

Software 2023, 2, 21–70. https://doi.org/10.3390/software2010003 www.mdpi.com/journal/software

Article

A Model-Driven Approach for Software Process
Line Engineering
Halimeh Agh and Raman Ramsin *

Department of Computer Engineering, Sharif University of Technology, Tehran P.O. Box 11365-11155, Iran
* Correspondence: ramsin@sharif.edu

Abstract: It has become increasingly preferable to construct bespoke software development pro-
cesses according to the specifications of the project at hand; however, defining a separate process
for each project is time consuming and costly. One solution is to use a Software Process Line (SPrL),
a specialized Software Product Line (SPL) in the context of process definition. However, instantiat-
ing an SPrL is a slow and error-prone task if performed manually; an adequate degree of automation
is therefore essential, which can be achieved by using a Model-Driven Development (MDD) ap-
proach. Furthermore, we have identified specific shortcomings in existing approaches for SPrL En-
gineering (SPrLE). To address the identified shortcomings, we propose a novel MDD approach spe-
cifically intended for SPrLE; this approach can be used by method engineers and project managers
to first define an SPrL, and then construct custom processes by instantiating it. The proposed ap-
proach uses a modeling framework for modeling an SPrL, and applies transformations to provide
a high degree of automation when instantiating the SPrL. The proposed approach addresses the
shortcomings by providing an adequate coverage of four activities, including Feasibility analysis,
Enhancing the core process, Managing configuration complexity, and Post-derivation enhancement.
The proposed approach has been validated through an industrial case study and an experiment; the
results have shown that the proposed approach can improve the processes being used in organiza-
tions, and is rated highly as to usefulness and ease of use.

Keywords: method engineering; software process line; software process variability; model-driven
development; software process improvement

1. Introduction
The software process (also referred to as software development methodol-

ogy/method) is a critical factor in developing quality software systems, as it helps trans-
form user needs into a software product that satisfies those needs [1]. There is no software
process suitable for all development situations [2], as the suitability of a process depends
on various product, project, and organizational characteristics [3]. Thus, building custom
processes has become critical for software development organizations [4]; however, de-
fining a specific process for each and every project is a time-consuming and costly en-
deavor [5]. Method tailoring is an effective approach for building bespoke software pro-
cesses [6].

Software Process Line (SPrL) is a relatively new method tailoring approach that aims
to tackle the deficiencies of traditional tailoring approaches (e.g., deficiency in supporting
certain process modifications such as replacing or adding new elements) [7]. In the context
of software process engineering, an SPrL is a special Software Product Line (SPL) [8,9]
that increases reuse opportunities and decreases the adaptation effort [10]. According to
[11], an SPrL is “a set of software development processes that share a common, managed
set of features satisfying the specific needs of an organization and that are developed from
a common set of core assets in a prescribed way.” Based on this definition, SPrLs focus on

Citation: Agh, H.; Ramsin, R. A

Model-Driven Approach for

Software Process Line Engineering.

Software 2023, 2, 21–70. https://

doi.org/10.3390/software2010003

Academic Editor: Tommi Mikkonen

Received: 26 November 2022

Revised: 15 January 2023

Accepted: 17 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Software 2023, 2, 21–70 22 of 70

identifying the variabilities among a set of processes and modeling them as a core process;
the core process is then instantiated to produce a bespoke process. Although the SPrL
approach can potentially help define specific processes faster and with less effort [12], its
successful implementation requires that organizations first examine its suitability for their
specific needs [13]. However, existing SPrL approaches fail to dedicate proper attention
to this issue.

If done manually, instantiating an SPrL for constructing project-specific processes is
time consuming and error prone [14]; therefore, it is important that a certain degree of
automation be provided. This can be achieved by using the Model-Driven Development
(MDD) approach for SPrL Engineering (SPrLE): the tacit tailoring knowledge of experts is
captured in the form of transformations, which are automatically applied to the model of
the SPrL to produce custom processes [12]. MDD has many advantages, such as increasing
productivity, managing complexity, and enhancing portability [4]. Due to its potential
benefits, MDD has already been used in SPrLE approaches [12]; however, as discussed in
Section 4.3, existing approaches are deficient in that many of them lack adequate support
for the features that are considered essential in MDD, such as multi-level modeling [15–
17]. Multi-level modeling has been used for multi-stage configuration of software product
lines and can help manage configuration complexity [18–20]; providing adequate support
for multi-level modeling is also desirable in the context of software processes, as the pro-
cess model can be gradually refined from a fully abstract specification to a fully concrete
one and the output of each level can be polished, as needed, at the process engineer’s
discretion.

The core process is a key part of an SPrL [14]. In most SPrLE approaches, a bottom-
up approach is applied in which the existing processes of the organization are analyzed
to identify and model their commonalities and variabilities in the form of a core process.
Since existing processes can be afflicted with shortcomings, the bottom-up approach can
result in a less-than-appropriate core process. Therefore, it is required that the core process
be improved by adding additional process elements. Furthermore, the process instanti-
ated from the core process may not satisfy all organizational/project needs, resulting in
delta (remaining) requirements. It is therefore essential to define specific mechanisms for
enhancing the configured process to meet these delta requirements.

Through analyzing existing model-driven SPrLE approaches (as reported in Section
2), we have identified the following four activities as the main areas that require improve-
ment, thus providing the motivation for this research:
1. Feasibility analysis: Examining the suitability and feasibility of the SPrLE approach

in the target organization.
2. Enhancing the core process: Extension and improvement of the produced core pro-

cess.
3. Managing configuration complexity: Managing the complexities involved in varia-

bility resolution.
4. Post-derivation enhancement: Enhancing the configured process to meet the re-

maining requirements.
The main contribution of this paper is a novel MDD approach for SPrLE that can be

used by process engineers for defining the SPrL, and also by project managers for devel-
oping custom processes. A high-level, preliminary version of this approach was intro-
duced in [14]; the version introduced herein is the complete and detailed approach, re-
fined and validated through empirical evaluation. The approach consists of the following:
(1) a framework for modeling SPrLs, in which the chain of models created throughout the
proposed approach are represented, and (2) a process for applying the framework to cre-
ate an SPrL and develop specific processes by instantiating the SPrL. The proposed ap-
proach is performed in two phases: Domain Engineering (DE) and Application Engineer-
ing (AE). During DE, the commonalities and variabilities among existing processes are

Software 2023, 2, 21–70 23 of 70

analyzed to create a core process (also referred to as the common architecture or the ref-
erence architecture). During AE, bespoke processes are automatically built by executing
transformations for resolving the variabilities defined in the core process (based on spe-
cific project contexts). The framework and the process are defined with the specific aim of
providing adequate coverage of the four activities mentioned above (as further discussed
in Section 4.3).

The proposed approach has been evaluated through a case study and an experiment.
Through the case study, we have evaluated the proposed approach as to the challenges of
using it for developing an SPrL, and its potential for improving the processes currently in
use. Through the experiment, we have compared process instantiation by the proposed
approach (AE phase) with the ad hoc, manual approach that is commonly used to con-
struct bespoke processes. The results have shown that the proposed approach can indeed
result in improvements in the processes currently in use, and is also useful and easy to
use in real situations. In addition to the case study and the experiment, we have also com-
pared our approach to existing ones to show its superiorities in addressing the four activ-
ities mentioned above.

The rest of this paper is structured as follows: Section 2 provides a brief analytical
survey of the related research; Section 3 introduces the proposed framework and proposes
a process for applying it; Section 4 presents the validation of the approach in three parts,
including a case study (Section 4.1), an experiment (Section 4.2), and a comparative anal-
ysis (Section 4.3); Section 5 provides a discussion on the benefits and limitations of the
proposed approach; and Section 6 presents the concluding remarks and suggests ways for
furthering this research.

2. Related Research
Existing approaches for model-driven engineering of SPrLs are briefly introduced in

this section. Their shortcomings are then listed, forming the main motivation for this re-
search. Furthermore, further explanations about these approaches are provided in Section
4.3, where we compare them with the proposed approach based on the support that they
provide for the four activities identified as the main areas that require improvement.

In [10], a meta-process called CASPER and a set of process practices for creating
adaptable process models are proposed. As expected, there are two main subprocesses in
CASPER: Domain Engineering and Application Engineering. DE is an iterative process
focused on capturing software process domain knowledge and developing reusable core
assets, and includes five activities: process context analysis, process feature analysis, scop-
ing analysis, reference process model design, and production strategy implementation. In
AE, a specific process is automatically produced according to the requirements of the pro-
ject at hand by using a reference process model and a set of transformation rules.

In [12], an approach is proposed in which the variabilities of process models are rep-
resented via feature models, and the software process is modeled in eSPEM; MDD is used
for supporting automatic execution of transformation rules. In [6], an approach is pro-
posed for developing an architecture for the target SPrL and then deriving a specific pro-
cess from this architecture; this approach provides extensions to the SPEM Metamodel for
clearly representing the commonalities and variabilities in the SPrL.

