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Abstract: This study compares the reliability of estimation, productivity, and defect rate metrics for sprints
driven by a specific instance of the agile approach (i.e., scrum) and an agile model-Bbased software
engineering (MBSE) approach called the integrated Scrum Model-Based System Architecture Process
(sMBSAP) when developing a software system. The quasi-experimental study conducted ten sprints
using each approach. The approaches were then evaluated based on their effectiveness in helping the
product development team estimate the backlog items that they could build during a time-boxed sprint
and deliver more product backlog items (PBI) with fewer defects. The commitment reliability (CR) was
calculated to compare the reliability of estimation with a measured average scrum-driven value of 0.81
versus a statistically different average sMBSAP-driven value of 0.94. Similarly, the average sprint
velocity (SV) for the scrum-driven sprints was 26.8 versus 31.8 for the MBSAP-driven sprints. The
average defect density (DD) for the scrum-driven sprints was 0.91, while that of the sMBSAP-driven
sprints was 0.63. The average defect leakage (DL) for the scrum-driven sprints was 0.20, while that
of the sMBSAP-driven sprints was 0.15. The t-test analysis concluded that the sMBSAP-driven
sprints were associated with a statistically significant larger mean CR, SV, DD, and DL than that of
the scrum-driven sprints. The overall results demonstrate formal quantitative benefits of an agile
MBSE approach compared to an agile alone, thereby strengthening the case for considering agile
MBSE methods within the software development community. Future work might include comparing
agile and agile MBSE methods using alternative research designs and further software development
objectives, techniques, and metrics.

Keywords: software development; model-based software engineering (MBSE); agile; scrum; system
architecture; modeling; systems engineering (SE); reliability of estimation; productivity; defect rate

1. Introduction

The increasing complexity of software systems makes the risk of failure higher [1].
Unfortunately, software projects often do fail [2]. Several works of the literature discuss the
history, factors, and impact on information technology (IT) projects’ failure [3–5]. A study
of 5400 large IT projects exceeding $15 million found that, on average, large IT projects run
45% over budget and 7% behind schedule while delivering 56% less value than initially
planned [6]. Other work has found that software projects carry the highest risk of cost and
schedule overruns [7]. The reasons for large IT project failures has been summarized into
four categories: missing focus, content issues, skills issues, and execution issues. Examples
of multi-million challenged information systems include the UK National Programme for
IT (£10.1bn), the US Air Force Expeditionary Combat Support System ($1bn), FiReControl
(£469m), MyCalPays ($373m), and others [8].

During the 1990s, a number of lightweight software development methods evolved in
response to the prevailing heavyweight methods that were perceived as overly regulated
and planned. These lightweight methods included: the Rapid Application Development
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(RAD), in 1991 [9]; the Agile Unified Process (AUP) [10], and the Dynamic Systems De-
velopment Method (DSDM) [11]—both conducted in 1994—the Scrum [12] in 1995; the
Crystal Clear Method [13] and the Extreme Programming (XP) [14]—both conducted in
1996—and the Feature-Driven Development (FDD) [15] in 1997. These software methods
are collectively referred to as agile software development methods, although these all
originated before the publication of the Agile Manifesto.

One of the benefits of agile is its alignment with systems engineering models such as
the ISO/IEC/IEEE 15288 standards [16] and the widely-used V-model [17]. As software
systems increase in size and complexity, new approaches to abstraction, concurrency, and
uncertainty must be devised [11]. Agile methodologies do provide realistic and appealing
strategies to evolve systems and software engineering to address these concerns [11].

To help address the various challenges of software development, a Model-Based
Software Engineering (MBSE) approach can support the management of information
system complexity during the architecting and development process [18]. Some researchers
have proposed combining MBSE with agile to leverage the benefits of both worlds in
addressing the complexity of information technology systems, especially if adopted during
the system architecting process [19–24]. However, sources that provide considerable and
persuasive data about the convergence of MBSE and agile are still in their infancy, despite
researchers’ efforts. The lack of research that quantitatively compares agile MBSE with
agile one impedes the consideration of agile MBSE for technology-based systems.

This article aims to compare an instance of agile MBSE, called the Scrum Model-Based
Systems Architecture Process (sMBSAP) [24], with scrum. sMBSAP integrates a particular
MBSE approach, MBSAP [25], with a specific agile approach, scrum [26]. The overarching
objective is to investigate how the software development performance using agile MBSE
is compared to that of the agile methodology alone when developing software systems.
This article specifically compares the reliability of estimation, productivity, and defect rate
of the sMBSAP vs. that of scrum. This will be achieved by analyzing the results from a
quasi-experimental study conducted to investigate the effects of sMBSAP and scrum on
the software development performance while developing a software system for a health
technology system.

The remainder of the paper is organized as follows. Section 2 provides a background
of agile and agile MBSE methods, including the three dependent variables used in the
experiment—reliability of estimation, productivity, and defect rate—and concludes with the
research purpose. Section 3 explains the experimental design, techniques, and procedures
used, and, finally, the factors are considered to minimize threats to reliability and validity.
Section 4 presents the results of the experiment. Section 5 provides a conclusion and
outlines future work that will be required to further explore the effect of agile MBSE on
software development objectives.

2. Background
2.1. Scrum and Agile MBSE Methods

The scrum software development process is an agile method that is used for managing
and directing the development of complex software and products by using incremental
and iterative techniques [27]. Model-Based Software Engineering (MBSE) is a software
development approach in which models play an important central role [28]. MBSE was
developed to overcome the drawbacks of the conventional Document-Based Systems Engi-
neering (DBSE) method, which became apparent as information-intensive systems became
more complex [29]. The MBSAP outlines object-oriented design methods to create an
architecture for a system through structured decomposition into modular and manageable
levels of complexity by using object-oriented principles, such as abstraction, encapsulation,
modularity, generalization, aggregation, interface definition, and polymorphism [25]. Agile
MBSE presented itself as a possible solution for two issues that faced system develop-
ment, namely, rigidity and waterfall orientation [11]. Agile MBSE also presented itself as a
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potential solution for the competing views and challenges related to documentation and
requirement traceability [13,19].

