gate OR: the initial
configuration at step #0; see [79] for animations. (d) The logic-gate OR: the configuration at step #298;
see [79] for animations.
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1.7. Brief Introduction into Error-Resilient GoL Called r-GoL

The CA r-GoL [4] is a variant of GoL where the local rule uses the redundancy of the
cell state ∈< 0, 9 > to accommodate randomly injected errors into the evaluation process
unlike the original GoL using state ∈ {0, 1}. The later fails to continue its evaluation with
an even single injected error [4]; see Algorithm 2 for details (software link in [28]).

As already stated, unlike the original GoL, which has two states per cell (alive = 1,
dead = 0), r-GoL has 10 states per cell. This requires defining when a cell is alive or dead in r-
GoL. This is accomplished by utilizing two thresholds, AliveThreshold and DeadThreshold,
where 0 < AliveThreshold < DeadThreshold <= 9. A cell is said to be alive in r-GoL when
its state is above an AliveTheshold and below a DeadTheshold. Cells in the neighborhood
are alive when their state is above the alive-threshold.

Two simulations are demonstrated in detail later within Section 3.3, see Figures 5 and 6
there; the first figure does not have randomly injected errors while the other one has injected
1% of them. The later simulation differs from the first one but is error-resilient.

Algorithm 2 The algorithm, describing r-GoL, is performed simultaneously in all cells
during one time-step. The main loop is omitted; it is same as in Algorithm 1. The algorithm
used to generate the simulation in Figures 5 and 6. The simulation presented in Figure 5
has the same algorithm except for the random flipping of cells.

1: function NEIGHBORSALIVE(i, j)
2: Count number of alive neighbors when state ≥ AliveThreshold
3: end function
4: if NeighborsAlive == 3 then
5: state = 9 “# Cell becomes alive”
6: else if (NeighborsAlive == 2) and (cell >= AliveThreshold) and (cell <=

DeadThreshold) then
7: state = 9 “# Cell becomes alive”
8: else
9: if rand ≤ 0.01 then

10: state = 1 “# Cell becomes alive with a lower value”
11: else
12: state = 0 “# Cell dies or stay dead”
13: end if
14: end if

1.8. Outline of the Review

The review has two major lines: error-resilient and non-resilient. Error-resilient is
represented by r-GoL cellular automata [4], where the transition rule is changed, and the
rest of the paper is represented by GoL-N24, where only the neighborhood varies.

The text is composed of the following parts: (a) The introduction contains a descrip-
tion of the difference between classical and massively parallel models and information
processing, and it provides an overview of the most important methods used in the de-
scription of complex systems and methods in the form of concise tables, which provide the
most important processes used to describe complex systems. All of this is simultaneously
observed through the lenses of different scientific areas: mathematics, physics, biology,
and computer science, among others. The introduction draws our attention towards the
explanation of the main process studied in this review: emergence [74]. This is all fi-
nalized by a brief introduction to cellular automata. (b) The main thesis of the review.
(c) The section dealing with examples and descriptions of various instances of massively
parallel computations: ‘Game of Life’ (GoL), GoL-N24, logic-gates in GoL, error resilient
emergents in r-GoL, gliders, ships, and emergents of the 2nd order. (d) The simulation of
massively parallel systems using cellular automata. (e) Counter-examples to the proposed
approach, (f) which are followed by a number of arguments or examples confirming it.
(g) All is finalized with the section describing the perspective and future directions, which
is followed by (h) conclusions.
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For the purpose of easy navigation throughout the entire text and defining the four
major types of emergence studied and reviewed in the entire text, the following Table 6
puts all four ways of achieving emergence together in one place.

Table 6. Summarizing the four major types of emergence studied and reviewed in the entire text. It is
important to keep this information throughout the reading of the entire text and distinguish between
those four different types.

Class of Emergence Where It Occurs

Pure Emergence. Sections 3 and 4 together with Algorithm 1.

Multi-Level Emergence. Section 3.4.