In [21], an approach is proposed for use by Software Process Consulting Organiza-
tions (SPCOs) to define reusable processes; SPCOs can use these processes to provide sup-
port for other organizations by helping them define, deploy, and improve their software
processes.

In [22], the use of variability operations (such as RenameElement and RemoveEl-
ement) is examined for constructing SPrLs in the context of VM-XT; VM-XT is a flexible
software process model that is considered as the de facto standard for public-sector IT
projects in Germany. In [23], the results of [22] are used for developing an approach for
constructing flexible SPrLs; this approach has been validated by application to VM-XT. In

Software 2023, 2, 21–70 24 of 70

this approach, a variability metamodel is created and embedded in the VM-XT meta-
model. This adapted metamodel includes a set of variability operations that are applied
to the root variant (the reference model) to create specific process variants.

In [24], an algorithm called the V-algorithm is proposed for discovering SPrLs from
process logs; in this approach, the log is split into three clusters that are used for identify-
ing the common and variable parts of processes. The approach proposed in [25] supports
variability management in software processes, automatic derivation of software pro-
cesses, and also automatic transformation of the derived processes into workflow specifi-
cations that can be executed by workflow engines.

In [26], a mega-model (a model whose elements represent models and transfor-
mations) is proposed for modeling and evolution of SPrLs in small software organiza-
tions. There are certain complexities involved in defining and applying tailoring transfor-
mations in current transformation languages; hence, process engineers and project man-
agers find it too difficult to define the transformations. To address this issue, an MDE-
based tool is proposed in [27] that uses the Mega-model introduced in [26] to hide the
complexities involved in defining the transformations.

In [28], a learning approach called Odyssey-ProcessCase is proposed, which uses
Case-Based Reasoning (CBR) and a rule-based system to resolve SPrL variabilities. In [29],
a systematic software process reuse approach is proposed that combines SPrLE and Com-
ponent Based Process Definition (CBPD) techniques to manage process-domain variabil-
ity and modularity. In [30], the Odyssey tool is proposed for supporting SPrLE activities;
the usefulness and ease of use of the tool has been evaluated through an experiment.

In [31], an approach called Meduse is proposed for tailoring development processes
according to project needs; the approach is based on SPLE and method engineering tech-
niques. Process variabilities are specified as a feature model during the domain analysis
phase; Pure Delta-Oriented Programming is then used to deal with process variabilities
during the process domain implementation phase. In [32], integration of process engineer-
ing and variability management is investigated for tailoring safety-oriented processes; to
this end, an Eclipse plugin is proposed by integrating Eclipse Process Framework Com-
poser (EPFC) tool with Base Variability Resolution (BVR). The tool thus produced has
been validated through applying it for engineering a safety-oriented process line for space
projects.

A relatively small number of approaches focus on proposing an SPrL for a specific
domain; in other words, these approaches do not deal with how to define and configure
SPrLs. In [33], a canonical software process family based on the Unified Process (UP) is
proposed to support software process tailoring; the UP-process line is constructed based
on the CASPER meta-process [10]. In [34], an SPrL is proposed for engineering service-
oriented products; an environment is also developed to support the proposed SPrL.

The main motivation for this research is the observation that existing SPrLE ap-
proaches need to be improved in several aspects:
• None of the approaches provides mechanisms for examining the suitability and fea-

sibility of SPrLs for the target organization; they suppose that SPrLs have already
been deemed as suitable for the target organization. Therefore, they begin by identi-
fying the commonalities and variabilities among the processes; however, adopting
the SPrL approach without prior assessment of its suitability can lead to failure [13].

• The bottom-up approach is the predominant approach used for creating a core pro-
cess: In this approach, processes that already exist in the problem domain are used
for identifying the commonalities and variabilities. However, this approach can re-
sult in an inappropriate core process, as existing processes may not be ideal. The top-
down approach attempts to define the commonalities and variabilities in a particular
domain from scratch (based on general process frameworks), thus raising the chances
of missing important details [6]. The bottom-up and top-down approaches can com-
plement each other; however, a synergistic combination of the two has never been
attempted in SPrLE approaches.

Software 2023, 2, 21–70 25 of 70

• In most of the approaches, configuration complexity is solely managed via imple-
menting a set of transformations for automatic resolution of variabilities (e.g.,
[10,12]). As demonstrated in SPLE approaches, multi-stage configuration can be used
effectively as a mechanism for managing configuration complexity; however, exist-
ing SPrLE approaches lack adequate support for this sort of configuration.

• The configured process may not satisfy all organizational/project needs. Therefore,
specific mechanisms should be defined for enhancing the configured process to meet
the remaining requirements; a feature that is completely ignored by existing SPrLE
approaches.
Research on software product lines is abundant, and SPL Engineering (SPLE) ap-

proaches can indeed help ameliorate some of the deficiencies found in SPrLE approaches.
For instance, multi-stage configuration is currently employed in SPLE for managing con-
figuration complexity, and it can benefit existing SPrLE approaches as well [35–37]; fur-
thermore, some of the tools used in SPLE, such as FeatureIDE [38], have been successfully
employed in some SPrLE approaches (e.g., [39]). However, existing model-driven SPLE
approaches (such as [40–43]) are not mature yet, and the problems listed above are ob-
served in these approaches as well. Therefore, even though SPLE techniques can be used
for improving existing SPrLE approaches (or for proposing new ones), migrating the cur-
rently available model-driven SPLE approaches to the process domain (thereby produc-
ing model-driven SPrLE versions) is not likely to improve the status quo.

3. Proposed Model-Driven Approach for SPrLE
Developing an MDD approach for SPrLE requires that a modeling framework, con-

sisting of modeling levels, be defined for modeling SPrLs. In addition, a process should
be developed for applying the framework; an overview of the research methodology used
to build the SPrLE process is shown in Figure 1. The phases and subphases of the proposed
process were constructed based on existing literature on SPLE and SPrLE. Engineering a
process line is usually performed in two generic phases: Domain Engineering (DE) and
Application Engineering (AE) [44]. Therefore, our proposed approach is also performed
in these two phases. In SPLE, DE encompasses three main subphases: Analysis, Design,
and Implementation/Realization [45,46]. The main purpose of Domain Analysis is to iden-
tify a set of reusable requirements for the systems in the domain. Domain Design is fo-
cused on establishing a common architecture for the systems in the domain whereas the
purpose of Domain Implementation is to implement the reusable assets (e.g., reusable
components) [45]. Similarly, there are three main subphases in AE: Analysis, Design, and
Implementation/Realization [46]. Application Analysis is focused on identifying product-
specific requirements by resolving the variabilities defined at the requirements level. The
purpose of Application Design is to derive an instance of the reference architecture, which
conforms to the requirements identified in Application Analysis. In Application Imple-
mentation, the final implementation of the product is developed by reusing and configur-
ing existing components and also by building new components to satisfy product-specific
functionality [46].

As SPrLE is a specific version of SPLE, we decided to include the three subphases
explained earlier into the DE and AE phases of our proposed process. The proposed pro-
cess is shown in Figure 2. As shown in Figure 2, returning from each subphase to the
previous one(s) is possible, depicted in Figure 2 by feedback loops. Moreover, we can re-
turn from each subphase of AE to DE for applying changes to the models; this makes it
possible to apply changes to the SPrL while constructing or using it.

Software 2023, 2, 21–70 26 of 70

Figure 1. The research methodology used to build the SPrLE process.

Figure 2. Proposed process for SPrLE.

Software 2023, 2, 21–70 27 of 70

The activities performed in each subphase were defined in such a way as to tackle
the deficiencies detected in previous approaches, as explained throughout the rest of this
section.

The subphases of DE are performed as follows:
1. Analysis: This subphase is focused on specifying the domain scope by identifying a

subset of existing processes and a set of attributes to describe different project situa-
tions. However, we first need to analyze the current situation of the target organiza-
tion to examine whether the SPrL approach is suitable for its specific needs (Feasibil-
ity analysis). If the SPrL approach is suitable for the organization, the current pro-
cesses and organizational goals should first be identified to then be used for identi-
fying the variabilities and context attributes. To this end, the processes currently used
in the organization are fed to this subphase to be modeled in Software & System Pro-
cess Engineering Metamodel (SPEM) 2.0 notation [47]. Organizational goals are also
used here to help identify the context attributes that are important to the organiza-
tion. The processes (modeled in SPEM 2.0) and a set of context attributes are the out-
puts of the analysis subphase.

2. Design: The aim of this subphase is to build an initial version of the SPrL by identi-
fying variabilities among existing processes; this activity is commonly performed in
SPrL approaches (e.g., [10,12]). To this end, the outputs of the analysis subphase are
fed to the design phase as input models. Context attributes are modeled by instanti-
ating the context metamodel defined for this purpose. The similarities and variabili-
ties among existing processes are also identified via the bottom-up approach; the out-
put of this approach is an incomplete core process (also referred to as the reference
architecture). The context model and the initial core process are the outputs of the
design subphase.