Recent work by Huss et al. has developed an agile MBSE named sMBSAP, which
involves a development method that integrates scrum and the MBSAP [24]. In addition to
the main characteristics of scrum and the MBSAP, the sMBSAP emphasizes the engagement
of the product development team in customizing the MBSE tool, using UML-based and non-
UML-based models to describe the system and leveraging the built-in models (provided in
some tools) to arrive at an initial version of the model more quickly. Figure 1 summarizes
the sMBSAP meetings, artifacts, processes, and roles. The sMBSAP approach includes five
main artifacts: product/sprint backlog, operational viewpoint (OV), logical/functional viewpoint
(LV), physical viewpoint (PV), and product increment, as well as four roles: the product owner,
scrum master, system architect, and product development team. The sMBSAP updates the
artifacts to keep system information within the model. The five sMBSAP phases include
initiate, plan and architect, implement, review and retrospect, and release. sMBSAP is
application agnostic, as it can be applied to other software or engineered systems.

Sprint /
Architecture

Planning 

Daily
Standups

Sprint /
Architecture

Review 

Sprint Retro
sMBSAP Meetings

sMBSAP Artifacts

Operational
Viewpoint

Logical/Functional
Viewpoint

Physical
Viewpoint

Increment /
Demo

Product/Sprint
Backlog

sMBSAP Roles
Product Owner
Scrum Master
System Architect
Development Team

Initiate Plan and Architect Implement
Review and
Retrospect

Release

sMBSAP Processes

Modified to integrate

Scrum and MBSAP

Inherited from MBSAP

Inherited from Scrum

Common in both Scrum

and MBSAP

Scrum Model-Based System Architecture Process (sMBSAP)

Figure 1. Overview of the sMBSAP with the goal of developing product increments [24], where the
solid arrows represent process flow, while the dotted arrows represent two-way interaction.

2.2. Reliability of Estimation

Effort estimation is a vital part of managing software projects. There is plenty of
research regarding effort estimation models, techniques, and tools [30–33]. What makes
estimation in agile software projects unique is that the software is developed incrementally,
and customer feedback significantly influences the subsequent iterations. This also implies
that product estimations and planning need to be done progressively. This is achieved
in scrum by planning iteratively at three levels (i.e., release planning, sprint planning,
and daily planning) [34]. Common estimation techniques in agile software development
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include expert opinion, analogy, and dis-aggregation [34]. Planning poker [35] is another
widely used technique, especially in scrum [36,37]. A study about using planning poker
for user story estimation found that planning poker produced more accurate estimates
than unstructured group estimates [38]. Other studies found that planning poker in scrum
projects yielded less optimistic and more accurate estimates than a statistical combination
of individual expert estimates [39,40].

Estimation accuracy in software development has also been investigated. An in-depth
study on 18 different companies and project managers of 52 different projects found that
average effort overruns were 41%, and that the estimation performance has not changed
much in the last 10–20 years [41]. Several researchers studied and analyzed the use of the
commitment reliability (CR) metric (referred to as say/do ratio, estimation accuracy, or
simply planned vs. actuals) in software projects [42–45]. Although agile teams use other
reliability of estimation metrics, CR is the most widely used metric in practice. The CR metric
used by agile teams is identical to the earned value (EV) metric, which is part of the earned
value management (EVM) methodology used in traditional project management.

2.3. Productivity

One of the reasons that scrum is widely used in agile software development is the
positive correlation between scrum and project productivity [14]. Other outcomes such as
product quality, client satisfaction, cost reduction, and team motivation have been found to
be associated with productivity [14]. In a systematic review of productivity factors in software
development, it was found that soft factors are often not analyzed with equal detail as more
technical factors [46]. It has been argued that the factors influencing productivity depend on
the business domain the software is produced for [47]. It has also been found that more
than a third of the time a typical software developer spends is not concerned with technical
work [48] and that reusability has a significant effect on productivity [49].

In software development, the count of lines of code (CLOC) and story points (SP)
(sometimes referred to as function points) are traditionally used as measures of productiv-
ity [46]. sprint velocity (SV) is the number of SP completed by the product development team
in one sprint [34]. Several researchers have studied and analyzed the use of SV in software
projects [50–52]. Although agile teams use other metrics, the most influential metrics in
many of the studies are SV and effort estimate [53]. SV is a function of the direction and
speed [54]. Although the direction is more easily overlooked, both factors should be equally
considered [54]. The challenge for teams is to decide how time should be split between
ceremonies and product build tasks, have been investigated by researchers [55]. velocity
fluctuation (VF) is a vital graph that product managers watch during sprint planning and
execution because it helps them plan more accurately for future sprints. VF has been
studied to identify the sources of issues arising in scrum implementations, and it was found
that fluctuations in velocity are caused by the team missing their commitments that, in
turn, depend on the unaccounted complexities of different sub-systems [56].

2.4. Defect Rate

IEEE defines error, defect, and failure in its standard glossary of software engineer-
ing terminology [57]. A software defect is an error in coding that causes failure in the
software [58]. It is a form of deficiency that causes the software to produce an incorrect,
unintended, or unexpected result [59]. An error is an incorrect action on the part of a
programmer [57]. With software’s growing size and complexity, software testing plays a
critical role in capturing software defects. Detecting and fixing software defects are the
most expensive part of the software development lifecycle [60]. Researchers investigated
the increasing cost of detecting defects throughout the software development lifecycle [61].
During the development step, detecting and fixing defects tend to cost $977 per defect;
the cost increases to $7,136 (or 630%) per defect in the testing phase; then, it is further
doubled in the maintenance phase, reaching $14,102 [62]. It is no wonder that software
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defect prediction is a popular research topic in the software development field with such
high penalties [63].

Defect density (DD) is another widely used defect rate metric [64–66], which is defined
as the number of defects divided by size [66]. Some researchers studied and calculated DD
using thousands (Kilo) of lines of code (KLOC) as a measure of size [66]. Other researchers
use other size metrics such as SP [67], user stories, or product backlog items (PBIs) [34,68],
and developer’s efforts (measured by person-hours or man-days) [69]. The defect leakage
(DL) [70–73] is another known defect rate metric, which is the ratio of defects found during
testing vs. the defects found during the next phase.