Emergents’ Error-Resilience Against Injected
Evaluation Errors. Section 3.3 together with Algorithm 2.

Emergents’ Resilience Against Neighborhood
Alternation. Section 4.3.

2. Thesis: Existence of Emergent Information Processing

Thesis: “Can we design artificial, massively parallel, self-organized, emergent,
error-resilient computational environments?”

The most wanted properties in such a design are emergent and error-resilient ones;
when achieved, they will eventually lead to self-assembling and self-healing information-
processing environments.

The main motivation of the thesis is delivered by biological systems as they have
exactly the same properties. As shown in Tables 1–4 in Section 1, it is known that biological
systems are running the same ’program’, which is composed of many interdependent pro-
cesses, on the top of always reconstructing, re-configuring, rebuilding, and fluid wetware.
Is it possible to build such systems artificially?

Beware, this review is solely focused on the generic type of all massively parallel
computational environments: cellular automata. Everyone can apply the approaches
covered here to the respective fields of complex systems.

3. Simulations of Massively Parallel Computations Using Cellular Automata

A concise introduction to cellular automata (CA) [26], along with CA-books covering
quite diverse topics and CA-examples [25,26], is provided to allow a quick start in the
field. This learning stage is recommended to be followed and even accompanied by the
following software, which together will assist in building a strong skill set in CA design
and programming.

A recommended, easy-to-think-through starting point to understand the very princi-
ples of CA computations and programming is the following: less than one hundred-lines
long Python [107,108] program simulating the John. H. Conway’s ‘Game of Life’ [109]
along with CA theory covered, e.g., in [26]. This is recommended to be followed by
books [25,33,35], more advanced CA software [28,29], and agent-based software [34,37].
The combination of experimenting with CA-codes along with studying their applications
represents the fundamental approach to reaching the cutting-edge of knowledge in this
field quickly and efficiently. The open-source Python software GoL-N24 [29] was used
to create all simulations (initial configurations are open-source) except the simulations of
r-GoL presented in Section 3.3 (see Figures 5 and 6 there), which were simulated by [28].

3.1. Neighborhood Definition within GoL-N24 Cellular Automaton Implementation

Each rule number is defined in the following way. The extended neighborhood is num-
bered as 2x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + 2x8 , where the numbers {x1, x2, x3, x4, x5, x6,
x7, x8} represent the ordering number of the given cell in the neighborhood: counting
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starts at the lower-left corners and proceeds in rows upwards to the upper-right corner
(the left-lower corner has position 0 and contributes by the value of 20 = 1 and, finally,
the upper-right corner has position 24 and contributes by the value of 224 = 16,777,216).
The central cell is not part of the neighborhood.

3.2. Implementation of Logic-Gates in the ‘Game of Life’ Cellular Automaton

Several independent streams of emergents that are generated by a predefined number
of glider-guns—when designed in precisely aligned geometrical configurations—can carry
on logic operations by utilizing collisions of glider-streams. This is demonstrated in Figure 4,
which was created by program [29], with details covered in [4] and animations provided
in [79]. In other words, glider streams with their mutual collisions define the specific
logic-gate type: the given simulated operator emerges through and from all emergent
processes of all of the involved glider-guns. Each logic-gate must be precisely initiated
through glider-guns and different blockers. A single error present within any element of
the given operator leads to its malfunction and disappearance.

Each glider-gun is composed of two counter-wise moving parts, which together emit
gliders in regular moments that propagate further independently. The specific topology
of glider streams, which can be switched on or off using various glider-stream blockers,
defines the actual output of the logic gate under consideration; see Figure 4.

(a) (b)

(c) (d)
Figure 4. The Turing machine equivalence of the GoL (rule #469440) is demonstrated on snapshots
of a glider-gun generating gliders of logic-gates AND, OR, and NOT; see Tables S4–S6, respectively.
Those gates enable one to construct emergent logic circuits and memory within the original cellular
automaton ‘Game of Life’ [89,97], simulated by [4,29]. These simulations are not error-resilient. (a) A
snapshot of two colliding glider streams that are emitted by two glider guns; see animations [79].
(b) A snapshot of the emergent logic-gate OR, where inputs are two central GGs, step #298; see
animations [79]. (c) A snapshot of the emergent logic-gate AND, where inputs are two left GGs, step
#250; see animations [79]. (d) A snapshot of the emergent logic-gate NOT, where the input of zero is
the left GGs, step #100; see [79].