3. Implementation: This subphase is mainly focused on the following: improving the
initial core process, building the required foundations for improving the processes
after instantiation (post-derivation enhancement), and managing the complexity of
process instantiation by providing a certain degree of automation. To this end, the
outputs of the design subphase are fed to the implementation subphase as input
models. During implementation, the top-down approach is applied to produce a met-
aprocess that includes all the variabilities identified in the target domain; the initial
core process is then completed by enriching it with the results of the top-down ap-
proach. Transformations are also produced in this subphase, to be used in AE for
automatic derivation of processes from the SPrL. As the process generated in AE may
not satisfy all organizational/project needs (resulting in delta requirements), a pro-
cess improvement method base (PIMB) is also produced; the PIMB contains process
elements extracted from other processes, such as XP [48] and DSDM [49], which can
be added to the generated process to address the delta requirements.
The subphases of AE are performed as follows:

1. Analysis: The aim of this subphase is to specify the context in which a specific process
needs to be built; these attributes are like requirements specific to a product in SPLE.
To this end, context attributes are given specific values based on the situation at hand,
and the organizational context model is produced.

2. Design: This subphase is focused on producing a specific process while managing the
configuration complexity by gradually resolving variabilities; the modeling levels
comprising our proposed modeling framework are used in this subphase for gradual
resolution of the variabilities. The organizational context model, core process and
transformation rules are fed to the design subphase as input models. During design,
the variabilities defined in the core process are gradually resolved by executing the
pre-defined transformations in a multi-level fashion (based on the values of context
attributes). The bespoke methodology thus generated is the output of the design sub-
phase.

Software 2023, 2, 21–70 28 of 70

3. Implementation: The aim of this subphase is to improve the constructed process by
satisfying the remaining organizational/project needs (post-derivation enhance-
ment); the need to conduct this activity has been identified throughout evaluating
the proposed approach via a case study. The bespoke methodology is fed to the im-
plementation subphase as the input model. The methodology is first analyzed, and
if delta requirements are identified, the PIMB is used to address the shortcomings.
The enhanced methodology is then applied to the target project.
The framework and the process are defined so that the proposed approach addresses

the shortcomings observed in previous model-driven SPrLE approaches. To be specific,
the four activities that we had identified as the main areas requiring improvement are
properly addressed, as explained below:
1. Feasibility analysis: The feasibility of using an SPrL approach for the organization

is examined during DE by a set of requirements specifically defined for this purpose
[13].

2. Enhancing the core process: During DE, the top-down approach is applied to pro-
duce a metaprocess for the target domain. The core process created by analyzing ex-
isting processes (via the bottom-up approach) is combined with the metaprocess, re-
sulting in an enhanced core process.

3. Managing configuration complexity: During AE, configuration complexity is man-
aged by the following: (1) providing semi-automation in resolving the variabilities,
and (2) support for staged configuration by providing multi-level resolution of vari-
abilities.

4. Post-derivation enhancement: During the implementation subphase in AE, the pro-
cess instantiated from the SPrL is analyzed to identify the remaining/delta require-
ments; the PIMB is then used to address the delta requirements.
A more thorough analysis of how the proposed approach compares to previous ap-

proaches with regard to supporting the above activities will be provided in Section 4.3.

3.1. Domain Engineering
The SPrL is built during DE’s three subphases. The subphases are explained in the

following subsections.

3.1.1. Analysis
The following activities are performed in this subphase:

1. Feasibility Analysis: Organizations should first examine whether the SPrL approach
is suitable for their specific needs. In [13], we have identified a comprehensive set of
requirements for adopting the SPrL approach. These requirements have been pre-
sented in the form of a questionnaire, which has been designed for determining the
suitability of organizations for creating SPrLs; the questionnaire has been explained
in [13]. Organizations that intend to develop an SPrL can consider this questionnaire
as a suitability filter. The more an organization satisfies the requirements, the more
justified it is to adopt the SPrL approach. As pointed out in [13], the level of im-
portance of the requirements may not be the same in different contexts. Furthermore,
it is required that a threshold be determined when applying the requirements to a
specific context; this threshold is the minimum score that should be satisfied by the
organization in order to be suitable for creating the SPrL. An example of the applica-
tion of requirements for feasibility analysis has been provided in Appendix A.

2. Modeling similar processes using SPEM 2.0: Of the requirements defined in [13],
two are related to all the (potential) processes that can be instantiated from the core
process (the process line portfolio): Structural similarity, and Process type. These two
requirements are used for identifying the software processes in an organization that
will be used for constructing the core process of the SPrL. Structural similarity refers
to the degree of similarity in the structure of processes selected for creating the core

Software 2023, 2, 21–70 29 of 70

process; there is no rigid threshold, but the degree of variabilities defined in the core
process should be justifiable. Process type refers to the type of processes that will be
part of the SPrL (such as agile or plan-driven). As the identified processes may have
been modeled in different notations (or not documented at all), all of them should
first be modeled/re-modeled in SPEM 2.0 [47] in order to unify their representations
and thereby facilitate the identification of their commonalities and variabilities.
SPEM 2.0 has been selected because it is the OMG standard for software process
modeling.

3. Identification of context attributes: Context attributes (also referred to as situational
factors [50]) are used for describing the situation in which a specific process should
be built. These attributes are the specific characteristics of the organization (e.g., ma-
turity level), or the project at hand (e.g., degree of risk), or the individuals involved
in the project (e.g., skill and knowledge). There are many research works on specify-
ing situational factors (e.g., [51–54]). These works can also be used as sources for
identifying context attributes; however, the tacit knowledge of subject matter experts
should also be explored to refine these context attributes.

3.1.2. Design
The following activities are performed in this subphase:

1. Context Modeling: The context attributes identified in the analysis subphase are fed
to this activity as input. These context attributes are modeled using the metamodel
shown in Figure 3. The metamodel has been implemented in Medini-QVT [55]; in
this tool, metamodels are defined as Ecore metamodels and transformations are im-
plemented as QVT rules. An example of modeling context attributes in this tool has
been shown in Appendix B.

Figure 3. Context Metamodel.

2. Identification of commonalities and variabilities among the processes identified
(Bottom-Up approach): The bottom-up approach can result in an inappropriate core
process, as existing processes may not be ideal. The top-down approach is also error-
prone, as it attempts to define the commonalities and variabilities in a particular do-
main from scratch. We have therefore decided to combine the two approaches. The
bottom-up approach is used in the design subphase of DE for building an initial core
process, and the top-down approach is used for improving the quality of the pro-
duced core process in the implementation subphase of DE. Separating the bottom-up
and top-down approaches has specific benefits, including the following:
− The organization can use an existing metaprocess to improve the core process

instead of expending time and effort on improving existing processes. For ex-
ample, the Scrum metaprocess [56] can be used in organizations that use differ-
ent versions of Scrum.

Software 2023, 2, 21–70 30 of 70

− The organization may not have enough knowledge to improve existing pro-
cesses. Creating the metaprocess through the application of the top-down ap-
proach by experts can address this issue.

− The metaprocess can be used to train organizational staff, and also to document
the software processes currently used in the organization.

Variability management is a key activity in SPrLEs and is used in both bottom-up
and top-down approaches; hence, we will first explain our proposed variability manage-
ment approach, and will then elaborate on the proposed bottom-up approach.

Variability Management in the Proposed Approach
Several approaches have been proposed for variability management in SPrLE ap-

proaches. In [57], a criteria-based evaluation has been conucted on four such variability
management methods: SPEM, vSPEM [58], Feature Model [59], and OVM [59]. The results
show that none of the approaches satisfies the requirements identified in [57] for adoption
in the industry. Furthermore, the authors have concluded that SPEM 2.0 is the best ap-
proach, since it allows the specification of the process and its variabilities using only one
notation and one tool (Eclipse Process Framework Composer—EPFC). On the other hand,
SPEM’s variability mechanisms are rather limited; for instance, it has no mechanisms for
representing the relationships and constraints of variabilities. Even vSPEM [58], an ex-
tended version of SPEM 2.0, lacks mechanisms for defining multilevel variabilities.

To address the above problems, we modeled the software process, along with its var-
iation points, via the metamodel shown in Figure 4. The problems have been resolved as
follows: the left part of the metamodel is inspired by SPEM 2.0, since it has been recog-
nized as an effective metamodel (even considered by some researchers as the best [57]);
the semantics of some of the concepts defined in the ProcessStructure and MethodContent
packages of SPEM 2.0 have been changed to fit our requirements. The right part of the
metamodel shows new elements that focus on software process variability. These addi-
tions have been defined to overcome the limitations of SPEM’s variability mechanisms,
and include the following elements:
• ProcLElement: This abstract class represents SPrL elements and has two subclasses:

Varpoint, and Variant. As shown in Figure 4, ProcLElement is a subclass of the Model
Element class; therefore, each instance of ProcLElement subclasses can be connected to
instances of the Model Element subclasses via the Dependency class.

