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Abstract: Abstract: The last two years have seen a rapid rise in the duration of time that both adults
and children spend on screens, driven by the recent COVID-19 health pandemic. A key adverse effect
is digital eye strain (DES). Recent trends in human-computer interaction and user experience have
proposed voice or gesture-guided designs that present more effective and less intrusive automated
solutions. These approaches inspired the design of a solution that uses facial expression recognition
(FER) techniques to detect DES and autonomously adapt the application to enhance the user’s
experience. This study sourced and adapted popular open FER datasets for DES studies, trained
convolutional neural network models for DES expression recognition, and designed a self-adaptive
solution as a proof of concept. Initial experimental results yielded a model with an accuracy of 77%
and resulted in the adaptation of the user application based on the FER classification results. We
also provide the developed application, model source code, and adapted dataset used for further
improvements in the area. Future work should focus on detecting posture, ergonomics, or distance
from the screen.
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1. Introduction

Globally, media outlets have highlighted the increased duration of time that adults
and children are spending on digital screens. For example, in the United Kingdom, it
was reported that people spend up to three and a half hours each day looking at TV
screens, four hours staring at laptops, and two hours on mobile phones [1]. This figure
almost doubled when stay-at-home measures were enforced due to the COVID-19 health
pandemic, with adults spending an average of six and a half hours each day in front of
a screen [2,3]. The average American teen spends 7 h and 22 min on a screen outside of
their regular schoolwork [4]. Today many learning and work-related activities have gone
online, forcing people to spend more and more time on the screen. Staring at your screen
for long hours each day can often result in dry eyes or eye strain, gradually contributing to
permanent eye problems such as Myopia [3].

The increased internet use for research requires users to navigate through web pages
designed using different fonts, font sizes, font colors, and background colors. These
websites do not always meet the basic requirements for visual ergonomics. The online
eLearning trend requires teachers to post materials on learning management systems
(LMS) without paying much attention to the content’s appearance. Content developers
use their discretion to identify fonts and backgrounds. This freedom often leads to the
publishing of content that is difficult to read, even for users with no visual disabilities. As a
user navigates through online content, the difference in content presentation introduces
temporary visual challenges. Users strain their eyes as they try to adjust to different display
settings. Similarly, the user’s environment can temporarily influence their ability to read
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the information on a screen, for example, where the lighting in a room is poor or in a
scenario where the screen is too close or too far.

A popular approach for ensuring that technology addresses user disabilities is assistive
technologies, which calls for specialized products that aim at partly compensating for the
loss of autonomy experienced by disabled users. Here the user is required to acquire new
technology or adapt existing technology using available tools before using the technology.
Where user requirements are not known a priori or dynamically change, the approach is
ineffective because it forces redeployment or reconstruction of the system [5]. Addition-
ally, the degree of disabilities varies widely in severity, and often mild or undiagnosed
disabilities go unsupported. Further, persons with mild disabilities tend to shun assistive
technology because it underlines the disability, is associated with dependence, and de-
grades the user’s image [6], thus impairing social acceptance. The net result is that many
users have become accustomed to squinting or glaring their eyes to change the focus of
items on the screen. Some users will move closer or further from the screen depending
on whether they are myopic or hyperopic. In such cases, the burden of adapting to the
technology resides with the user’s behavior. This approach can present further health
challenges to the user, such as damaging their posture.

This research proposes a technique that shifts the burden of adjusting the computer
settings from the user to the computer with minimal user involvement. The use of intelligent
techniques that can learn and predict the most suitable adaptations autonomously [7]
presents potential solutions. Integrating assistive technology into mainstream technology
will make it more acceptable, and this calls for new approaches in technology design.
The study adopts a self-stimulation approach, where the solution autonomously generates
and tests scenarios based on user behavior without affecting the live system [8]. The solution
leverages facial expression recognition (FER) techniques to detect eye strain. The main
contributions of the research are the development and evaluation of a solution that can
autonomously test and detect digital eye strain (DES) at runtime and adapt applications
to offer relief for the user. The research objectives, therefore, are (i) designing a seamless
assistive technology model that relieves eye strain using FER techniques, (ii) implementing
the solution using a self-adaptive approach that supports user-centered validation, and
(iii) evaluating the effectiveness of the developed solution through laboratory simulations
of facial expressions that mimic digital eye strain features. We organize the rest of the paper
as follows: Section 2 discusses the related work in this area, Section 3 presents the solution
designed, Section 4 describes the results, and the paper concludes in Section 5.