2.5. Research Purpose

Although few researchers discuss the integration between MBSE and agile and their
qualitative benefits, the literature that provides quantitative comparative analysis is still
limited. This scarcity hinders considering agile MBSE as an option for technology-based
systems. The literature sparsity on this problem leads to the following research question:

Comparing sMBSAP and scrum, are there measurable benefits to software de-
velopment performance when using one approach over the other?

The return-on-investment (ROI) for software system development methodologies,
including agile and MBSE, is commonly measured in terms of development cost, devel-
opment time, impact on quality (measured in the number of defects) [74], accuracy in
estimation, and increased productivity [75]. The purpose of this research is to conduct an
experiment to compare the sMBSAP [24] and scrum in terms of thereliability of estimation,
productivity, and defect rate. The development of a health tech system that provides dietary
recommendations to users based on their health profile [24] was used as a context for this
experiment.

In this experiment, the dependent variables were the software development perfor-
mance, namely (1) the reliability of estimation; (2) the defect rate; and (3) the productivity. The
categorical independent variable was the system development approach consisting of two
groups: one treatment (sMBSAP) and one control (Scrum).

3. Research Methods
3.1. Experimental Design

In order to explore the differences between sMBSAP and scrum development, here we
use an experimental research strategy to probe this comparison. Specifically, we describe
the quasi-experimental posttest-only with non-equivalent group studies conducted. The
non-equivalent groups’ design was used when the control group and the experimental
group did not have pre-experimental sampling equivalence [76,77]. Rather, the groups
constituted naturally assembled collectives.

First, all user stories (m = 260) were created and added to a product backlog (Step 1
in Figure 2). Bigger user stories were broken down into tasks (up to 20 tasks per user
story). The user stories (m = 260) were reviewed and analyzed to deliver the core system
modules (groups of related functions) through sprints (n = 20) (Step 2 in Figure 2). In order
to create randomly assigned samples using intact clusters of sprints, all sprints (n = 20)
identified in Step 2 were placed into one of two heterogeneous groups (Step 3 in Figure 2).
These two groups, containing equal numbers of sprints, were then randomly assigned:
one to the treatment group (n = 10) sMBSAP and the other to the control group (n = 10)
scrum. These groups were formed in order to avoid the Hawthorn effect [78]. Moreover,
the researcher created a model that included a set of viewpoints and perspectives used
for both approaches. This artifacts model was created to control one of the confounding
variables, that is, “consistency of input artifacts”, by ensuring as many similarities between
the sprints as possible.

In scrum, the number of user stories per sprint with a predefined development time
window can vary depending on several factors, including team size, the complexity of
the stories, and the sprint duration. While there is no strict industry standard or fixed
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rule of thumb, a commonly recommended guideline is to aim for 5 to 15 user stories
per development team member per sprint and assignment of work that is expected to be
completed within the given time frame.

The strongest research design for experiments is true experimental design with random
sampling from a given population to ensure equivalent groups [76]. Another slightly more
elaborate non-equivalent group design, called the pretest–posttest non-equivalent group
design, which is used to assess the nature of initial selection differences between the groups
and to take account of the effects of these selection differences [77]. However, within the
context of this experiment, achieving random assignments without interrupting project
delivery and momentum was found to be extremely difficult. The solution researchers
offered to address this constraint was assigning the treatment to one intact group or to the
other randomly [76,77]. The four steps used in the random assignment of the intact groups
for this study are presented in Figure 2.

Sprints (n=20)

(n=20)

(n=20)

Sprints analyzed for effect on dependent variables

Product Backlog
User Stories (m=260)

Scrum (n=10)
sMBSAP (n=10)

Scrum (n=10)
sMBSAP (n=10)

Scrum (n=10)
sMBSAP (n=9)

Defect Rate Productivity

(n=20)

1. All user stories (m=260) are
identified and added to a product
backlog.

2. Product backlog was broken down
and scheduled...
(a.) user stories (m=260) were
grouped into sprints (n=20)
(b.) sprints (n=20) were scheduled to
deliver the product features

3. Two groups of sprints were
created...
(a.) constrained by the schedule to
avoid impacting productivity
(b.) to contain equal numbers of
sprints
(c.) to avoid the Hawthorne effect by
using intact groups
(d.) then one group was randomly
assigned to be the treatment group
(sMBSAP) and the other as the
control group (Scrum).

4. After the execution of sprints and
collection of data...
(a.) 20 sprints were analyzed for
Reliability of Estimation and Defect
Rate
(b.) 19 sprints were analyzed for
Productivity (a one-week sprint was
excluded to avoid skewing the data)

Reliability of
Estimation

1.

2.

3.

4.

Sprints (n=10) Sprints (n=10)

Group 1 Group 2

Sprints (n=10)

Scrum

Sprints (n=10)

sMBSAP

(m=20)

Figure 2. Random assignment of intact groups and subsequent collection of data.

Now, the dependent variables are the software system development performance
objectives, namely, (1) the reliability of estimation, as measured by the CR; (2) the defect rate,
as measured by the DD using the PBI, where the DD is measured using the KLOC and DL;
and (3) the productivity, as measured by the SV, VF, and CLOC per hour. The experiment
overview illustrating the independent, dependent, and confounding variables is shown in
Figure 3. This research is a longitudinal study where repeated observations of the same
variables were collected for one year (between May 2020 and May 2021). The dependent
variables from the executed sprints in both groups (n = 20) were collected and analyzed.
Twenty sprints were executed and analyzed for the reliability of estimation and defect rate.
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All executed sprints were two-week sprints except the last sprint, which was a one-week
sprint. To avoid skewing the productivity data, the one-week sprint was excluded from the
analysis, so only 19/20 sprints were analyzed (Step 4 in Figure 2).

The research was conducted in a technology startup during the development of a
health technology system. The study used the alpha version of the health tech system as
the core development effort of the study.

impacts

System Development Performance (y)
(dependent variables)

Reliability of Estimation

Defect Rate

Productivity

impacts

System Engineering Approach (x)
(independent variables)

sMBSAP (A)

Traditional Scrum (B)

Metrics

Commitment Reliability (CR)

Defect Density using PBI

Defect Density using KLOC

Defect Leakage (DL)

Sprint Velocity

Velocity Fluctuation (VF)

CLOC per Hour

measured by

measured by

Setting: Software Development Process for a Health Tech System

generates

Groups

10 Scrum-Driven Sprints
(control group)
10 sMBSAP-Driven Sprints
(treatment group)

applied to

applied to

Experiment
Comparing the effect of using
system engineering approach A and
B (x) on system development
performance (y)

y=f(x)

impacts

Confounding Variables

Development Team Experience

System Architect Experience

Consistency of Input Artifacts

Complexity of Work

Setting

measured by

Figure 3. Experiment overview.