• VarPoint: Each variation point in the core process is an instance of this class; it can
be of different types and granularities, namely the following: Phase, Activity, Task,
Role, Work Product, and Guidance. Each variation point can be either Mandatory or Op-
tional. It can include one or more variants that show possible alternatives for resolv-
ing the variability [1,60]. Furthermore, multi-level variabilities can be defined via the
composition relationship drawn from the VarPoint class to itself, so that each varia-
tion point can include one or more other variation points. We have replaced or, xor,
and and relations with UML-style multiplicities. Multiplicities consist of two integers:
a lower bound and an upper bound, which are specified by two attributes in the Var-
Point class: Min and Max.

• Variant: The variants related to variation points are instances of this class, and can
be either Mandatory or Optional.

• Restriction Relationship: The relationships and constraints of variabilities can be
represented via the Restriction Relationship class. Both variation points and variants
can affect other parts of the process structure, as a variation point may exclude an-
other one. These dependencies are represented by the Inclusion and Exclusion classes,
which are subclasses of the abstract class Restriction Relationship.

Software 2023, 2, 21–70 31 of 70

Figure 4. The variability metamodel used in the proposed SPrLE approach.

The variability metamodel has been defined in Medini QVT; an example of the vari-
ability modeling performed in the tool has been presented in Appendix C.

Bottom-Up Approach
The Software Product Line domain offers many approaches for migrating existing

systems to SPLs (e.g., [61,62]); these approaches analyze existing systems to identify code
similarities and variabilities and then migrate a family of legacy software products to an
SPL. Similarly, as the core process is an integral part of an SPrL, it is required that the
similarities and variabilities of a set of process variants be analyzed to construct the core
process. However, existing SPrLE approaches lack a precise method for this purpose. We
therefore propose a multistep bottom-up approach for building an initial core process.
Although the overall idea is similar to what has already been used in Software Product
Lines, our approach focuses on identifying the similarities and variabilities of processes
(rather than code), which makes the context quite different. Our proposed approach is cur-
rently performed manually, but it has the potential to be automated via model transfor-
mation tools. An example of applying the proposed bottom-up approach is shown in Fig-
ure 5, depicting how the commonalities and variabilities of three hypothetical processes
(X, Y, and Z) are identified. The notation used in Figure 5 (shown in the legend) will be
used throughout this paper for representing the commonalities and variabilities of pro-
cesses. The steps of the proposed bottom-up approach are as follows:
1. Elements that are common to the processes are identified. These elements are of these

types: Phase, Activity, Task, Role, Input/Output, Work Product, Guidance, and De-
pendency relationships. A process element is common to a set of processes if its name
and description is identical in all of them. A dependency relationship is included in
the core process if the elements on both sides have already been identified as com-
mon elements. An example of the output of this step is shown in Figure 5 (Step 1).

Software 2023, 2, 21–70 32 of 70

Figure 5. Example of applying the bottom-up approach on three hypothetical processes.

2. Variation points and related variants are identified through the following substages
by analyzing each of the phases, activities, and task elements that are not already
included in the core process (we will call it e1):
a. If the predecessor (e1-pre) or the successor (e1-succ) of e1 is already identified

as a common element, two outcomes are possible: (1) an optional variation point
is added to the core process, either after e1-pre or before e1-succ, and e1 is added
as its optional variant; an example of the output of this step is shown in Figure
5 (Step 2-a (1)). (2) If a variation point after e1-pre or before e1-succ is already
defined, no variation point is added to the process model, and e1 is just added
to the core process as an optional variant under the previously defined variation
point.

b. If the predecessor (e1-pre) and successor (e1-succ) of e1 are not common ele-
ments, an optional variation point is added to the core process after or before
the variation point related to e1-pre or e1-succ, respectively, and e1 is added as
its optional variant.

c. If at least one element of each process is added under a common variation point,
the variation point is converted to a mandatory variation point.

d. If no predecessor/successor elements exist before/after e1, an optional variation
point is added to the core process under the process element with the higher
granularity, and e1 is added as its optional variant. For example, the variation
point related to a task is added under the related activity.

If any elements of types phase or activity are added to the core process in this step,
steps 1 and 2 are repeated for them in order to identify their common and variable
internal elements.

Software 2023, 2, 21–70 33 of 70

3. For each role, work product, and guidance that is not already included in the core
process (we will call it e2), its variation points and variants are specified through
these substages:
a. If the phase/activity/task related to e2 is already added to the core process as a

common element, three outcomes are possible: (1) An optional variation point
is added to the core process and a dependency is established between the
phase/activity/task and the variation point, and e2 is added as its optional vari-
ant; an example of the output of this step is shown in Figure 5 (Step 3-a (1)). (2)
If another element of the process under investigation with the same type as e2
has already been added as a variant under a variation point, e2 is only added to
the core process as an optional variant under the variation point, and the varia-
tion point is converted to Alternative OR, which is specified in our approach by
assigning 1 to Min, and n (the number of variants) to Max; an example of the
output of this step is shown in Figure 5 (Step 3-a (2)). (3) If another element of
another process with the same type as e2 has already been added as a variant
under a variation point, e2 is only added to the core process as an optional var-
iant under the variation point, and the variation point is converted to Alterna-
tive XOR, which is specified in our approach by assigning 1 to Min and 1 to Max;
an example of the output of this step is shown in Figure 5 (Step 3-a (3)).

b. If the phase/activity/task related to e2 is not already specified as a common ele-
ment, three outcomes, similar to those explained in the previous step, are possi-
ble. However, a dependency is established between the variation point related
to the phase/activity/task and the variation point added to the core process.

c. If at least one element of each process is added under a common variation point,
the variation point is converted to a mandatory variation point. As the result of
this step, the variation points related to the roles and techniques shown in Figure
5 are converted to mandatory (Step 3-c). Due to space limitations, the variation
points are not shown in Figure 5, and variants are directly connected to the re-
lated process elements.

4. For each dependency relationship that is not already added to the core process, the
elements or variation points related to the elements on both sides of the dependency
are found in the core process, and a dependency relationship is added between them;
an example of the output of this step is shown in Figure 5 (Step 4).

3.1.3. Implementation

The following activities are performed in this subphase:
1. Constructing the extended part of the core process (Top-Down approach): In the

bottom-up approach, the initial core process is created by analyzing existing pro-
cesses. To address the problems in existing processes, and thereby enhance the initial
core process constructed, we use the top-down approach to create a metaprocess that
includes all the variabilities in the target domain. Existing process frameworks, such
as DAD [63], can also be used for this purpose. The top-down approach has already
been used for constructing SPrLs (e.g., in [21,23]); however, it has been used in pre-
vious research to identify the variabilities in standard processes that can be instanti-
ated across multiple organizations, whereas in our approach, the top-down approach
has been used for enhancing the SPrL being created in a target organization. Further-
more, the bottom-up approach has never been used for analyzing the existing pro-
cesses of an organization.
An organization interested in implementing an SPrL can create the metaprocess by
identifying the variabilities in a process framework; the selection of the framework
depends on the type of processes being used in the organization. As Scrum is the
most widely used agile framework, we have defined the Scrum metaprocess [56]

Software 2023, 2, 21–70 34 of 70

through the top-down approach as an example. An example of the variabilities iden-
tified in the Scrum metaprocess has been provided in Appendix D.

2. Developing the Process Improvement Method Base (PIMB): The constructed pro-
cess may not satisfy all organizational/project needs (remaining requirements/delta
requirements). To address this problem, a method base (PIMB) is built for storing
additional core assets. PIMB’s metamodel is shown in Figure 6. This metamodel is an
extended version of the left-hand section of the variability metamodel shown in Fig-
ure 4; two relationships have been added: one between Model Element and Context
Attribute, and the other between Guidance and Context Attribute. The relationships
between context attributes and process elements are also stored in PIMB. If the in-
stantiated process cannot satisfy all the needs, context attributes are given specific
values and are then fed to the transformations; by executing the transformations,
suitable process elements are automatically extracted from PIMB. The metamodel
has been defined in Medini QVT; the method base has been built by instantiating the
metamodel and enriching it with process elements from DSDM and XP. However,
the method base can be complemented by other process elements as well. The process
elements so far defined in the method base are presented in Appendix E, and an ex-
ample of how PIMB can be used for satisfying the delta requirements is provided in
[64].

Figure 6. Metamodel of PIMB.

3. Implementing transformations: Transformations are used for automatic derivation
of a process from the SPrL. Transformations are implemented in a tool using a model
transformation language, such as QVT [55]. Medini QVT has been used for imple-
menting transformations in our approach; however, organizations can use other tools
or languages for this purpose. An example of the implemented transformations has
been provided in Appendix F. Due to space limitations, we will not provide the de-
tailed descriptions of other transformations implemented for resolving the variabili-
ties of the Scrum metaprocess. The complete set of transformations is available on
Mendeley Data [64].

Software 2023, 2, 21–70 35 of 70

4. Creating the complete core process: The models created by the bottom-up and top-
down approaches are merged to obtain the final core process. This stage is currently
performed manually. If the required transformations are implemented, the two input
models can be automatically merged to produce the completed core process.
To provide an overall overview, examples of the work products of DE subphases are

provided in Appendix G.