2. Related Work

Eye strain (medically referred to as asthenopia) refers to an ache felt inside the eye
because of the stress of the accommodative and convergence mechanisms of the eye. Ex-
ternally, a person experiences dryness, irritation of the eye, and compromised vision [9].
This often results in a user’s attempt to improve vision by closing the eyes, squinting,
or widening the eyelid. Eye strain often occurs while concentrating on a visually intense
task such as reading fine print or in a poorly lit environment. Although the condition has no
immediate ill health effects, it degrades the eye muscles if it goes on for prolonged periods.
The increased use of digital platforms has recently increased eye strain leading to the
evolution of new terms such as digital eye strain, computer vision syndrome, or visual fa-
tigue [10,11]. Digital eye strain is defined as eye and vision problems associated with using
computers and other electronic displays [12]. This study provides an autonomous solution
for relieving digital eye strain, thus addressing a growing concern in the digital society.

2.1. Facial Expression Recognition

Recent advances in image-recognition algorithms have made it possible to detect facial
expressions such as happiness, sadness, anger, or fear [13,14], with several reviews also
touching on the subject [15,16]. Such initiatives find applications in detecting consumer
satisfaction of a product [17–19] or in healthcare to diagnose certain health issues [20,21]
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such as autism or stroke. Recently, FER has found applications in detecting fatigue, which
can be dangerous, especially for drivers [22–24]. However, our review of the literature
revealed limited evidence for using this technology to detect DES. One of the few studies
identified used the blink rate and sclera area color to detect DES using a raspberry-pi cam-
era [25]. The research, however, noted poor results with certain skin tones or where limited
light-intensity difference between the sclera and skin region existed. Additionally, users
with spectacles also generated reflections that interfered with color detection. Therefore,
an approach that does not rely on color would address these limitations.

Eye tracking is increasingly becoming one of the most used sensor modalities in affec-
tive computing recently for monitoring fatigue. The eye tracker for such experiments also
detects additional information, such as blink frequency and pupil diameter changes [26].
A typical eye tracker (such as video-oculography) consists of a video camera that records
the movements of the eyes and a computer that saves and analyzes the gaze data [27].
The monitoring of fatigue using this approach differs from the monitoring of basic facial
emotions (anger, contempt, disgust, fear, happiness, sadness, surprise) because specific
facial points are monitored, such as the percentage eye closure (PERCLOS), head nodding,
head orientation, eye blink rate, eye gaze direction, saccadic movement, or eye color. How-
ever, fatigue is expressed using a combination of other facial expressions, such as yawning
or hands on the face. Therefore, we miss vital fatigue signals by focusing only on the
eyes. Our proposed solution uses FER techniques, thus avoiding the light intensity and
localization challenges faced when using the eye color or the eyes only to detect fatigue.

2.2. Machine Learning Techniques for FER

Recent studies on facial expression recognition [28] acknowledge that machine learning
plays a big role in automated facial expression recognition, with deep learning algorithms
achieving state-of-the-art performance for a variety of FER. This section describes the
datasets, preprocessing techniques, and algorithms used in machine learning for FER.

2.2.1. FER Datasets

Studies using relatively limited datasets are constrained by poor representation of
certain facial expressions, age groups, or ethnic backgrounds. To address this, the authors
in [29] recommend using large datasets. In their review of FER studies, they note that the
Cohn–Kanade AU-Coded Face Expression Database (Cohn–Kanade) [30] is the most used
database for FER. A more recent review [15] introduced newer datasets such as the Extended
Cohn–Kanade (CK+) [31] database, which they noted was still the most extensively used
laboratory-controlled database for evaluating FER systems. It has 593 images compared
to the original version, which only had 210 images. Another notable dataset introduced
was the FER2013 [32], a large-scale and unconstrained database collected automatically
by the Google image search API. The dataset contains 35,887 images extracted from real-
life scenarios. The review [15] noted that data bias and inconsistent annotations are
common in different facial expression datasets due to different collecting conditions and
the subjectiveness of annotating. Because researchers evaluate algorithms using specific
datasets, the same results cannot be replicated with unseen test data. Therefore, using a
large dataset on its own is not sufficient. It is helpful to merge data from several datasets to
ensure generalizability.