3.2. Techniques and Procedures

There were five main activities (steps) carried out during the quasi-experiment, as
explained below.

3.2.1. Step 1: Plan Experiment

The purpose of the first step was to control one of the confounding variables (shown
in Figure 3), which was the consistency of the input artifacts. At a high level, these artifacts
are the information that the product development ream receives from the system architect at
the beginning of a sprint to use in building the software and writing the software code. An
architecture framework defining the artifacts for each perspective and the viewpoint of
the systems was developed [24]. The framework reduces the threat to validity by ensuring
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that both the control and treatment groups are as similar as possible by ensuring that the
product development team receives comparable artifacts used in writing the software code.
In other words, it ensures that both control and treatment groups receive structural, data,
behavioral, and requirements artifacts that describe the system.

3.2.2. Step 2: Identify the Metrics for Software Development Performance
Metrics for Reliability of Estimation

The primary metric used to assess the reliability of estimation is the commitment relia-
bility (CR) for each completed sprint:

CR =
Completed SP

Planned SP
. (1)

In order to assess the CR for all scrum-driven sprints vs. all sMBSAP-driven sprints, the
average CR was used. The average CR using a particular approach is defined as follows:

Average CR =
∑ CR

Number o f Sprints
. (2)

Metrics for Productivity

The primary metric used to assess productivity is SV, which is the sum of the capabilities
(features, user stories, requirements, or PBIs) that are successfully delivered in a sprint,
which are measured in SP and defined asthe following:

SV = ∑ Completed SP During a Sprint. (3)

In order to assess the SV for all scrum-driven sprints vs. sMBSAP-driven sprints, the
average SV was used. The average SV using a particular approach is defined as follows:

Average Velocity =
∑ Sprint Velocity

Number o f Sprints
. (4)

VF is another way to monitor SV, and it represents the SV variance from the average.
Monitoring the VF helps analyze the root cause of the team missing their commitment [56]
and is calculated as the following:

VF =
Average Velocity− Sprint Velocity

Average Velocity
. (5)

Finally, the total CLOC per hour was used as a secondary metric to assess productivity:

CLOC per hour =
CLOC

Development Duration (hrs)
. (6)

Metrics for Defect Rate

The primary metric used to assess the defect rate is DD, which is the number of defects
found within the PBI executed during a sprint as the following:

DD =
De f ect Counts (pre-delivery and post-delivery)

Size (measured in PBI)
, (7)

where “pre-delivery” defects refer to the defects found during the testing phase, while
“post-delivery” defects refer to the defects found after the testing phase.

In order to assess the DD for all dcrum-driven sprints vs. sMBSAP-driven sprints, the
average DD was used. The average DD using a particular approach is defined as follows:

Average DD =
∑ DD

Number o f Sprints
. (8)
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Another way to calculate the DD is by assessing the number of defects found within the
KLOC. The DD using the KLOC approach is calculated as follows:

DD =
De f ect Counts (pre-delivery and post-delivery)

Size (measured in KLOC)
(9)

Finally, the DL was used as a secondary metric to assess thedefect rate. It represents the
ratio of defects found during the next phase (post-delivery) vs. the defects found during
testing (pre-delivery) and is measured in defects count. Monitoring the DL would help
analyze the root cause of leaked defects in order to avoid them before leakage [59] and is
calculated as the following:

DL =
De f ect Count (post-delivery)
De f ect Count (pre-delivery)

. (10)

In order to assess the DL for all scrum-driven sprints vs. sMBSAP-driven sprints, the
average DL was used. The average DL using a particular approach is defined as follows:

Average DL =
∑ DL

Number o f Sprints
. (11)

3.2.3. Step 3: Execute Scrum and sMBSAP Drive Sprints (Scrum and sMBSAP Phases)

The scrum-driven and sMBSAP-driven sprints were executed according to their sched-
ule. The scrum method includes three main components: roles, ceremonies, and arti-
facts [26]. The scrum processes were grouped into five phases: initiate, plan and estimate,
implement, review and retrospect, and release [79]. Also, there were three distinct roles in
the scrum process: the product owner, the scrum team, and the scrum master [13]. The scrum
method includes periodic meetings known as ceremonies, which include sprint planning,
saily scrum (standup), sprint review, and sprint retrospective [22,80–82]. In addition to the
scrum roles and ceremonies, the scrum process delivers three main artifacts, namely, the
product backlog, the sprint backlog, and the product increment [22,80–82].

The sMBSAP approach follows a combination of scrum and MBSAP [24]. Two of
the four main scrum meetings were used during the sMBSAP approach, namely, daily
standups and sprint retro. The other two scrum meetings were modified for sMBSAP. The
sprint planning meeting was modified to be a sprint/architecture planning meeting. The
same applied to the sprint review meeting, which was modified to be a sprint/architecture
review meeting. The typical MBSAP viewpoints generate the architecture artifacts to drive
the development process. MBSAP artifacts and sprint backlogs that include user stories
are the key information that the product development team uses to execute the product
development and show the progress to stakeholders. The sMBSAP [24] approach also
included the many typical MBSAP artifacts that included, but were not limited to, a glossary,
product breakdown, class diagrams, object diagrams, data model, use-case diagrams, and
capabilities. During and at the end of each sprint, the primary data were collected, as
explained in the next step.

3.2.4. Step 4: Collect System Development Performance Data

Planning poker [36] and Fibonacci scale [83] techniques were used for planning the
amount of work for all sprints. Planning poker is a scrum estimation technique that
determines the relative sizing using SP and playing cards [37]. During sprint planning,
the PBIs are captured in an agile tool such as ClickUp [84]. During sprint execution, the
tracked data elements for each PBI are updated daily. The updated data include the start
date, due date, actual closing date, planned SP, and completed SP. At the end of each day,
the completed PBIs are marked as“closed”, and the closing date is noted along with the
sprint duration. Also, the SP associated with the PBIs were summed up.