3.3. Error-Resilient Emergents Observed in Cellular Automata

The hypothesis of the existence of error-resilient emergents, which utilize generalized
local rules, was tested and confirmed in the CA, named r-GoL [4], using software [28];
animations are available in [79] and Table S2.
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It was observed in the modified GoL, called r-GoL, that, contrary to the GoL rule,
some emergents express resilience against the injection of 1% of errors in the evaluation
process of the rule; see details in Figures 5 and 6.

Figure 5. A demonstration of the effect of the changed rule (r-GoL) and the identical neighborhood.
A snapshot of error-resistant (resilient) emergents operating within a rule variant of the ‘Game of Life’,
r-GoL, is shown: an undisturbed error-resilient rule; see the publication [4], software [28], animations [79],
and Table S2. The old, diffusion, new, and state > 2 sub-figures at step 70 are shown.

Figure 6. The same error-resilient rule and simulation as in Figure 5, with the only difference being that
injected 1% of faulty evaluations are injected; see the publication [4], software [28], animations [79],
and Table S2 for details. In both figures showing r-GoL simulations, old and new steps demonstrate
the existence of alternating states.
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3.4. Ship Breathing Ships Found in GoL-N24: Second-Order Emergence Confirmed

Unexpectedly, important components of emergent information processing were al-
ready found; see Figure 7, animations [79], and Table S7. The first-order emergents that
generate a stream of second-order emergents are observed. This opens a window to the
exploration of unconventional self-assembling circuitry design; see other examples in [4],
which is a highly challenging task requiring novel computational approaches.

(a) (b)

(c) (d)
Figure 7. Four snapshots of ships breathing ships that are observed within the modified ‘Game of Life’,
GoL-N24, rule #459744; see animations [79] and Table S7. An important observation is that almost any
simulation breeds those two-level emergent structures from the random initial conditions. (a) Almost
any random initial condition gives birth to at least one breathing ship later in a simulation, step #1.
(b) The first four breathing ships (a rectangle with two dots above it) occur, e.g., see coordinates (30,30),
step #30. (c) Trails of secondary emergents are already partially built, step #59. (d) Trails of secondary
emergents almost fully build, step #118. Collisions occur.

3.5. Gliders Observed in Different GoL-N24 Neighborhoods

An important observation within simulations that were carried out on a whole range
of different neighborhoods in GoL-N24 is the fact that important components of emergent
information processing were found in many of those tested neighborhoods: gliders emerge
from random conditions; see Figure 8 for selected examples. Hence, one of the most critical
components of the emergent computation proves to be abundant in GoL-N24.

(a) (b)
Figure 8. Cont.
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(c) (d)
Figure 8. The effect of different neighborhoods on the identical rule (GoL) is demonstrated by various
types of gliders that were originally generated from the random initial conditions. (a–c) propagates
in the speed of one cell per one time step. (a) The glider called the frog, rule #5842050; see video [79]
and ‘*.gol’ ini-file [90]. (b) The glider called the opposing crosses, rule #10635712; see ‘*.gol’ [90].
(c) The glider called the rowboat, rule #469130; see ‘*.gol’ ini-file [90]. (d) The glider called the trident,
rule #469584; see ‘*.gol’ ini-file [90].

4. Counter-Examples

A number of possible counter-examples to the hypothesis—where it is initially as-
sumed that all are true; each of them is followed by supporting evidence and subsequently
by its refutation—are provided and discussed in this section.

4.1. Genes Are Encoding All Processes Observed within Bodies of All Living Entities

It is well known from a huge number of research publications dealing with genetics
that genes encode all processes occurring and operating within living organisms.