Additionally, when some datasets exhibit class imbalance, the class balance should
be addressed during preprocessing by augmenting the data with data from other datasets.
These findings motivated our decision to use more than one dataset as well as the use
of large datasets. We used images from the CK+ and FER2013 datasets and conducted
class balancing during preprocessing. Notably, most FER datasets had images labeled
using the seven basic emotions (disgust, fear, joy, surprise, sadness, anger, and neutral).
Therefore, preprocessing this study’s data called for re-labeling the images to represent
digital eye strain expressions such as squint, glare, and fatigue. This exercise called for
manually reviewing the images and identifying those that fell in each class. We assigned
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the images a new label representing the digital eye strain expressions. For instance,fatigue
was labeled 1, whereas glare was labeled 2. To do this, the original images were rebuilt
from the FER2013 dataset of pixels to enable the researchers to see the expressions. Once
the labeling process was complete, a new dataset of pixels was generated with the new
labels. By automatically detecting these facial expressions and autonomously adjusting
font sizes or screen contrast, the user does not need to glare or squint to accommodate the
screen settings. This also creates awareness for the user when an alert occurs, and they can
take a break to address fatigue.

2.2.2. Image Processing and Feature Extraction

Image processing refers to the enhancement of pictures for ease of interpretation [33].
Common image processing activities include adjusting pixel values, image colors, and bi-
narizing [34]. Several image-processing libraries that support these processes exist, such
as OpenCV [35] and scikit-image [36]. They easily integrate with popular open-source
machine-learning tools such as Python and R. After the image is preprocessed, feature
extraction reduces the initial set of raw image data to more manageable sizes for classifica-
tion purposes. Previous FER reviews [37] describe action unit (AU) and facial points (FP)
analysis as two key methods used for feature extraction of classic facial emotion. Action
units find applications when analyzing the entire face. This study used OpenCV Libraries
in Python for image preprocessing and action units for feature extraction.

2.2.3. FER Algorithms

When our eyes squint, several things occur: the pupils get smaller as they converge,
the eyelids pull together, and the edges of the eyelids fold to contract the cornea [9].
Sometimes the eyebrows could bend inwards, and the nose bridge moves upwards to
enhance the eyes’ focus. FER techniques can detect these expressions and alert the user or
adjust text sizes and color contrasts in an application to relieve eye strain. The FER process
generally involves the acquisition of a facial image, extracting features useful in detecting
the expression, and analyzing the image to recognize the expression [29]. Machine learning
algorithms such as deep learning neural network algorithms successfully perform FER.
A popular algorithm, according to recent FER reviews [15,16], is the convolutional neural
network (CNN), which achieves better accuracy with big data [38]. It has better effects on
feature extraction than deep belief networks, especially for expressions of classic emotions
such as contempt, fear, and sadness [15]. The results of these studies inspired the choice of
CNN as the algorithm for implementing FER in this study [5].

However, it is worth noting that these results depend on the specific dataset used.
For instance, the models that yielded the best accuracy in the FER2013 dataset are Ensemble
CNNs with an accuracy of 76.82% [32], Local learning Deep+BOW with an accuracy of
75.42% [39], and LHC-Net with an accuracy of 74.42% [40]. The models that yielded the
best accuracy in the CK+ dataset include ViT + SE with an accuracy of 99.8% [41], FAN
with an accuracy of 99.7% [42], and Nonlinear eval on SL + SSL puzzling with an accuracy
of 98.23% [43]. Sequential forward selection yielded the best accuracy on the CK dataset,
with 88.7% accuracy [44]. The highest performing models on the AffectNet dataset are
EmotionGCN with an accuracy of 66.46% [45], EmoAffectNet with an accuracy of 66.36 [46],
and Multi-task EfficientNet-B2 with an accuracy of 66.29% [47]. Although numerous
datasets exist for facial expression recognition, this study sought to detect expressions
outside of the classic emotions. The absence of labeled datasets in this area called for
relabeling of images. The choice of the dataset for relabeling the images was not crucial.
Future research should seek to relabel images from larger datasets such as AffectNet.

With CNN, deeper networks with a larger width, depth, or resolution tend to achieve
higher accuracy, but the accuracy gain quickly saturates [48]. Adding dropout layers
increases accuracy by preventing weights from converging at the same position. The key
idea is randomly dropping units (along with their connections) from the neural network
during training. This prevents units from co-adapting too much [49]. Adding batch
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normalization layers increases the test accuracy by normalizing the network input weights
between 0 and 1 to address the internal covariate shift that occurs when inputs change
during training [50]. Pooling layers included in models decrease each frame’s spatial size,
reducing the computational cost of deep learning frameworks. The pooling operation
usually picks the maximum value for each slice of the image [51]. A summary of this
process is depicted in Figure 1.