The completed SP were plotted on a burnup chart, thus allowing a visual comparison
between the ideal and actual progress. At the end of each sprint, the reliability of estimation
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and productivity metrics were calculated. The data were extracted from ClickUp onto an
Excel spreadsheet, which were then imported to PowerBi [85] for analysis and visualization.

To monitor defects, the tester logged the defect under the relevant list using a GitHub
repository. Based on the nature of the defect, the tester assigned the defect to a member of
the product development team. The product manager reviewed the logged defects, prioritized
them, and ensured that each one was assigned to the right person to address that defect. The
testers were encouraged to provide as many details as possible when logging a defect on
GitHub. They were encouraged to provide steps to reproduce the error, provide screenshots
of the defect, and annotate the screenshot for additional clarity. The person who was
assigned to a defect may ask questions or add comments, and the tester may respond until
the defect is marked as closed and verified by the product manager.

At the end of each sprint, the defects found during testing (pre-delivery) and after
passing testing (post-delivery) were captured using GitHub. At the end of the last sprint, the
defect-related data points were captured, including sprint duration, PBI, defects captured
pre-delivery, defects captured post-delivery, and CLOC.

3.2.5. Step 5: Analyze Data and Compare Results

Descriptive statistics, including means and standard deviations, were used to describe
and summarize data to discover emerging patterns. Descriptive data were also used to
examine the dispersion of the data sets concerning their mean and standard deviation and
were visually inspected using boxplots and bar charts.

The normality test was also used for all three dependent variables [86] to assess the
normal distribution. The unpaired t-test was also conducted. The unpaired t-test is a
type of inferential statistic that shows how significant the differences between two groups
are. In other words, it shows whether those differences (measured in means) could have
happened by chance. The t-test is considered to be a robust test against the normality
assumption [87,88]. The assumptions required for the independent samples of the t-test
were evaluated prior to conducting each t-test and are discussed in Section 3.3.3. The
descriptive statistics, normality test, and t-test were performed using GraphPad Prism
version 8.0.0 for Mac [89].

3.3. Quality of the Research Design
3.3.1. Minimizing Threats to Reliability

The threats to reliability include an error or bias from the participant’s or researcher’s
side. Although the product development team is not the subject of the experiment, the re-
searcher attempted to minimize any error or bias from their side. The researcher identified
four sources that could potentially pose threats to reliability: (1) participant error, (2) partic-
ipant bias, (3) researcher error, and (4) researcher bias. In order to mitigate the first threat,
the researcher ensured the control of any factor that could adversely alter how a member
of the product development team behaved. As for the second threat, the researcher did not
observe any inconsistency in how the product development team planned or executed the
sprints. Also, the researcher reviewed all defects detected internally and externally, and no
known inconsistencies were observed.

To mitigate the third threat, the researcher did not hesitate to ask the product development
team for clarification when the researcher was in doubt during any phase of the experiment.
A researcher’s bias may come from any factor that induces bias in the researcher’s input
recording [90]. As indicated earlier, given the nature of this quantitative experiment, the
interpretation is very limited, and the reliance is mainly on the collected quantitative data.
The possibility of the researcher’s bias when recording the data, as they are generated by
the product development team, is very limited. For example, when the team reports 20 defects
during a sprint, the researcher would record this number without further interpretation
from his side.
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3.3.2. Minimizing Threats to Validity

A variety of factors may jeopardize experimental and quasi-experimental research’s
internal validities. The threats are listed below, along with an explanation of how the
researcher sought to reduce them.

1. Selection bias: In this study, some selection bias was introduced by the fact that sprints
were chosen to be in one group or the other based on the scheduling of the sprints.
The product development team thought it would be counterproductive to execute one
sprint using one approach and the following related sprints with the other approach.
Although this non-random assignment is considered a threat to internal validity,
the benefit of it is that it mitigated the risk of impacting the product development
team momentum, which, if occurred, would have affected the productivity measures.
Further details on the steps followed to apply random assignment of the intact groups
are provided in Section 3.1.

2. Testing effect: Two measures were taken to address this threat. First, having a control
group that was executed with scrum helped guard against this threat, since the sprints
of the control group were equally subject to the same effect. Second, the researcher
did not share with the product development team the details of the study or the specific
variables under investigation.

Other threats that were monitored included the history effect, instrumentation effect,
and mortality effect. None of these effects were observed or occurred during the experiment.
Experimental and quasi-experimental research’s external validities may be also jeopardized
by a variety of factors. The factors jeopardizing external validity are listed below, along
with the mitigation strategies that the researcher implemented.

1. Changes to the causal relationship due to variations in the implementation within
the same approach: During the execution of both groups of sprints, no variations
were observed.

2. Interactions of causal relationships with settings: This factor considers the setting
in which the cause–effect relationship is measured, thus jeopardizing external valid-
ity [91]. The researcher believes that the experimental setting was similar to most
development projects after COVID-19, in which team members work and collaborate
remotely. However, the research acknowledges that conducting this experiment in
other settings would provide further insights into this factor.

3. Interactions of causal relationships with outcomes: This outcome refers to the fact
that a cause–effect relationship may exist for one outcome (e.g., more accurate commit-
ment reliability) but not for another seemingly related outcome (e.g., productivity) [92].
The researcher studied the impact of the two approaches on three outcomes. The
established causal relation has not been extended from one outcome to another with-
out data collection and measurement, which gives a fuller picture of the treatment’s
total impact.

4. The reactive or interactive effect of testing [76]: Given that this quasi-experiment is a
posttest only, this factor does not apply to this experiment.

3.3.3. Minimizing Threats to Statistical Conclusion Validity

Examining the dispersion of the data and screening for errors prior to conducting
an in-depth analysis is important [93]. All system development performance data were
screened for missing items or inconsistencies. To accurately and reliably interpret the
test results, some assumptions essential to all data analyses should be proven to be main-
tained [94]. The assumptions and related tests used before performing the independent
samples t-test are considered and discussed in this section. Independent t-tests involve the
following assumptions: (1) random assignment, (2) independence, (3) level of measurement,
(4) normality and outliers, and (5) homogeneity of variance.