Evidence. The functions of cells, tissues, organs, and bodies are defined and solely
driven by the expression of genetic material and nothing else as disruption of the genetic
code leads to disruption of cellular and bodily functions.

Refute. Gradually, it was demonstrated that epigenetics plays an indispensable role in
the health and disease of living organisms. On top of that, it is experimentally proven that
physiology, cellular regulation, tissues, organs, and the body plan are defined by the value
and distribution of the electric potentials on cellular membranes [2,77,101].

4.2. Genes Are Encoding All Body Plans Observed within Bodies of Living Entities

It is a widely accepted idea that morphological development and the resulting body
plans are encoded locally by genes.

Evidence. Defects in gene-encoding lead to dysfunctions, as is known from and proven
by experiments with knock-out genes, which in turn lead to malformations within tissues,
organs, and body growth.

Refute. The tissues’, organs’, and bodies’ growth and morphological development can
be manipulated by the electric potential changes on the surface of cells in larger volumes.
Additionally, it had been proven that an arbitrary number of legs, heads, tails, two-heads,
or two-tails in planarian worms and lizards can be arbitrary engineered by mere changes
in the electric potential on cell surfaces [2,77]. The body plan is defined by the electric
potential on cell membranes within the tissue of developing living entities.

The morphological growth is the direct result of the interplay among gene expres-
sion, epigenetics regulation, and electric potentials on cell membranes.

4.3. Resilience of Emergents against Perturbation of Neighborhood

The problem with emergence is that emergents are not resilient when the neighborhood
is perturbed.
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Evidence. Emergents cannot maintain their shape even after even the slightest change
in the GoL neighborhood; see logic gate simulations [4] (an example of OR logic-gate in
Figure 4) that work with emergent glider-guns and gliders.

Refute. As the counter-example, observe the resilience of emergents, which were
demonstrated to persist even when the underlying neighborhood was gradually changed
Figure 9. Additionally, it was demonstrated in [4] that the special design of the evolution
function enables emergents to resist the injection of 1% of evaluation errors into the simula-
tion. Hence, it has been demonstrated that a class of emergents exists that are resistant to
perturbations of either neighborhood or evolution function.

(a) (b)

(c) (d)

(e) (f)
Figure 9. Resilience of emergents is demonstrated in three different neighborhoods, which generate
the very same emergent arrow-glider from identical initial conditions (a). The computations in
sub-figures (e,f) are initiated by the arrow pointing down, where in (f) the symmetry gets broken
and the evolution alternates between the initial arrow and a diagonal line. The computation in
figure (c) has only seven neighbors; see GoL-N24 [29] and animations [79]. (a) Cross-glider with
neighborhood #N10938, step #0. (b) Cross-glider with neighborhood #N10938, step #50. (c) Cross-
glider with neighborhood #N10922, step #50. (d) Cross-glider with neighborhood #N535210, step #50.
(e) Cross-glider with neighborhood #N141994, step #50. (f) A glider with neighborhood #N174760,
step #50.

5. Arguments/Examples

The hypothesis is supported by the following observations and phenomena observed
across the whole spectrum of scientific fields, including biology, where it should be tested
in depth.
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5.1. Emergents Operating within GoL Carrying on Computations

It has been known for a long time that AND, OR, and NOT logic gates can be con-
structed within GoL using glider guns, gliders, and stopping structures; see Figure 4 and
Tables S4–S6, respectively. Promising attempts to design emergent processing units and
memories in this way within GoL are in progress [89].

Supporting examples. GoL was proven to be Turing-machine-equivalent [97], which
creates a solid basis for its future applications in emergent computations.

5.2. Gliders Are Observed in Modified GoL-N24 with Extended Neighborhood

From the proven Turing equivalence of GoL [97], there is a hypothesis that the presence
of gliders in modified GoL (see Figure 8) indicates that there is a high probability of the
discovery or design of glider-guns. Once those emergents are found, any type of classic
logic can be designed.