Figure 1. Distribution of facial expressions.

Popular CNN designs are based on the theoretical foundations laid by AlexNet [52],
VGG [53], and ResNet [54]. AlexNet uses ReLu (rectified linear unit) given by f(x) = max
(0, x) for the non-linear part instead of a tanh or sigmoid function, hence training is faster
by resolving the vanishing gradient problem. AlexNet also reduces overfitting by using
a dropout layer after every convolutional layer [55]. These present fewer computational
requirements than VGGNets. VGGNets advocate for multiple stacked smaller-size kernels
rather than one with a larger size because this increases the depth of the network [56],
which enables it to learn more complex features. Increasing the depth, however, introduces
other challenges, such as the vanishing gradient problem and higher training error val-
ues. ResNets address these challenges by introducing a global average pooling layer [57]
and residual modules [58]. This reduces the number of parameters and increases the learn-
ing of the earlier layers. This study created and tested models based on these architectures
to identify a suitable model for the research. Our future work will make use of more
accurate approaches such as GoogLeNet.

3. Solution Design

Multimedia collections usually induce multiple emotions in audiences. The data
distribution of multiple emotions can be leveraged to facilitate the learning process of
emotion tagging, yet few studies have explored this [59]. As proof of concept, we developed
applications that use machine learning for real-time facial expression detection to detect
the presence or absence of digital eye strain features on the face. A self-adaptation process
follows to relieve digital eye strain. We named the application Vision Autocorrect, which
symbolizes its ability to edit a user application and automatically correct their temporary
computer vision syndrome.

3.1. Developing the Machine Learning Model

A machine learning model is a file that has been trained to recognize patterns in data.
It is trained over a set of data using an algorithm that can reason over these data and learn
from them. After training the model, it is used to reason over data it has not seen before.
This section describes how we built the model through the training process.

3.1.1. Data Labeling

During this process, facial images from FER datasets were manually relabeled with
digital eye strain expressions. A total of 36,540 images from FER2013 [31] and CK++48 open
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datasets were relabeled from the classic facial expression emotions (happiness, sadness,
anger, or fear) to digital eye-strain expressions (squint, glare, and fatigue).

The final dataset (The integrated and relabeled dataset posted on GitHub, https://
github.com/Jeetg57/VisionAutocorrectDataset, accessed on 11 March 2023) consists of
6513 images labeled Fatigue, 4188 images labeled Glare, and 9022 images labeled Squint.
The rest of the images formed the normal (6546) and negative/none expressions (10,271),
as summarized in Figure 2. During the labeling process, images with inward eyebrows and
squeezed eyes formed the Squint class, whereas those with arched eyebrows and gorged
eyes fell in the “Glare” class, as shown in Figure 3. Images with eyes closed, hands on faces,
or yawning were labeled Fatigue, and those without any of these emotions formed the
Normal class. This study only focused on expressions of fatigue manifested through facial
expressions such as prolonged eye closure and the presence of hands near the face. Facial
expressions that did not manifest a squint, glare, or fatigue expression were classified as
Normal. For the study, the “none” class comprised expressions where the user was not
facing the computer or there were no facial images. We assumed that where the user was
facing away from the computer, the facial expressions were not a result of the computer
and hence should not be addressed by adapting the user applications.

Figure 2. Distribution of facial expressions.

Figure 3. Re-classified facial expressions from [32] and CK++48 [31] datasets.

https://github.com/Jeetg57/VisionAutocorrectDataset
https://github.com/Jeetg57/VisionAutocorrectDataset
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The extracted pixels of the labeled images formed the training and test data. They
were normalized and resized into 48 × 48 grayscale images. The dataset was split into
a training set of 29,234 images (80%) and a test set of 3653 (10%) images. The rest of the
images (10%) formed private test data used for prediction when evaluating the final model.

3.1.2. Model Development

The process started by training several machine-learning models that use CNN al-
gorithms for image classification. We used Tensorflow and Keras libraries, which are
open-source libraries with a Python interface for artificial neural networks. Widely used
in computer vision, convolutional neural networks comprise layers of artificial neurons
called nodes. The nodes calculate the weighted sum of input pixel values and return a
map of important features, such as colors, in the form of an activation function. Three
dimensions describing the height, width, and many color channels represent an image
mathematically as a tensor. The filter (F—learnable weights), padding (P—elements added
on each of the four sides of the image), and stride (S—a step taken in the convolutional
product) determine each of these dimensions (d) calculated using Equation (1).