3.2. Application Engineering
The SPrL is instantiated during AE’s three subphases to yield bespoke processes for

specific project situations. The subphases are explained in the following subsections.

3.2.1. Analysis
The context model created in DE is fed to this subphase as input, and the values of

context attributes are set by the process engineer according to the project situation at hand.
Consequently, an Organizational Context Model (OCM) is produced. An example of an
OCM implemented in the tool has been presented in Appendix H.

3.2.2. Design
The organizational context model, core process model, and transformations are fed

to this subphase, and a specific process is automatically created by applying the transfor-
mations. The target process is gradually created by using multilevel modeling, which is
an essential MDD feature; the process model is gradually refined from a fully abstract
specification to a fully concrete one. Although the target process is automatically created,
the output of each level can be polished, as needed, at the process engineer’s discretion.
As shown in Figure 4, specific constraints are defined in the core process, including Mul-
tiplicity, and Restriction Relationships. These constraints should be considered in varia-
bility resolution. As variability resolution is automatically performed in our approach,
checking these constraints is performed through the following transformations:
• Inclusion: If a variant selected at a specific level has “inclusion” relationship with

another variant, that variant is added to the process under construction.
• Exclusion: If a variant selected at a specific level has “exclusion” relationship with

another variation-point/variant, that variation-point/variant is removed from the
process under construction.

• Multiplicity: If there is a variation point with (min, max) = (1,1), selecting one of the
variants of the variant group results in removing the variation point from the process
under construction.
Modeling levels can be differentiated according to different concepts; we propose the

framework shown in Figure 7 for defining the modeling levels used in the AE phase. In
this framework, two dimensions are used for distinguishing the modeling levels: Granu-
larity level of the method fragments, and Abstraction level of the context attributes; these
dimensions can be extended as required. Each dimension specifies an ordered set of sim-
ple or composite modeling levels. A composite level includes an abstract dimension and
therefore, an ordered set of nested levels.

In the “Granularity level of method fragments” dimension, a variation point is re-
solved based on the granularity level of its type. In other words, variation points with a
higher granularity, such as the ones associated with phases or activities, are resolved first
(at higher levels of modeling); whereas variation points with a lower granularity, such as
those associated with tasks, roles, and work products, are resolved at lower levels. This
solution can have several benefits; e.g., reusability is enhanced because higher-level mod-
els are independent from lower-level method fragments, and are hence more readily re-
usable due to their relative abstractness. We have defined three modeling levels using this
dimension: Methodology-Fragments-Independent Level, Technique-Independent Level,
and Technique-Specific Level. At the fragment-independent level, variation points at the

Software 2023, 2, 21–70 36 of 70

granularity levels of Phase or Activity are resolved; at the technique-independent level,
variation points at the granularity levels of Task, Work Product, and Role are resolved; at
the technique-specific level, variation points at the granularity level of Guidance are re-
solved.

Figure 7. Proposed framework for defining the modeling levels.

In the “Abstraction level of context attributes” dimension, situational factors are clas-
sified based on their abstraction levels; there are three types of situational factors: Organ-
izational, Environmental, and Project; this classification has been adapted from
[50,51,65,66]. There are three modeling levels based on this classification: Organizational
Level, Environmental Level, and Project Level. At the organizational level, all the varia-
tion points dependent on the values of organizational factors are resolved; organizational
factors are characteristics of the organization (or unit thereof) responsible for developing
the system, such as “Personnel experience”. The output of this level is an SPrL specific to
the organization (or unit). The produced SPrL can be used for different projects and cus-
tomers. At the environmental level, all the variation points dependent on the values of
environmental factors are resolved; environmental factors are characteristics of the envi-
ronment in which the system will be operated, such as “End-user experience”. The output
of this level is an SPrL specific to a customer of the organization; the produced SPrL can
be used for different projects of the customer. At the project level, all the variation points
dependent on the values of project factors are resolved; project factors are characteristics
of the system under development, such as “Degree of risk”. The output of this level is a
specific process, without any unresolved variation points, for the project.

For gaining the full benefits of these two dimensions in our proposed approach, “Ab-
straction level of context attributes” is used for defining the outer modeling levels, and
“Granularity level of method fragments” is used for defining the inner levels, as shown in
Figure 8. Based on these modeling levels, variation points are resolved in the following
order: at level 1.1, variation points that are dependent on organizational factors and have
a granularity of Phase or Activity are resolved; at level 1.2, variation points that are de-
pendent on organizational factors and have a granularity of Task, Role, or Work product
are resolved; and at level 1.3, variation points that are dependent on organizational factors
and have a granularity of Guidance are resolved. Resolution at levels two and three is
performed in a similar fashion, but for variation points that are dependent on Environ-
mental factors and Project factors, respectively. If a variation point is dependent on a com-
bination of factors, the resolution is performed at the lowest abstraction level correspond-
ing to the factors. For example, if a variation point is dependent on a combination of or-
ganizational and environmental factors, its resolution is performed at level two. An ex-
ample of resolving the variabilities throughout the modeling levels has been provided in
Appendix I.

Software 2023, 2, 21–70 37 of 70

Figure 8. Modeling levels defined in the design subphase.

3.2.3. Implementation
The activities performed in this subphase are as follows:

1. Analyzing the produced process in cooperation with members of the organization:
The process produced in the previous phase is analyzed to identify the organiza-
tional/project needs that have not been addressed. If such needs exist, transfor-
mations are applied to PIMB to extract suitable process elements for addressing those
needs.

2. Applying the produced process to the target project: The produced process is en-
acted in the real world, and the results of its application may call for further iterations
of DE and AE.
To provide an overall overview, examples of the work products of AE subphases are

provided in Appendix J.

4. Evaluation
The proposed approach has been evaluated through a case study, an experiment, and

a comparison performed between the proposed approach and other SPrLE approaches.

Software 2023, 2, 21–70 38 of 70

4.1. Case Study
In order to validate the proposed approach as to applicability and efficacy, an indus-

trial case study was designed with the following research questions:
RQ1. What are the challenges of using the proposed approach for developing a process

line?
RQ2. Can the specific processes produced from the SPrL improve the processes currently

used in the organization?
The intention of the first RQ is to evaluate the applicability of the proposed approach

in real situations; therefore, we have focused on identifying the challenges that an organ-
ization might face during the use of our approach. Thus, the activities defined in the pro-
posed approach to address the shortcomings observed in previous approaches have been
evaluated as to their applicability. The intention of the second RQ is to evaluate whether
the top-down approach, as used in our proposed process, can indeed result in improve-
ments to the processes currently used in the organization.

We sought a case that was suitable for creating SPrLs based on the set of requirements
defined in [13], and the recommendations proposed in [67]. Based on [67] (p. 48), case
study selection in software engineering research is usually performed based on the avail-
ability of the case. Furthermore, adding or removing cases due to practical constraints and
objectives of the research may occur as the study progresses [67] (p. 64). We first selected
two companies to conduct feasibility analysis based on the requirements presented in [13].
Then, we decided to add two more companies since one of the first two companies used
only one version of Scrum. All of the four candidate companies were selected based on
their existing relationships with the authors of this paper. We also sought cases where
people with enough knowledge about the processes being used in the organization had
enough time to collaborate with us during the execution of the case study. In [13], we have
identified a comprehensive set of requirements for adopting the SPrL approach. These
requirements have been presented in the form of a questionnaire, which has been de-
signed for determining the suitability of candidate companies for creating SPrLs in the
case study. The more a company satisfies the requirements, the more justified it is to adopt
the SPrL approach. The questionnaire has been presented in Appendix K.

The study was conducted in a medium-sized, Iranian software development com-
pany, which we will call ‘A’ (the real name has been made anonymous). Company A,
which has 120 employees, is made up of four units (A1, A2, A3, A4), and its organizational
software process is based on Scrum. Various products are developed at this company,
including systems software, web applications, databases, web designs, graphics designs,
multimedia software, mobile applications, games, and desktop applications. The Scrum
process implemented in each unit was not documented. In order to identify how Scrum
was used in the units, one in-progress project was selected from each unit. Brief descrip-
tions of these projects are presented in Table 1. The size of each development team was
between 2 to 9 people.

Table 1. Projects selected in A.

 Project Selected Number of Development Teams Involved
A.1 Messaging 2
A.2 Business Support System 2
A.3 Premium Content Services 1
A.4 Cloud SMS Services 2

Since there was no documented information about the processes used in the projects,
the subject sampling strategy was to interview a sample of the people involved in the
projects who had enough information about the processes used. In total, four people were
interviewed, who played “Project Manager” or “Product Owner” roles in the projects.

Software 2023, 2, 21–70 39 of 70

Three semi-structured one-hour interview sessions were held with each subject. The in-
terview instruments are provided in Appendix L. These instruments were intended to
focus the interviewees’ attention on the areas of discussion. The instruments were adapted
as the interviews progressed to gain further information about the process used in the
organization and the problems occurring during its execution. In addition to the notes
taken during the interviews, sound recordings were produced to provide transcripts for
the analysis process. The answers given to the research questions are provided in the fol-
lowing subsections.