Supporting examples. Many randomly tested neighborhoods within GoL-N24 contain
gliders and ships; in some cases, even more complicated emergent structures are observed
(e.g., second-order emergents in the neighborhood #459744, see Figure 7).

5.3. Emergent Information Processing Produces Morphology

MPCs have the proven potential [1,30–32] to process information in so-far poorly
understood, distributed forms, which are computationally richer and simultaneously very
robust when compared to classical logic gates used in designed computing devices.

Supporting examples. The proof is provided by many known natural systems, includ-
ing biological systems. The morphological growth of living organisms represents the best
example. It is known that Dictyostelium discoideum [1,30] (slime mold) solves complicated
spatio-temporal tasks while searching for food; the same goes for ants and other social
insects [32]. Additionally, D. discoideum is capable of assembling single cells into a fruit-
ing body using simple signaling techniques, which serves as an example of a primitive
anatomy plan.

Some organisms and even cells use the external environment as a kind of external
memory, e.g., ant pheromone-trails and honey-comb structure—they make local, indepen-
dent decisions accordingly to the interactions with the surrounding environment, which
leads to self-organization and emergence [31] without the presence of the internal memory.
The flocking behavior of birds expresses similar features.

5.4. EIP Produce Tissues, Organs, and Bodies

It is known that bodies, organs, and tissues exist throughout the entire life span of each
living organism, while its constituting elements are continuously repaired and replaced.
In humans, on average, this might take about 1 year to replace the majority of cells in the
whole body: some are replaced within days like square cells in the colon, and others may
take many years like long sensory and motor nerve connections. Persistence of function
and maintaining the identity of the whole while the constituting parts are continuously
replaced represents an excellent example of emergence, which expresses error-resilience
and self-repair.

Supporting examples. Stem and senescent cells’ replacement and cellular regeneration
are insufficient to perform tissues’, organs’, and bodies’ regeneration as morphology is
not fully defined by them. Those questions have already been addressed in biomedical
research for over two decades by trying to uncover the role of cell-membrane potentials
in the genesis and maintenance of living organisms, e.g., [2,77]. Well-defined changes in
cell-membrane potentials are capable of initiating the regrowth of lost limbs in lower-level
vertebrae and even healing breast cancer in humans.

There is an increasing number of researchers of consciousness, e.g., [110,111], who
have explored the origins of all living and even non-living forms using various ways
combining quantum approaches, emergence, and consciousness.
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5.5. Physical Laws Are Emergent

Contrary to our beliefs based on daily experiences, physical laws themselves are
emergent and not fixed. For example, at the microscopic level, a solid material is an emer-
gent arising through the interactions of its constituting components, called atoms. These
interactions result in a specific crystal lattice. Every element has a specific internal structure
that results in a specific crystallographic lattice. Very complicated dependencies cannot be
explained in any other way than by the application of massively parallel interactions; exam-
ples are non-Newtonian liquids [67] and dynamic recrystallization [3]. Atoms themselves
emerge from lower-level interactions. Interestingly, according to recent research, laws
governing quantum mechanics might lead to emergent, higher-level phenomena [99,100].

Supporting examples. For example, strength, stiffness, lattice type, and temperature
are emerging properties of solids. Non-Newtonian liquids have a very different response to
physical loading during slow deformations (liquid-like) and fast deformations (solid-like).
This type of behavior is reached in liquid materials containing long strings like starches
or polymers, which smoothly slide on each other during slow deformation speeds but
mutually interlock during fast deformation speeds.

Other examples can be found in statistical physics, Hook’s law, DRX [3], and many
other natural phenomena that express self-organizing and emergent properties.

5.6. Artificial Morphology Growth and Embryo-Genesis as Proxy to Uncover Principles of
Emergent Design of Computation

Artificial morphology represents a means to recreate the processes that are observed
during the embryonic growth of living organisms, which in turn enriches our understand-
ing of phenomena observed in health and disease because it can be compared with real
biology. As a bonus, it will improve our theory of EIP and MPCs.