Outputd =

(
Inputd − Fd + 2P

Sd

)
(1)

We developed and tested several models based on popular CNN architectures to
identify a suitable model. The models used the CNN architectures of AlexNets, VGGNets,
and ResNets. In this paper, we report six models that provided significant results (Model
ID 1, 2, 5, 6, 7, and 8). The choice of the models was based on results obtained from
laboratory simulations and user feedback. The evaluation criteria indicated how quickly
and accurately a model could detect specific expressions. In Table 1, we summarize the
architecture of the selected models and the number of convolutional layers used.

Table 1. Architecture of selected models.

Model ID Architecture Number of Convolutional Layers

3
AlexNets [42]

4
7 4
8 8

1 VGGNets [43] 6
6 9

5 ResNets [44] 7, 8 Separable

A virtual machine deployed in Azure was used to train the modules. The virtual
machine had six cores with a total of 56 RAM and 380 GB of disk storage. The GPU used
was an NVIDIA Tesla K80.

3.2. Digital Eye Strain Expression Recognition

The classification of previously unseen images starts by capturing frames of the
user’s faces while the user is using an application in real time. This image undergoes
several preprocessing steps before classification. The steps, illustrated in Figure 4, include
converting the image to grayscale, detecting the face, cropping the face, resizing the image
to 48 × 48 pixels, and finally converting the image to a flattened pixels file.

hj(x) =
∫ 1 i f pj f j(x)<pjθj)

0 otherwise
(2)

This study used the Viola–Jones facial detection algorithm, which uses rectangles to
identify features in an image [60]. The algorithm trains a classifier using the Adaboost
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machine-learning algorithm, an ensemble algorithm that combines the output of sev-
eral weak classifiers to generate a strong classifier. For each feature (fj) and parity pj,
the weak learner (hj(x)) determines the optimal threshold (θj) classification function given
in Equation (2), such that the minimum number of examples are misclassified. The output
of this classifier detects faces in an image.

IMAGE PROCESSING

Gray
Scale

Write
Pixels

Resize
Image

Crop
Face

Detect
Face

Input
Image

Feature
Extraction

Figure 4. Image preprocessing steps.

This approach allows for the detection of image features in real time. It also works
well for frontal faces, which is ideal for detecting features for users working on a computer.
Our experiments showed that it worked well for users in rooms with different lighting,
users with different skin tones, and those who wore glasses. Our future work will explore
opportunities for improving the proposed solution through other methods, such as Kanade–
Lucas–Tomasi facial detection algorithms [61]. To improve the accuracy of the proposed
model, we employed preprocessing techniques to resize the captured images, convert them
to grayscale, and remove noise. Future research will explore how additional preprocessing
techniques can improve the accuracy of the proposed solution.

We cropped the detected faces to retain an image with a face only, removing external
features that would reduce the prediction accuracy. The flattened pixels of the final image
undergo feature extraction. This process used action units, which are numeric codes that
describe the activity of different parts of the face, such as cheek raising, brow lowering,
and nose wrinkling, or upper lips movements. During classification, comparing these
action units with those in the developed model help in making predictions based on the
closest match. The predicted class represents the emotion, as illustrated in Figure 5.

Fatigue

Input Face
Image

Feature
Extraction

Preprocessing

Preprocessing

Database
Face Image

Classification

Feature
Extraction

Glare

Squint

Normal

Figure 5. Image preprocessing steps.

3.3. Self-Adaptation System

In this study, the self-adaptation process called for developing a user’s application
that is reconfigured based on the expression detected and predefined decision rules.

3.3.1. Design and Implementation

The self adaptive system uses a three-tier architecture with presentation, application,
and database tiers. The presentation tier monitors the users’ on-screen behavior by cap-
turing the facial image. The application layer analyzes the image to detect digital eye
strain expressions. This analysis is accomplished through image preprocessing, feature
extraction, and classification processes. Following this analysis, predefined decision rules,
informed by experts and the user’s previous behavior, determine a set of actions to adjust
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the client application upon detecting eye strain. The system seeks user consent before
making any adjustments, hence the user can accept or reject the settings. The user decision
acts as a feedback loop used for training the system in the future. In this way, we design a
self-adaptive system that automates the process of relieving digital eye strain, as illustrated
in Figure 6.