1. Given that the two groups of sprints were not assembled randomly, due to scheduling
constraints, the two groups were considered non-equivalent (pre-existing groups).
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The schedule has been found to play a role in the assignment of subjects to experi-
mental groups in other quasi-experiments in software engineering [95]. In such cases,
researchers suggest assigning the treatment to one of the pre-existing (intact) groups
or to the other randomly [76,77]. This approach has been borrowed and implemented
by researchers in various fields [96], including software engineering [95], and it has
also been implemented in this experiment. Therefore, the assumption of the random
assignment of intact groups was tenable.

2. The assumption of independence suggests that the data are gathered from groups
that are independent of one another [87,97]. In this experiment, special considera-
tion was given to the sequence of the sprint implementation to better ensure that
the independence assumption held for the observations within each group. The in-
dependence assumption for the t-test refers to the independence of the individual
observations within each group rather than the interdependencies between sprints.
To best satisfy this assumption, each observation should be unconditionally unrelated
and independent of the others in terms of data collection or measurement. Violations
of the independence assumption, such as having repeated measures or correlated
observations, can lead to biased or incorrect results when using the independent t-test.
As an example from the context of this experiment, the number of defects observed in
Sprint 6 (a scrum-driven sprint) was independent of that observed in Sprint 7 (also
a scrum-driven sprint), and it was also independent of that observed in Sprint 9 (an
sMBSAP-driven sprint). A higher or lower number of defects in Sprint 6 had no
relationship to the number of defects in Sprints 7 or 8, although there was a schedule
interdependency between the three sprints. In summary, while the sprints may have
had scheduling dependencies, given that the observations within each group were
generally independent of each other, the assumption of independence was tenable for
the independent t-test.

3. The dependent variables must be continuous and measured at the interval or ratio
scale in order to satisfy the level of measurement assumption for the independent
t-test. The level of measurement assumption also requires a categorically independent
variable with two groups: one treatment and one control [87]. The type of data
collected (ratio scale and interval data) and having had two groups satisfied this
assumption.

4. The assumption of normality for each set of system performance data, where the
mean was calculated and was visually evaluated, involved the following: first, we
used a boxplot to eliminate outliers; then, we used a bar chart; finally, we statistically
calculated the data using the normality test [86].

5. Levene’s test was used to assess the argument that there is no difference in the
variance of data between groups. A statistically significant value (0.05) denotes
that the assumption has not been satisfied and that the variance between groups
is significantly different. Equal variance was not assumed when Levene’s test was
significant. Similarly, an equal variance was assumed when Levene’s test was not
significant (p > 0.05) [98].

4. Results and Discussion

This section compares the reliability of estimation, productivity, and defect rate metrics
from Section 3.2.2 for both the scrum-driven and sMBSAP-driven sprints. The comparisons
of the reliability of estimation were conducted based on the results of the CR. The comparisons
of the productivity were conducted based on the results of the SV, VF, and CLOC per hour.
Finally, the comparisons of the defect rate were conducted based on the results of the DD
and DL. Abbreviations used in this section include the number of samples (N), arithmetic
mean (M), and standard deviation (SD).
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4.1. Reliability of Estimation Results
Commitment Reliability (CR) Comparison

The CR of each sprint in chronological order is presented in Figure 4. For the scrum-
driven sprints, the lowest CR was 0.71 for Sprint 2, while the highest CR was 0.86 for
Sprint 2. For the sMBSAP-driven sprints, the lowest CR was 0.87 for Sprint 3, while the
highest CR was 1.0 for Sprint 20. The scrum-driven sprints (N = 10) were associated with a
commitment reliability ratio of M = 0.81 (SD = 0.046). By comparison, the sMBSAP-driven
sprints (N = 10) were associated with a numerically larger commitment reliability ratio of
M = 0.93 (SD = 0.032). The descriptive statistics are shown in Table 1.

To test the hypothesis that the scrum and sMBSAP were associated with a statistically
significantly different mean commitment reliability ratio, an unpaired independent sample
t-test was used to compare the scrum-driven sprints and sMBSAP-driven sprints. An alpha
level of 0.05 was utilized. The scrum-driven sprint and sMBSAP-driven sprint distributions
were sufficiently normal for the purpose of conducting the t-test (i.e., theskew was < |2.0|
and the Kurtosis was < |9.0| [99]). Additionally, the assumption of homogeneity of
variance was tested and satisfied via Levene’s F test, thus resulting in F(18) = 2.059 and
p = 0.297. The independent samples t-test was associated with a statistically significant
effect: t(18) = 7.15 → p < 0.0001 � 0.05. Thus, the sMBSAP-driven sprints were
associated with a statistically significant larger mean commitment reliability than the
scrum-driven sprints. A graphical representation of the means and the 95% confidence
intervals are displayed in Figure 4.
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Figure 4. Commitment reliability (CR) results.

Table 1. Descriptive statistics associated with commitment reliability (CR).

N M SD Skew Kurtosis

Scrum 10 0.81 0.046 −0.861 0.45

sMBSAP 10 0.93 0.032 0.041 2.83

4.2. Productivity Results
4.2.1. Sprint Velocity (SV) Comparison

The SV of each scrum-driven sprint in chronological order is presented in Figure 5.
The lowest SV was 22 for Sprint 2, while the highest SV was 30 for Sprint 12. The scrum-
driven sprints (N = 10) were associated with an SV of M = 26.8 (SD = 2.3). Similarly, the
SV of each sMBSAP-driven sprint is presented in Figure 5. The lowest SV was 27 for Sprint
3, while the highest SV was 34 for Sprints 8 and 13. By comparison, the sMBSAP-driven
sprints (N = 9) were associated with a numerically larger SV of M = 31.8 (SD = 2.2). The
descriptive statistics are summarized in Table 2.
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Figure 5. Sprint velocity (SV) results.

Table 2. Descriptive statistics associated with sprint velocity (SV).