Supporting examples. Morphogenesis [77,78], swarm behavior [32], and other ob-
served phenomena operating within biological systems give us the means to validate the
tested models.

The understanding of this area of biological phenomena is still emerging. Top-down
models [2] dealing with pattern formation, growth, and embryo-genetic regulation are
complementing bottom-up developmental models that are discussed in this paper and,
e.g., [4], in mathematical description of biological systems.

5.7. Error-Resilient Emergent Information Processing as Alternative to VLSI Technology

There is a rising chance of the emergence of the following very important application.
Contrary to VLSI chips that are artificially designed by humans, emergent computations
and information processing are not prone to the occurrence of local errors due to the
existence of their error-resilience within the local rules and neighborhoods (partially proven
here and in [4]).

Supporting examples. The morphological growth of living entities that maintain
emergents at many hierarchical levels. Did anyone ever observe a biological entity, e.g.,
a vertebrae species, which after the failure of a single neuron cease to function? It is just the
opposite with our current VLSI technology: a failure of a single-chip constituting element
is often detrimental to the performance of the whole processor, or it can become even fatal.

6. Future Directions

As has already been shown, emergent, error-resilient structures exist within relatively
simple CAs; see Figure 10. This is opening the doors towards the development of novel
descriptive tools capable of morphological-development-like descriptions of biological
systems; such approaches can be equally well applied to the description of simpler chemical
and physical systems.
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Figure 10. A spiral depicting the emergence of the hierarchy of emergents, as observed within
various emergent levels of the generalized ‘Game of Life’, GoL-N24, and other complex systems.
The emergence results from the core rules and processes without any additional design. In this paper,
we documented the first- and second-order emergents only; some of these are artificially designed,
and others are pure emergents.

6.1. Realization Hypothesis: Description of Emergent Information Processing from the
First Principles

What would be the line of attack along which it is possible to resolve the Existence
of the EIP Thesis? As already demonstrated, there are known examples of such systems
(see this text), but there is no theory enabling us to design them systematically. All of the
presented emergents were discovered by the following procedure—called the forward
task: randomly choosing a rule → applying it to the matrix → observing occurrence of
emergents and their operation.

The opposite direction—called the reverse task—where the desired emergent struc-
ture initiates the search for local rules that are generating those emergents is currently
unavailable. It requires deep future theoretical studies due to its intractability using brutal
force approaches.

6.2. Emergent-Logic Hypothesis: Beyond Gödel’s Theorem of Incompleteness

From the simulations of logic-gates (see Figure 4), significant implicit and not immedi-
ately obvious consequences arise.

What kind of reasoning allow us to understand the fact that logic can be simulated
within complex systems—see the examples of logic-gates AND, OR, NOT, and XOR
simulated using GoL?

We just proved with an example that massively parallel interactions are capable of
generating standard logic operations [4,89,97]. This leads to the conclusion that logic arises
from and through a medium of low-level, massively parallel interactions. The big question
is: How is it realized? The design sequence of logic gates within GoL is: a rule → projection
into matrix → logic.

It seems to be that our mathematical logic is coarse-grained and human-readable,
whereas MPC logic is fine-grained and beyond standard human perception due to its
inherent massive parallelism. The search for rules governing MPC logic is one of the
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cornerstones in theory and design of future models of living systems and error-resilient
information processing devices, including computers.

6.3. Emergent-Logic Hypothesis: What Are Means of Decision-Making in CSs?

From all of the results so far presented and as an extension of the previous subsection,
it is proven that logic can be simulated by MPC logic gates in GoL (see, e.g., [89,97]). This
implies the fact that there must exist a richer, elusive, massively parallel ‘logic system’,
which is going to be called emergent logic (=MPC-logic), that in some special cases collapses
into already known mathematical logic (in our case, it collapses into emergent logic gates,
see Figure 4). Currently, it is only possible to speculate on the character and theory of this
emergent, massively parallel emergent-logic.