Execute
Adapt App

Monitor
Input Image

Analyze
Expression

Plan
Decision Rules

Knowledge Base
Rules, Thresholds, Logs

Managed System
Controllable User Application

Non-Controllable Environment
User, Hardware, & Software

Current App
Setting

New App
Settings

App
Startup Effect

User Image &
System Settings

VISION AUTOCORRECT: SELF-ADAPTIVE SYSTEM

Figure 6. Vision-autocorrect self-adaptive architecture.

As proof of concept, we developed two prototype applications to evaluate the pro-
posed solution based on two use cases. Users typically access software as stand-alone
applications installed on their devices or as web-based applications. The proposed so-
lution can work for both scenarios, and we developed prototypes for each use case to
evaluate this. The first use case was a web application that represents users reading
content on the web. We used JavaScript, HTML, and CSS to publish content for users
to read. The web server was designed using the Flask package. Asynchronous HTTP
POSTs using jQuery and Ajax methods load captured images from the user to the server.
The system monitors the persistence of eye strain expressions within a given period. For ex-
ample, if more than five consecutive image samples fall under the “Squint” class, then
we conclude that the user exhibits a prolonged squint, and an action is required to re-
lieve this. The second use case was a python graphical user interface application that
represents users reading content from any software application that is not web-based.
The application source code, decision rules, and trained models are available on GitHub
(https://github.com/Jeetg57/Vision-Autocorrect-Application, accessed on 11 March 2023).
We used a Python GUI toolkit to display the user interface, OpenCV to show a frame from
the camera, TensorFlow to predict the class of the image, and XML Element tree library to
parse an XML file, which contains decision rules to govern what the application does after
classification. Like the web-based application, the open-source machine-learning libraries

https://github.com/Jeetg57/Vision-Autocorrect-Application


Software 2023, 2 206

OpenCV and TensorFlow implement the Analyze logic using the convolutional neural
network trained model.

When the application is in use, pictures of the user taken at an interval of five seconds
determine whether the user is squinting, glaring, or fatigued. The application analyzes the
picture and logs the expression. Once an expression log exceeds a predefined threshold
value, the adaptation process starts by alerting the user. For example, if the user is squinting,
the application alerts the user and seeks consent to increase the font size. The developed
application periodically deletes the images taken to maintain the user’s privacy and save
on memory resources.

3.3.2. Decision Rules

We employed decision rules to determine the action required based on the expression
detected. A decision rule is a simple IF–THEN statement consisting of a condition (called
antecedent) and a prediction (consequence). For example: IF squint (condition), THEN in-
crease the font size (prediction). We used a combination of several rules to make predictions
for different facial expressions. Relevant actions were determined by inducing decision
rules, creating “if–else–then” type rules when a classified expression is received/detected
and generating an output variable representing the alert. The algorithm provided in
Figure 7a illustrates the self-adaptation process. The glare and squint expressions called for
adjustments of font sizes or colors, whereas the fatigue expression called for a user notifica-
tion only. Other expressions, such as normal and none, called for no action, as illustrated by
the decision rules in Figure 7b. Where an action is required, such as adjusting the font sizes,
the application adjusts the font size gradually until the user’s facial expression normalizes.
The user can also opt to reject any adaptation decision made.

(a) (b)

Figure 7. (a) Self-adaptation algorithm and (b) decision induction rules.

4. Experimental Results and Discussion

We describe the early experimental results obtained from testing the developed model
on a sample of users while using digital devices for their daily activities. The results are
based on the user’s perception of the accuracy of the model and simulated laboratory
experiments on the model’s ability to detect unseen faces.

4.1. Model Evaluation

To identify a suitable model for the study, we implemented and tested several models.
Most of the models stopped training after 30–35 epochs, as seen in Appendix A. The results
presented in Table 1 show the training and user evaluation tests. The selected users were
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volunteer college students whose ages range from 19 to 24 years. This age group is highly
susceptible to digital eye strain given their frequent need to conduct research for their
studies using online devices and access social media for entertainment. They were required
to use a device with the proposed solution installed and rate how quickly and accurately it
detected their expressions.