N M SD Skew Kurtosis

Scrum 10 26.8 2.3 −0.7 1.10

sMBSAP 9 31.8 2.2 −1.3 1.83

To test the hypothesis that the scrum-driven and sMBSAP-driven sprints were asso-
ciated with a statistically significantly different mean SV, an independent sample t-test
was performed. A significance level of 0.05 was utilized. The scrum-driven sprint and
sMBSAP-driven sprint distributions were sufficiently normal for the purpose of conducting
the t-test (i.e., the |Skew| was < 2.0 and the |Kurtosis| was < 9.0 [99]). Additionally, the
required assumption on the homogeneity of variance was tested and satisfied via Levene’s
F test, with F(17) = 1.07 and p = 0.935. Now, the independent sample t-test was found to
be associated with a statistically significant effect: t(17) = 4.78→ p = 0.0002� 0.05. Thus,
the sMBSAP-driven sprints were associated with a statistically significant larger mean
SV than the scrum-driven sprints. A graphical representation of the means and the 95%
confidence intervals are displayed in Figure 5.

4.2.2. Velocity Fluctuation (VF) Comparison

Based on the captured SV data, the VF of each sprint in chronological order is pre-
sented in Figure 6, which was calculated using Equation (5). For the scrum-driven sprints,
the lowest VF was 0.82 for Sprint 2, while the highest VF was 1.12 for Sprint 12. For the
sMBSAP-driven sprints, the lowest VF was 0.89 for Sprint 3, while the highest VF was
1.12 for Sprints 8 and 13. The scrum-driven sprints (N = 10) were associated with a VF
standard deviation (SD = 0.08). By comparison, the sMBSAP-driven sprints (N = 9)
were associated with a numerically very similar standard deviation of (SD = 0.07). The
descriptive statistics are shown in Table 3. The results from this study suggest no noticeable
difference in the VF between the scrum and sMBSAP-driven sprints.
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Figure 6. Velocity fluctuation (VF) results.

Table 3. Descriptive statistics associated with velocity fluctuation (VF).

N M SD Skew Kurtosis

Scrum 10 1.00 0.08 −0.75 1.16

sMBSAP 9 1.05 0.07 −1.26 1.71

4.2.3. Count of Lines of Code (CLOC) per Hour Comparison

The total CLOC written during the sprints for each approach was used as a secondary
measure of the productivity and ended up being approximately 123,000 lines for the dietary
recommendation system under consideration. The CLOC written during the scrum-driven
sprints was 53,969, while the CLOC written during the sMBSAP-driven sprints was 69,679. The
total development hours for the scrum-driven sprints were 930 h, while the total development
hours for the sMBSAP-driven sprints were 980 h. Accordingly, and using Equation (6), the
CLOC per hour for the scrum-driven sprints was 58.03. In the same manner, the CLOC per hour
for the sMBSAP-driven sprints was 71.1. Thus, the sMBSAP-driven sprints were associated
with a numerically larger CLOC per hour than the scrum-driven sprints.

4.3. Defect Rate Results
4.3.1. Defect Density (Using PBI) Comparison

Based on the captured defect data and Equation (7), the DD of each sprint is presented
in Figure 7. For the scrum-driven sprints, the lowest DD was 0.68 for Sprint 12, while
the highest DD was 1.13 for Sprints 1 and 2. For the sMBSAP-driven sprints, the lowest
DD was 0.17 for Sprint 20, while the highest DD was 0.92 for Sprint 8. The scrum-driven
sprints (N = 10) were associated with a DD of M = 0.91 (SD = 0.18). By comparison,
the sMBSAP-driven sprints (N = 10) were associated with a numerically smaller DD of
M = 0.63 (SD = 0.29). The descriptive statistics are shown in Table 4.

To test the hypothesis that the scrum-driven and sMBSAP-driven sprints were associ-
ated with a statistically significantly different mean DD values, an independent sample
t-test was performed. The unpaired t-test was used to compare the DD between the
scrum-driven sprints and sMBSAP-driven sprints. An alpha level of 0.05 was utilized. The
scrum-driven sprints and sMBSAP-driven sprint distributions were sufficiently normal
for the purpose of conducting the t-test (i.e., the skew was < |2.0| and the Kurtosis was
< |9.0| [99]). Additionally, the assumption of homogeneity of variance was tested and
satisfied via Levene’s F test, with F(18) = 2.51, p = 0.1858. The independent samples t-test
was associated with a statistically significant effect of t(18) = 2.64→ p = 0.016 < 0.05.
Thus, the sMBSAP-driven sprints were associated with a statistically significant smaller
mean DD than the scrum-driven sprints. A graphical representation of the means and the
95% confidence intervals are displayed in Figure 7.
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Figure 7. Defect density (DD) results.

Table 4. Descriptive statistics associated with defect density (DD).

N M SD Skew Kurtosis

Scrum 10 0.91 0.18 −0.009 −2.02

sMBSAP 10 0.63 0.29 −0.42 −1.7

4.3.2. Defect Density (within KLOC) Comparison

Based on the captured defect data and Equation (9), the DD of all the scrum-driven
sprints (using KLOC) was 4.57. Similarly, the DD of all the sMBSAP-driven sprints (us-
ing KLOC) was 2.24. The total CLOC written during the sprints for each approach was
used as another measure of the size [66]. The CLOC written for developing the dietary
recommendation system was approximately 123,000. The CLOC written during the scrum-
driven sprints was 53,969, while the CLOC written during the sMBSAP-driven sprints was
69,679. The total number of defects detected during and after the scrum-driven sprints
was 247 defects, while the total number of defects detected during and after the sMBSAP-
driven sprints was 156 defects. Accordingly, using Equation (9), the defects per KLOC
for the scrum-driven sprints was 4.57. In the same manner, the defects per KLOC for the
sMBSAP-driven sprints was 2.24. Thus, the sMBSAP-driven sprints were associated with a
numerically smaller DD using the CLOC as the size than the scrum-driven sprints.

4.3.3. Defect Leakage Comparisons

The DL for each sprint was calculated using Equation (10), and the results are shown
in Figure 8. For the scrum-driven sprints, the lowest DL was 16.7% for Sprint 1, while
the highest DL was 23.1% for Sprints 4 and 5. Similarly, for the sMBSAP-driven sprints,
the lowest DL was 12.5% for Sprint 2, while the highest DL was 21.4% for Sprint 15. The
scrum-driven sprints (N = 10) were associated with a DL of M = 0.2 (SD = 0.02). By
comparison, the sMBSAP-driven sprints (N = 10) were associated with a numerically
smaller DL of M = 0.15 (SD = 0.06). The descriptive statistics are shown in Table 5.