From the work of Kurt Gödel, it is known that there are existing logical statements
within any axiomatic system containing Peano arithmetic, which are impossible to evalu-
ate. A very important question is: “Is the underlying, massively parallel, emergent-logic
complete or incomplete?” A quite important check in depth is the possibility that all living
systems are operating at the level of emergent-logic. When this is true, we can look at logic
operations without even noticing them due to their massively parallel nature. The author’s
personal hypothesis is that massively parallel emergent-logic is error-resilient and, hence,
the issue of completeness/incompleteness is avoided in this way.

The central question: Are all living systems operating and performing decisions in a
highly distributed manner, utilizing massively parallel, emergent-logic decisions?
In such cases, emergent logic is virtually invisible to the naked eye.

6.4. Emergence of Natural Laws’ Hypothesis: Are Physical, Biological, and Other Observed
Natural Laws Just Emergents Originating in Lover-Level Processes?

Statistical physics is the first example of a theory where collective emergent properties
(temperature, pressure, information, etc.) arise from the micro-states of atoms or molecules
without the necessity of tracing the energy and position of each single atom. As we know,
Ludwig Boltzmann [53,54] proved that it is not necessary to trace every micro-state of the
system; instead, emergent properties are derived from collective statistical properties based
on micro-states.

Following the above example, when we assume the emergence of natural laws’ hypoth-
esis to be true, it leads us to the conclusion that a much larger set of emergent behaviors
originating in MPCs have to exist. Instances of MPC contained within this set are not
describable by standard analytical and computational approaches used to define natural
laws in the closed analytical form we are used to (see Tables 7 and 8).

Table 7. The abstract concept of the hierarchy of emergents states that processes operating in the
parent medium (emergents of the (N − 1)th order) creates emergents of the Nth order in the child
medium. Each next-level child-medium and child-process is based on principles different from
its parent-medium.

Process Matrix Emerging Phenomenon

Cellular automaton rules periodic lattice of identical elements glider guns, gliders (1st-level emergents)

Rules of movable agents continuous space collisions, crowds (1st-level emergents)

. . .

Interactions of 1st-level emergents 1st-level emergent medium 2nd-level emergents

Interactions of 2nd-level emergents 2nd-level emergent medium 3rd-level emergents

. . . . .

Interactions of N−1th-level emergents N−1th-level emergent medium Nth-level emergents
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Table 8. The hierarchy of emergents is explained by well-known natural phenomena observed within
physics, biochemistry, and biology that express emergent behavior.

Process Matrix Emerging Phenomenon

Atomic bonds space metallic lattice

Atomic bonds space chemical compounds

Bonds among chemicals chemicals and catalysts biochemicals

mRNA ribosomes proteins

Proteins cellular functional-units cells

Cells cellular interior and exterior tissues

Tissues cellular ensembles organs

Organs organ systems and physiology bodies

. . . . .

An MPC example can be observed within the well-documented DRX model [3], where
only the MPC model—despite centuries of trying to derive a heuristic, probabilistic, or ana-
lytic model—is capable of describing observed stress-strain curves expressing oscillations
or a single-peak response to the imposed deformation under varying deformation con-
ditions and elevated temperatures. Centuries of failures in creation heuristics, statistics,
and analytic models have been successfully replaced by MPC models.

6.5. By-No-Law-Describable Natural Phenomena Hypothesis: Are There Existing Processes
Contradicting Causality and Determinism?

To extend the Emergence of the Natural Laws’ Hypothesis further, a question is given:
“Is nature allowing by-no-law-describable interactions?” Does it mean that the standard
notion of event sequences known as causality does not always hold? This opens doors
to novel approaches in the description of observed natural phenomena that seem too
‘messy’ to be described by the standard, closed-form approaches used by our contemporary
mathematical descriptions within science; the book [112] describes the paradigm shifts in
science. Currently, there are two known proxies of such descriptions: massively parallel
distributed causality and those descriptions that are potentially contradicting causality
(this is just a hypothesis, which deserves a deeper study on its own). QM experiments are
an area where some phenomena can contradict causality [99].