Although the training results ranked Model IDs 6, 7, and 8 highly as shown in Figure 8,
users observed that Models IDs 1 and 6 appeared to perform better as outlined in Table 2.
In the table the symbols , , , and are used to represent the accuracy status ranging
from the least to the most models respectively as perceived by the users. The results revealed
that Model ID 6 was the most accurate according to both users and the training results
obtained. Based on this, Model ID 6 was used to develop the final application, available as a
Jupyter notebook for reproducibility on: https://github.com/Jeetg57/VisionAutocorrect/
blob/main/Model%206/6R1/Model%206R1.html (accessed on 10 March 2023).

We evaluated the resources used to train our model to establish whether accuracy
was obtained at the expense of resources. The results illustrated in Figure 9a showed
that Model 8, which was a relatively deeper AlexNet network, took the longest time to
complete training. In contrast, the shallower AlexNet networks (Models 7 and 3) took a
shorter time. By stacking up the convolutional layers, as in the case of VGGNets, the time
taken significantly reduces even for deeper networks such as Model 6. The amount of time
taken is proportional to the GPU power usage, as seen in Figure 9b. It is worth noting,
however, that Process Memory Available was slightly higher for the VGGNets architectures
compared to the AlexNet architectures. The ResNet model (Model 5) consumed relatively
fewer resources but did not perform as accurately. Despite the accuracy obtained, the
selected model (Model 6) did not use comparatively more resources. This highlights the
suitability of the approach for constant model training based on collected user feedback.

Figure 8. Distribution of facial expressions.

(a) (b)

Figure 9. Resource utilization metrics for (a) GPU power usage (b) process memory available.

https://github.com/Jeetg57/VisionAutocorrect/blob/main/Model%206/6R1/Model%206R1.html
https://github.com/Jeetg57/VisionAutocorrect/blob/main/Model%206/6R1/Model%206R1.html
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Table 2. Model evaluation results.

Training Results User Tests Results

Model ID Attempt Accuracy Squint Glare Fatigue Normal Rank

Model 1 1 0.634043694 5

2 0.651729226 4

3 0.674306452 1

4 0.660965323 2

5 0.655970991 3

Model 3 1 0.692402422 4

2 0.676529944 5

3 0.738822579 1

4 0.705298781 2

5 0.694386482 3

Model 5 1 0.648308396 1

2 0.69226557 2

3 0.652721226 3

4 0.666575432 4

5 0.647453249 5

Model 6 1 0.747887671 2

2 0.771764815 1

3 0.702151656 5

4 0.708172262 4

5 0.738788366 3

Model 7 1 0.732459903 3

2 0.724934161 4

3 0.719495118 5

4 0.750555873 1

5 0.746450901 2

Model 8 1 0.745014191 3

2 0.655389428 5

3 0.728560209 4

4 0.726165652 2

5 0.723497391 1

Key: Accurate, Partially Accurate, Partially Inaccurate, Inaccurate

A loss curve during training is one of the most widely used plots to debug a neural
network. It provides a snapshot of the training process and the direction in which the
network learns. We stopped the training process when the validation and training errors
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stopped dropping. The gap between training and validation accuracy is a clear indication of
overfitting. The larger the gap, the higher the overfitting. The results presented in Figure 10a
show that the validation loss started to increase for the selected model at epoch 30. Hence,
the training was stopped early (early stopping) to prevent the model from overfitting. We
accounted for this by adding a delay using the patience parameter of 5 before the training
was stopped, i.e., after the point where the validation loss starts to increase (indicating
model performance has reduced). Similarly, training and validation accuracy also helps
assess the model to prevent overfitting. The training stopped when the validation accuracy
is equal to or slightly less than the training accuracy, as illustrated in Figure 10b. We used
huge datasets to train the model and neural networks with regularization to select relevant
features and reduce overfitting. Future studies should employ cross-validation and other
techniques to improve accuracy by reducing overfitting.

(a) (b)

Figure 10. Selected models training and validation (a) loss and (b) accuracy metrics.

The final model had an accuracy level of 77%. A closer examination of the model’s
accuracy using the resultant confusion matrix illustrated in Figure 11 revealed that some
expressions, such as glare, were more accurately classified than others, such as fatigue. We
attributed this to the accuracy of the image labeling process. Because some Fatigue images
closely resembled Squint images, there were some overlaps. Cleaning the dataset further
would enhance this accuracy.