To test the hypothesis that the scrum and sMBSAP-driven sprints were associated with
a statistically significantly different mean DL, an independent sample t-test was performed.
The unpaired t-test was used to compare the DD between the scrum-driven sprints and
sMBSAP-driven sprints. An alpha level of 0.05 was utilized. The scrum-driven sprint and
sMBSAP-driven sprint distributions were sufficiently normal for the purpose of conducting
the t-test (i.e., the skew was < |2.0| and the Kurtosis was < |9.0| [99]). Additionally, the
assumption of homogeneity of variance was tested and satisfied via Levene’s F test, with
F(18) = 2.51, p = 7.75. The independent samples t-test was associated with a statistically
significant effect, which was t(18) = 2.13→ p = 0.047 < 0.05. Thus, the sMBSAP-driven
sprints were associated with a statistically significant smaller mean DL than the scrum-
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driven sprints. A graphical representation of the means and the 95% confidence intervals is
displayed in Figure 8.
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Figure 8. Defect leakage (DL) results.

Table 5. Descriptive statistics associated with defect leakage (DL).

N M SD Skew Kurtosis

Scrum 10 0.20 0.02 0.57 −1.13

sMBSAP 10 0.15 0.06 −2.09 5.31

4.3.4. Other Observations

During sprint/architecture planning, it was observed that the product development team
reached an agreement on the estimation of the sMBSAP-driven sprints relatively faster than
they did for the scrum-driven sprints. The main difference in these meetings was the inputs
presented to the team to discuss and conduct their estimations. sMBSAP used a system
model as a single repository of the architecture and system requirements [18]. Scrum used
multiple tools to capture and present the architecture and system requirements, such as
ClickUp [84], Microsoft Office tools [100], and others [101]. The system model seemed
to have contributed to making the system architecture and requirements more apparent,
unambiguous, and easily communicated with the product development team compared to
those of the scrum approach.

The MBSE tool [102] used during the experiment provided methods to create, retrieve,
update, and delete the system requirements and architecture content. The tool also aided
in generating views of the architecture customized to the product development team needs;
the MBSE tool [102] also provided simulation capabilities of the architecture to support
analysis and evaluation. In summary, the main benefit observed from using a model resided
in its ability to visually represent the end-to-end software development flow from user
needs to delivered and supported software solutions. It was also observed, during the daily
standups and the sprint/architecture review, that the product development team demonstrated
more of a grasp of the features and functions that needed to be developed. Although both
the scrum and sMBSAP aim at improving productivity, the visual representation capabilities
of the sMBSAP gave it a comparative advantage.

The repeatable activities using architecture modeling and screen wireframing built-in
within the model as the foundation contributed to unambiguous communication with the
product development team. The visually clear direction seems to have improved the capability
of the product development team to interpret the features and functions, accordingly, which
helped to complete more SP within the same time frame and with fewer defects. Finally,
using the architecture model to highlight the completed parts of the system effectively
communicated the progress of the development effort. Similarly, using the architecture
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model to highlight the parts of the system based on their defect rate effectively communicated
the defect status.

5. Conclusions and Future Work

The purpose of this study was to compare the software development performance
of the sMBSAP vs. that of the scrum. Investigating the relative value of an agile MBSE
approach over agile alone might solve one of the obstacles to the adoption of agile MBSE.

Towards this goal, results were collected from a quasi-experimental posttest-only with
non-equivalent group research designs for the software development of a health technology
system. The independent variables were the two software development methods, the
sMBSAP and scrum, which were actuated during different development sprints. The
dependent variables were the software system development performance objectives of (1)
the reliability of estimation as measured by CR; (2) the defect rate as measured by DD using
PBI, KLOC, and DL; and (3) the productivity as measured by SV, VF, and CLOC per hour.
A total of twenty sprints were executed, with ten sprints executed for each approach,
respectively.

From the results, the observed commitment reliability and productivity for the sMBSAP-
driven sprints were larger than those of the scrum-driven sprints, and the observed defect rate
for the sMBSAP-driven sprints was smaller than that of the scrum-driven sprints. Specifically,
it was observed that there was a 16% increase in the CR, a 13.4% increase in the SV, a 22.5%
increase in the CLOC per hour, a 31.8% decrease in the DD using the PBIs method, a 50%
decrease in the DD using the KLOC method, and a 21.4% decrease in the DL.

The improved reliability of estimation, productivity, and defect rate could potentially help
reduce the risk of running behind schedule and overbudgetting that can occur with agile-
driven projects. Overall, these results provide some evidence of the efficacy of a combined
agile MBSE approach in managing software-based systems and in strengthening the case for
its adoption within the software development community, as well as the broader systems
engineering community.

The factors that pose threats to reliability, validity, and statistical conclusion validity
have been identified, monitored, and mitigated to minimize the impact of these factors on
the quality of the research design. However, there are still aspects of the research design
that could be improved to provide additional clear and convincing evidence regarding the
relative value of agile MBSE approaches. There is a need for deeper comparative analyses
between agile and agile MBSE methods using other software development objectives,
techniques, and metrics beyond the ones included in this study. Future work, then, might
also include comparative analysis for software products in industries other than health
technology against agile methodologies other than scrum, as well as for different sizes
of projects and teams. Such work would provide additional insights for the software
development community.

Domain-specific software engineering is an emerging paradigm that has the potential
to improve both the correctness and reliability of the software system and also lead to
greater opportunities for software automation. Future work may consider leveraging
the capabilities of agile MBSE methods such as sMBSAP in domain-specific software
engineering, such as blockchain-orientated software development [103].

Finally, due to several practical limitations, this study did not pursue a true experimen-
tal design (and this is likely the case for many software development research activities).
However, a potential direction may include developing the same product along two parallel
tracks (i.e., developing the same product twice): one track could use an agile MBSE, and
the other could use an agile approach. Even if a single track might be used (i.e., devel-
oping the product once, as was done in this study), the researcher might consider a true
experimental design with random sampling from a given population when assigning an ap-
proach to a given sprint. However, care must be taken to ensure that such a non-traditional
development plan does not adversely impact the momentum and other factors.
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