As proven in the case of DRX [3], the broader, by-no-law-describable natural phe-
nomena hypothesis is very probable because, for example, MPCs allow for descriptions
impossible to achieve by standard analytic and computational descriptions. Hence, MPC
environments are richer and more expressive due to their inherent flexibility in the def-
inition of local interactions (each single computational element makes a decision that is
independent from the rest; see [23,24] for details). ODEs and PDEs lead to difference
equations through numerical discretization. Difference equations are just a fraction of all
possible MPEs. The existence of non-causal natural phenomena should be addressed in
serious studies specially designed for this purpose.

From simulations of GoL-N24, it is known that microstate evolution is defined by the
neighborhood topology along with fixed interactions within all simulations. This can result
in basically two situations: either emergents arise or not. In the later case, the outcome of
the simulation is silent, oscilating, or chaotic. Emergents can be compared to the by-law-
describable phenomenon at the macroscale, and the rest cannot. In other words, laws are
observed only in some cases. Yet, even a chaotic system is describable from the micro-state
(deterministic) evolution, similarly to [6,7,20,53,54], yet no law exists at the macroscale.

A question for future studies is: “Are processes and matrix arising from realms of
the ocean of the unknown, which are indescribable and beyond the reach of our common
senses and detecting devices?” The quantum-mechanical description using wave function,
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delocalization, entanglement, and localization with delocalization points towards the
possibility of such a description [99,100]. All is open.

6.6. Hypothesis Creation

The very roots of the scientific method are founded on the process of falsifiable
hypothesis creation. -Karl Popper [113].

The scope of the standard description of the observed phenomena is limited [112];
this has been, is, and always will be true in science. Hence, in the recent decade, scientists
have started to use novel methods to create hypotheses using Machine Learning, AI,
Deep Learning, data mining, and other methods of inference of relationships among
data. The quantum-mechanical description of natural phenomena faces similar issues.
The problem with AI, ML, and DM methods is that they are typically utilizing black-box
methods that are not human-understandable.

EIP provides us with the means to develop deeper methods of description of nat-
ural phenomena, i.e., get closer to the primary causes, that go beyond by-the-equation-
based ones. Brain functioning can become one such area of research where from-the-first-
sight random neuronal activity patterns can have some underlying mechanism exploit-
ing EIP. The first step would be to find some of those emergent information processing
configurations—in the ideal case, error-resilient ones.

7. Conclusions

The main purpose of this publication is to review the current knowledge about ca-
pabilities to reproduce, means of defining the input data and local processes, means of
solution, and future lines of attack to find “artificial, massively parallel, self-organized,
emergent, error-resilient computational environments”. All of this is solely explained in
cellular automata, as the prototypical massively parallel computational environment. Links
to other research areas will be the subject of future research.

Two main streams of research along these lines demonstrate the existence of error-
resilient emergents and the resilience of emergents against variations in the neighborhood.
That is all, besides other features such as the proof of the existence of second-order emer-
gents. Reviewed approaches provide proofs of possibility and partially even means of
achieving the goal of this type of research. The above is built upon the top of and broadening
of the known proof of Turing equivalence of the ‘Game of Life’ cellular automaton.

After providing examples and counter-examples, the possible future research paths
along with a number of hypotheses are given in order to sufficiently cover as many scientific
disciplines as possible. This allows everyone to apply these ideas in their respective field of
research. Some of those hypotheses go beyond what is currently known and understood.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/software3010005/s1, Table S2: Error-resilient ’GoL’ software
variants; Table S4: Logic gate AND; Table S5: Logic gate OR; Table S6: Logic gate NOT; Table S7:
Emergents expressing interesting properties [28,29,90,109,114–130].
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The following abbreviations are used in this manuscript:

CA Cellular automata
GoL ‘Game of Life’
SOC Self-organized criticality
CSs Complex systems
EIP Emergent information processing
ABM Agent-based models
AND AND logic-gate
OR OR logic-gate
NOT NOT logic-gate
r-GoL Resilient GoL software
GoL-N24 GoL software using extended neighborhoods of 24 cells
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