Figure 11. Selected models confusion matrix.
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The selected model has nine convolutional layers used to classify facial expressions
by identifying features in image patterns. Because a large set of input features may have
many small feature patterns, different layers used enhanced different patterns. Three
maximum pooling layers are used with a 2 × 2 pool size applied on fully connected layers
to avoid overfitting of the data. The max-pooling layers downsize the features in an image
by preserving only the convolved features. Classical neural network layers, called dense
layers, assist in learning. We used the ReLU activation function for the neural network
learning and the adaptive moment estimation algorithm (ADAM) to optimize the final
model, hence improving performance. Figure 12 shows the detailed network architecture.

Figure 12. The selected neural network architecture.

4.2. Evaluating the Facial Expression Recognition Process

Image preprocessing occurs in real time while the user is using the application. Dur-
ing this time, a video frame is captured periodically, converted to grayscale, cropped, and
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resized, and a pixel file is generated. The classifier predicts the expression on the prepro-
cessed image. The predicted expression displayed on the real-time video from several
tests helped evaluate the process. Different users conducted several tests to evaluate the
model generalizability using simulated tests. The results presented in Figure 13 show that
the model accurately detects the expression for users with spectacles, without spectacles,
or with different skin tones. The model also detected different expressions with acceptable
accuracy levels where the lighting in the environment differed, such as during the day with
natural light or at night with artificial lighting.

Figure 13. Expression detection results.

4.3. Evaluating the Self-Adaptation Process

To evaluate the self-adaptive application developed, we displayed the output of the
classification process alongside the decision taken. The results displayed in Figure 14
show the output of four consecutive emotions logged as fatigue. These images are taken
at intervals of 5 s while using the application. This means that the user continuously
exhibited signs of fatigue for 20 s. When the fifth reading shows the same expression,
the application issues an alert. The threshold period is adjustable to suit user preferences
or expert recommendations. In this case, the recommended action was informing the user
to take a break. If the user issues consent, the application closes. A different test, Figure 15,
shows a user opening a web page that has poorly selected background and text colors. This
makes it difficult to read, and the user starts glaring. The results show the app notifying
users with a dialog box for their consent. When the user consents, the background and text
colors are reverted to the default black and white colors. Both tests discussed here show
how the decision rules behave when an adaptation action is required (fatigue or glare).
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Figure 14. Digital eye strain expression detected, expression logs, and alert issued.

Figure 15. User consent prompt and adaptation.

We displayed the user images and logs for testing purposes, but they run in the
background in the live environment. Although the tests only describe simulated lab experi-
ments, they provide insight into the potential for developing self-adaptive applications that
relieve digital eye strain. The literature review on digital eye strain highlighted the need
for more research in this area to enhance the solution, such as engaging ophthalmology
experts. The results of these studies would enrich the solution by providing well-tested
threshold values for the self-adaptive application.

5. Conclusions

This research presents the results of a self-adaptive approach to address the challenge
of digital eye strain. The study relabeled existing open-set FER datasets and designed an
algorithm for digital eye strain expression recognition. We designed a seamless assistive
technology model that relieves eye strain using FER techniques and implemented the
solution using a self-adaptive approach that supports user-centered validation. Several
CNN models were developed, trained, and tested. The study concluded by presenting the
evaluation results obtained through laboratory simulations. The results showed that the
selected model could classify the expressions with an accuracy of 77%. Although cleaning
the dataset to remove confusing images would enhance the results, this study opted to
use the entire dataset to mimic real-life expressions that are not always clear-cut. We can
enhance the solution by modifying the self-adaptive application with image sampling fre-
quencies and threshold values informed by ophthalmology experts. We envision that future
work in this area will scale the solution by detecting and correcting posture, ergonomics,
and distance from the screen.
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Appendix A

Table A1. Model details.

Model Data Model Accuracy Confusion Matrix

Model ID 1

Early Stopping Epochs 35

Training Accuracy 0.67

User Evaluation 3

https://github.com/Jeetg57/VisionAutocorrect
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Table A1. Cont.

Model Data Model Accuracy Confusion Matrix

Model ID 3

Early Stopping Epochs 30

Training Accuracy 0.74

User Evaluation 2

Model ID 5

Early Stopping Epochs 20

Training Accuracy 0.65

User Evaluation 6

Model ID 6

Early Stopping Epochs 35

Training Accuracy 0.77

User Evaluation 1
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Table A1. Cont.

Model Data Model Accuracy Confusion Matrix

Model ID 7

Early Stopping Epochs 20

Training Accuracy 0.75

User Evaluation 5

Model ID 8

Early Stopping Epochs 35

Training Accuracy 0.72

User Evaluation 4
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