4.1.1. RQ1. What are the Challenges of Using the Proposed Approach for Developing a
Process Line?

In this study, we investigated all the activities mentioned in Scrum, from planning to
development. However, for sake of brevity, we will only focus on one activity herein,
namely “Sprint Execution”. To answer the research questions (RQ1 and RQ2), we will first
explain the activities performed for creating the SPrL in the following subsections.

Domain Engineering
In this section, the activities performed for creating an SPrL for A are explained (Sec-

tions A, B, and C).

A. Analysis
The following tasks were performed:
• Feasibility analysis: The suitability-filter questionnaire was filled out by four

companies, of which A was then identified as a suitable venue for creating an
SPrL. The questionnaire has been provided in Appendix K.

• Modeling similar processes in SPEM: Interview sessions were held to elicit the
different versions of the Scrum process used in A. These processes were then
modeled with the tool.

• Identification of context attributes: In [51], a reference framework has been pro-
posed for situational factors that affect software processes; we used this frame-
work to identify the situational factors relevant to agile methodologies. These
factors were then refined and completed based on other resources. The finalized
list of situational factors is shown in Table 2, along with the additional resources
that were used for refining or extending them. The third column in Table 2 de-
picts the range of possible values for each factor. Attributes under Personnel and
Organization are considered as organizational factors; the attribute under Op-
eration is considered as an environmental factor; attributes under Requirements,
Application, and Business (except for the Opportunities attribute) are classified
as project factors; and the Opportunities attribute, by definition, is an organiza-
tional factor.

Table 2. Situational factors (context attributes) relevant to agile methodologies.

Factor Class Situational Factors Value Explanation

Personnel

Number of Teams Normal/High Number of development teams.

Culture (two-valued fac-
tor) [51,52,68]

(Collaborative/Non-collaborative—
Harmonious/Disharmonious)

First value: Level of collaboration among team
members.

Second value: Level of interpersonal conflicts.

Experience (two-valued
factor) [51,53,69,70]

(Experienced/Inexperienced—
Familiar/Unfamiliar)

First value: Level of developers’ business
knowledge.

Second value: Level of developers’ familiarity with
the development methodology.

Software 2023, 2, 21–70 40 of 70

Cohesion (two-valued
factor) [51,53,54,71]

(Low/Normal–
Normal/High)

First value: Percentage of team members who have
worked together in the past. Second value: Rate at

which people leave the team.
Skill and knowledge

[51,53,71–73]
Inadequate/Adequate Level of developers’ technical knowledge and skill.

Commitment [51,71] Inadequate/Adequate
Level of commitment to the project among team

members.

Requirements
Changeability (two-val-

ued factor) [51,68,69]
(Normal/High–
Normal/High)

First value: Rate at which user and system require-
ments are changed.

Second value: Rate of scope creep.
Standards [51] Inadequate/Adequate General quality of user requirements.

Application

Degree of Risk [51,70] Normal/High Level of project risks.
Complexity

[51,52,69,70,73]
Normal/High Level of application complexity.

Size [51,53,54,74] Normal/Large Relative application size.
Connectivity [51,53] Normal/High Level of dependence on existing/future systems

Reuse [51,75] Normal/High
Extent of utilization of application components in

other projects.
Deployment Profile

[51,54,70]
Normal/High

Number of applications (or different versions of the
application) to be deployed.

Quality [51–53,70,73] Normal/High Level of product quality required.

Organization

Maturity [51,54,71] Inadequate/Adequate Level of organization maturity.
Management Commit-

ment and Expertise
(two-valued factor)

[51,52,69,71]

(Inadequate/Adequate–
Inadequate/Adequate)

First value: Level of management’s commitment to
the project.

Second value: Level of management’s knowledge
and skill.

Facilities [51,71] Inadequate/Adequate
Level of organizational support for providing the fa-

cilities required.

Operation
End-User Experience

[51,53,69]
Inadequate/Adequate

Level of end-user familiarity with the application
type.

Business

Time to Market
[51,53,73,76]

Short/Normal
Available time for building the first version of the

shippable product.
External Dependencies

[51]
Normal/High

Number of parties involved in building the product
(multisite development).

Opportunities [51] Normal/High Rate at which emergent opportunities occur.

Business Drivers [51,53]
Financial considerations/Marketing

concerns/Minimizing costs/Maximiz-
ing customer satisfaction

Crucial forces behind successful development of the
project.

Magnitude of Potential
Loss [51,53]

Normal/High
Effect of project failure on customer relations, finan-
cial health, competitive position, organizational rep-

utation, organizational survival, or market share.

B. Design
The following tasks were performed:
• Context modeling: The situational factors shown in Table 2 were modeled in

the tool.
• Identification of commonalities and variabilities (Bottom-up approach): The

commonalities and variabilities among the processes being executed in A were
identified by applying the bottom-up approach; details have been provided in
[64]. For sake of brevity, only “Sprint Execution” is presented herein (Figure 9).

Software 2023, 2, 21–70 41 of 70

Figure 9. “Sprint Execution” in A.

C. Implementation
The following tasks were performed:
• Constructing the extended part of the core process (Top-Down approach): The

“Sprint Execution” variabilities that were defined in the Scrum metaprocess
have already been shown in Figure A7 in Appendix I.

• Developing PIMB (method base): The PIMB, implemented in Medini-QVT, is
provided in Appendix E.

• Creating the complete core process: The final SPrL was created by combining
the models created by the bottom-up and top-down approaches. An overview
of this SPrL is shown in Figure 10. The details and variabilities of “Sprint Exe-
cution” in the Scrum metaprocess (Figure A7 in Appendix I) were more com-
prehensive than the processes being used in A (Figure 9). Therefore, the com-
bined result was similar to Figure A7.

• Implementing transformations: A set of transformations were implemented in
the tool for resolving the variabilities identified in the core process. The trans-
formations have been provided in [64].

Figure 10. Overview of the proposed SPrL for A.

Application Engineering
In this section, the activities performed for instantiating processes from the SPrL for

projects in A are explained (Sections A, B, and C).

A. Analysis
The values of context attributes in projects A.1 to A.4 were determined. For the sake

of brevity, only the values of context attributes for project A.2 are presented in Appendix
M. The values for other projects are provided in [64].

Software 2023, 2, 21–70 42 of 70

B. Design
The variation points defined in the SPrL were gradually resolved by executing the

transformations based on the values of context attributes. In the SPrL produced, there is
just one phase variation point, namely “Maintenance with Kanban”. By resolving this var-
iability, several process elements and their associated variabilities were added. The trans-
formation implemented for this purpose is shown in Appendix N. Examples of multilevel
resolution of variabilities implemented in the tool are provided in [64]. The processes cur-
rently used in A, processes produced by instantiating the SPrL, and transformations im-
plemented in the tool have also been provided in [64].

C. Implementation
The tasks were performed as follows:
• Analyzing the produced process in cooperation with members of the organi-

zation: The subjects of A confirmed that all organizational/project needs could
potentially be satisfied by the processes instantiated from the SPrL, except for
two problems related to the A.4 project. One problem was related to intra-team
knowledge sharing, and the other was related to the capabilities of team mem-
bers in writing high-quality code. Transformations were therefore applied to
PIMB, and the following guidances were extracted: “Moving people around”,
“Preparing documents of project status”, and “Training team members on code
quality by a coach”.

• Applying the produced process to a real-world project: Parts of the process
produced for project A.2 were applied in one sprint. The results are presented
in Section 4.1.2.

Challenges Identified During the Application of the Proposed Approach for
Creating the SPrL

The challenges that we faced when applying the proposed approach are as follows:
1. Identifying commonalities and variabilities among existing processes in case A was

time-consuming, mainly because their processes were not documented.
2. Presenting the variabilities of the Scrum metaprocess implemented in the tool to sub-

jects was difficult. To facilitate the adoption of SPrLs in organizations, a high level of
user friendliness is needed in the user interface of the tool.

3. Assigning values to situational factors was challenging since subjects had different
opinions about them. To address this issue, we recommend that organizations pro-
vide concrete examples on how to assign a specific value to each situational factor
based on organizational context and project characteristics.

4. Using the tool for executing transformations was difficult for the subjects because of
its low-level user interface. Implementing a graphical user interface would therefore
improve the adoption of SPrLs in organizations.

4.1.2. RQ2. Can the Specific Processes Produced from the SPrL Improve the Processes
Currently Used in the Organization?

To answer this question, the subjects involved in project A.2 applied specific parts of
the instantiated process in their upcoming sprint. A questionnaire was used to acquire
feedback on the impact of applying the proposed process, which is provided in Appendix
O. We asked the respondents to state their opinion on whether the process elements ap-
plied improved the process currently used; a list of the problem-solution pairs is provided
in Appendix P. Figure 11 shows a summary of the responses given by six subjects to the
questions. Almost all of the respondents agreed that the process elements applied had had
a positive effect on improving the process currently used in project A.2.

Software 2023, 2, 21–70 43 of 70

Figure 11. Summary of responses in project A.2.

In addition to the questions about the process elements applied, we also designed
questionnaires for identifying the potential effects of some of the proposed process ele-
ments on improving the processes being used in projects A.1, A.3, and A.4. The question-
naires are provided in [64]. Analyzing the responses given by nine subjects to these ques-
tions indicated that the percentage of positive responses to the proposed practices was
above 50%.

4.1.3. Discussion on Case Study Results
The main result of this study was creating an SPrL for company A that could be used

for building specific processes. Although certain challenges were faced in applying the
approach (RQ1), it had several benefits from the subjects’ point of view: documenting the
processes being used in the company and identifying their deficiencies, gaining
knowledge about the factors influencing the processes, and producing future processes in
less time and with less effort. The results of the improvements showed that the proposed
approach can indeed address the shortcomings of existing processes by infusing best prac-
tices through the top-down approach and also by using the PIMB method base (RQ2).

There are several threats to the validity of this case study, including the following:
• Internal validity: A potential threat to internal validity is subject fatigue; this was

handled by planning interviews in multiple one-hour sessions. Another threat to in-
ternal validity is misinterpretations in the interviews; to mitigate this threat, in addi-
tion to the notes taken during interviews, sound recordings were produced to later
be transcribed as part of analysis. The results of each interview session were also
reported back to the subjects via email and face-to-face conversation (Member check-
ing).

• Construct validity: A potential threat to construct validity is subject selection. Ran-
dom subject selection was not possible, as we needed subjects with adequate
knowledge about the processes used. However, viewpoints of the different roles in-
volved were considered throughout the case study, as well as in the questionnaire
designed for obtaining feedback about the proposed practices (Theory triangulation).
Furthermore, a case study protocol was defined at the beginning of the study and
was updated continuously afterwards (Audit trail).

• Conclusion validity: One potential threat to conclusion validity is the reliability of
the study results. Reviewing the procedures selected for data collection and analysis
by an expert (the second author), member checking, and theory triangulation helped
mitigate this risk.

Software 2023, 2, 21–70 44 of 70

• External validity: An inherent problem of case studies is external validity. To miti-
gate this risk, we applied the approach on a real case. However, the study has been
conducted in a company that based its software processes on Scrum; therefore, we
cannot generalize the results to companies using other types of processes.

4.2. Experiment
The challenges of applying the proposed approach and its efficacy were scrutinized

through the case study. However, the fundamental question still remained: how does pro-
cess instantiation by the proposed approach (AE phase) compare to the ad hoc, manual
approach that is commonly used to construct bespoke processes? An experiment was de-
signed and executed to answer this question by assessing two quality attributes: useful-
ness and ease of use (Table 3). These attributes have previously been used for evaluating
model-driven SME approaches [77]. The subjective and objective measures used in this
experiment are shown in Table 3. As most usability studies use questionnaires to evaluate
satisfaction [78], we designed a two-part questionnaire to gather the subjective data. The
first part was designed to evaluate the users’ perceived usefulness and ease of use; this
section was prepared based on the questionnaires defined by TAM [79], as it is the most
widely used model for evaluating usefulness and ease of use based on subjective data [80].
The second part was designed to measure the completeness of the process produced (as a
measure of its effectiveness). The objective measure was the time expended on defining
the target process (completion time), which is considered as a measure of efficiency. The
guidelines recommended by [81] were followed in designing the experiment. Before final-
izing the design, a pilot run was performed with two subjects; these subjects were not
involved in the main experiment. The details of the experiment and its results are ex-
plained in the following subsections.

Table 3. Measures used in the experiment.

Usefulness Ease of Use

Subjective Measures
Objective Meas-

ure Subjective Measure

Perceived usefulness
Accuracy

Completion time
(Efficiency)

Perceived
ease of use

Complexity manage-
ment

Performance Understandability
Completeness of target process (Ef-

fectiveness) Easy to use

4.2.1. Definition, Planning, and Execution
The experiment’s goal was formulated as follows: Analyze the proposed approach as

to usefulness and ease of use from the point of view of process engineers within the con-
text of academia and industry. Usefulness is focused on evaluating whether the proposed
approach helps build a specific process that satisfies all project/organization needs and
adequately manages configuration complexity; therefore, through this question, we in-
tend to verify that the solutions proposed by our approach do indeed address the short-
comings observed in previous approaches, including the following: Enhancing the core
process, Managing configuration complexity, and Post-derivation enhancement. Ease of
use is specifically focused on evaluating the ease of use of the proposed approach for con-
structing the SPrL and instantiating it to produce a specific process.

To achieve this goal, research questions were defined as follows:
RQ3. What is the users’ perceived usefulness of the proposed approach?
RQ4. What is the users’ perceived ease of use of the proposed approach?
RQ5. To what extent does the proposed approach enhance efficiency?
RQ6. To what extent does the proposed approach enhance effectiveness?

Software 2023, 2, 21–70 45 of 70

In order to compare the efficiency and ease of use of the proposed approach with the
manual ad hoc alternative, we need subjects with knowledge on Scrum, model-driven
engineering, and process engineering so that they can build an instance of Scrum by using
their own tacit knowledge and then compare it with the results of using the proposed
approach. Therefore, a total of 32 Computer Science graduates (MS or PhD) were invited
to participate in the experiment, of which 14 subjects agreed to collaborate: eight of the
subjects were professional developers, one subject was a post-doc student, and five were
PhD students. These subjects were former members (12 subjects) or current members (2
subjects) of the Methodology Engineering (ME) Laboratory at the Department of Com-
puter Engineering, Sharif University of Technology; we limited the subjects to ME-Lab
members since it is the only laboratory in Iran that focuses on process engineering. Eleven
subjects had already used Scrum in their past projects and three subjects had participated
in process engineering courses covering Scrum. It should be mentioned that all of the sub-
jects were either studying PhD abroad (12 subjects) or were involved in other indus-
trial/research projects when this research was being conducted; therefore, none of them
were familiar with the research or the tool. The “Sprint Execution” activity of Scrum and
a hypothetical project situation were considered as experiment objects. The demographic
data of the subjects and the description of the hypothetical situation are provided in Ap-
pendix Q and Appendix R, respectively.

One factor (SPrLE approach) with two treatments (Ad hoc and Proposed approach)
was applied in the experiment. All the subjects applied both treatments, so this was a
“Within-Subject” designed experiment. In the Ad hoc treatment (manual approach), sub-
jects defined a Sprint Execution suitable for the hypothetical situation by using their own
tacit knowledge. In the second treatment, subjects used the Medini QVT tool and the pack-
ages provided by the proposed approach (situational factors, transformations, and the
Scrum metaprocess) for automatic resolution of the variabilities of the Scrum metaprocess
to produce the target “Sprint Execution”; this was done by assigning values to the situa-
tional factors, and then executing the transformations. A training session was conducted
for the subjects to ensure that they could work effectively with the tool. Since the subjects
were geographically distributed, the experiment was executed online. The experiment’s
design is illustrated in Figure 12. Independent and dependent variables of the experiment
are presented in Table 4. Subjects used a timer to measure the time expended on creating
the target process. At the end of each treatment, subjects submitted a snapshot of the re-
sulting process along with the time it took to produce. After the execution of the experi-
ment, subjects filled out a post-questionnaire, which is provided in Appendix S; the in-
struments used for executing the experiment are provided in Appendix T.

Figure 12. Experiment setup.

Table 4. Independent and dependent variables in the experiment.

Independent Variables Dependent Variables

SPrLE approach {Ad hoc, Proposed approach} Perceived usefulness
Perceived ease of use

Software 2023, 2, 21–70 46 of 70

Efficiency
Effectiveness

To answer the research questions, subjective and objective data were analyzed as fol-
lows:
• Subjective data were of two types: quantitative data and qualitative data. To analyze

the quantitative data, which were obtained from closed-ended questions, numerical
values were assigned to the responses given to these questions (from 5 for “Strongly
agree,” to 0 for “Not sure”). The minimum, maximum, and average values for each
Likert item of the questionnaire were then calculated. Qualitative data were obtained
from open-ended questions; responses to these questions were categorized in three
groups: Problems and challenges, Benefits, and Suggestions for improving the ap-
proach.

• Objective data were obtained by measuring the time expended by the subjects in
each treatment. The Wilcoxon signed-rank test was used to verify whether differ-
ences in time measurements were statistically significant.

4.2.2. Results
In this section, results of the experiment are explained through analyzing its four

research questions.

RQ3. What Is the Users’ Perceived Usefulness of the Proposed Approach?
The distribution of the responses given to questions on perceived usefulness is shown

in Figure 13. Analysis results are shown in Table 5. Most of the subjects answered
“Strongly agree” or “Agree” to whether the proposed approach improved Accuracy and
Performance (overall average: 4.21). This result was reinforced by the qualitative feed-
back; the answers given to the open-ended questions are provided in [64].

Figure 13. Distribution of responses given to questions on perceived usefulness.

Table 5. Analysis results on perceived usefulness.

 Min Max Avg.
Accuracy 3 5 4.14

Performance 3 5 4.28
Total Average 4.21

Software 2023, 2, 21–70 47 of 70

RQ4. What Is the Users’ Perceived Ease of Use of the Proposed Approach?
The distribution of the responses given to questions on perceived ease of use is shown

in Figure 14. Analysis results are shown in Table 6. All of the subjects answered “Strongly
agree” or “Agree” to whether the proposed approach supported Complexity Manage-
ment, and most subjects answered “Strongly agree” or “Agree” to questions on the pro-
posed approach’s Understandability and Ease of Use (overall average: 4.19). This result
was reinforced by the qualitative feedback.

Figure 14. Distribution of responses given to questions on perceived ease of use.

Table 6. Analysis results on perceived ease of use.

 Min Max Avg.
Complexity Management 4 5 4.36

Understandability 3 5 4.14
Easy to Use 3 5 4.07

Total Average 4.19

RQ5. To What Extent Does the Proposed Approach Enhance Efficiency?
The subjects’ efficiencies are shown in Figure 15. The distribution of data in the box

plots indicates that more than half of the subjects were more efficient in building an in-
stance of Sprint Execution without using the SPrLE approach. The reason for this result
was the high amount of time expended on assigning values to situational factors; the val-
ues assigned to situational factors for the hypothetical situation are provided in [64].

As shown in Figure 15, in the Ad hoc treatment, some of the subjects expended more
time than others; however, in the second treatment, the times expended by different sub-
jects were not significantly different. This indicates that the Ad hoc approach is relying,
to a large extent, on expertise; whereas in the model-driven approach, the times expended
are almost stable. Even though this stability is not always optimal, it is still interesting
from a project management perspective.

The Wilcoxon signed-rank test was applied to verify whether differences in the times
were statistically significant. This test was selected because the results of the Kolmogorov-
Smirnov test (p = 0.06) indicated that a normal distribution could not be assumed. In the
Wilcoxon test, p = 0.747 was obtained for an alpha level of 0.05. Since p > ∝, we could not
reject H0. Thus, there was no significant difference in the times expended on the two treat-
ments. However, the average time expended by the subjects in the second treatment (971.1
s) was lower than the average time expended in the first treatment (1229.7 s); this might
show that using the proposed approach was generally more efficient than the alternative.

Software 2023, 2, 21–70 48 of 70

Figure 15. Efficiency of subjects in the two treatments.

RQ6. To What Extent Does the Proposed Approach Enhance Effectiveness?
Figure 16 shows the result of executing the transformations in the tool (second treat-

ment). To measure the effectiveness of the proposed approach, we compared the instances
of “Sprint Execution” produced in the two treatments. Results showed that only 32.79%
of the process elements shown in Figure 16 were identified by the subjects in the Ad hoc
treatment. The details of this comparison are provided in Appendix U.

Figure 16. Output of the tool.

In the post-questionnaire, we asked the subjects to state their opinions about the suit-
ability of the process elements produced by the tool (Strongly agree = 5 to Not sure = 0);
this section of the questionnaire was only filled out by subjects who had used Scrum in
real projects (11 subjects). Details are provided in Appendix S. The average values for
almost all of the process elements were greater than 4, indicating that subjects agreed with
the suitability of almost all of the process elements.

4.2.3. Discussion on the Results of the Experiment
The results of this experiment indicate that subjects have perceived the proposed ap-

proach to be a useful way for defining/refining a specific process that also provides a cer-
tain level of ease of use in this regard (RQ1 and RQ2). Although we expected a certain
level of time reduction in producing a specific process by using the proposed approach,
the results show that there is no significant difference in the time expended on the two

Software 2023, 2, 21–70 49 of 70

treatments (RQ3). This is in contradiction with the subjects’ perceived usefulness (RQ2),
but the qualitative feedback provided in the open-ended questions shows that enhancing
the expertise of organization people in using the tool and providing guidelines and exam-
ples on how to assign values to situational factors can reduce the time required. Compar-
ing the results of the two treatments indicates that only 32.79% of the process elements
presented as the output of the tool have been identified by the subjects in the first treat-
ment; subjects have also generally agreed with the suitability of most of the process ele-
ments identified by the tool for the described situation. This result indicates that the out-
put of the tool is likely to be more complete than the output of the first treatment (RQ4).

There are several threats to the validity of this experiment, including the following:
• Internal validity: There are two potential threats to the internal validity of a within-

subject design. The first threat is learning effects, which we minimized by providing
the subjects with the required instruments gradually and only when needed, thus
leveling the learning curve; the only common instrument in the two treatments was
the description of the hypothetical situation. However, as the subjects had to assign
values to situational factors based on the description of the situation, they needed to
carefully read each sentence of the description in the second treatment; therefore, the
learning effect was minimized. Furthermore, we have intentionally designed the se-
quence of sessions 1 and 2 so that the tool is only used throughout the second session,
thus obviating any biasing leaning effect resulting from having seen the output of the
tool. The second threat is tiredness, which was handled by selecting only one activity
of the Scrum framework as the object of experiment.

• Construct validity: The first threat to construct validity is misunderstanding the
questions in the post-questionnaire; to deal with this, we added explanations to each
measure. Furthermore, the pilot run helped ensure the completeness and under-
standability of the questionnaire. The second threat is that subjects might not gain
sufficient understanding of the tool and the experiment’s tasks. To reduce this threat,
we held a training session and sent a voice-recorded file including detailed instruc-
tions on how to execute the experiment. The within-subject design and subject limi-
tation strategy helped reduce the effects of confounding variables [81] as the third
threat to construct validity.

• Conclusion validity: One potential threat to conclusion validity is low statistical
power; as we needed people with basic knowledge/experience of Scrum, we could
not use a random sampling strategy to choose a large number of respondents. An-
other threat is the reliability of treatment implementation. We mitigated this risk by
executing the whole experiment online. Furthermore, the same set of instruments
was sent to all the subjects.

• External validity: The use of students as subjects of software engineering experi-
ments is popular due to their higher availability/accessibility [82]. Although using
student subjects is often seen as a potential threat to external validity, there is no
general agreement that either students or professionals are generally better as sub-
jects of experiments [82] (p. 26). Hence, we have used a combination of students and
professionals in our experiment (as shown in Appendix Q); furthermore, the students
who participated in the experiment had several years of experience in industrial pro-
jects. Another potential threat to external validity is having an inadequate experi-
mental setting. To minimize this risk, we implemented the transformations in a tool
that is available online; however, further experimentation is needed to generalize the
findings.

4.3. Comparative Analysis
In this section, we compare our proposed approach with existing SPrLE approaches

based on the support that they provide for feasibility analysis, enhancement of the core
process, management of configuration complexity, and post-derivation enhancement;

Software 2023, 2, 21–70 50 of 70

these are the four activities that we had identified as areas requiring improvement in ex-
isting model-driven SPrLE approaches (as explained in Section 2). Table 7 shows the re-
sults of evaluating our approach and existing model-driven SPrLE approaches based on
their support for these four activities. It should be mentioned that tool-focused approaches
[27,30,32] and approaches for proposing general SPrLs for specific domains [33,34] have
been excluded from this comparison, as they cannot be considered as specialized engi-
neering approaches for constructing bespoke SPrLs.

Table 7. Results of evaluating SPrLE approaches based on their support for the four SPrLE activities.

SPrLE Approach
Activity

Our Proposed Ap-
proach [6] [10] [12] [21] [22] [23] [24] [25] [26] [28] [29] [31]

Feasibility analysis
Enhancing the core process

Managing configuration complexity
Post-derivation enhancement

Legend: : No support; : Partial support; : Full support.

Results of the comparison are explained below:
1. Feasibility analysis in our approach is conducted in the analysis subphase of DE. No

other approach provides mechanisms for this purpose.
2. Enhancing the core process is performed in our approach via defining a metaprocess

by applying the top-down approach, and then merging it with the initial core process.
In [21–23], the top-down approach is used for creating the SPrL; however, the pro-
cesses used in the organization are not analyzed to create the core process, whereas
these processes may include specific process elements for specific situations that are
not identified by the top-down approach. Therefore, the combination of bottom-up
and top-down approaches has never been used before, and is a contribution of our
proposed SPrLE approach.

3. Managing configuration complexity is performed in our approach in two ways: au-
tomatic variability resolution and support for multistage configuration through mul-
tilevel resolution of variabilities. In [10,12,21–23,25,26,28,31], configuration complex-
ity is managed by providing automation in resolving the variabilities. Multistage
configuration of variabilities is implicitly supported in [21–23], but not in
[10,12,25,26,28,31]; therefore, we have assigned the value “Partial-support” to
[10,12,25,26,28,31] for managing configuration complexity. In [21], resolution of the
variabilities defined in the SPrL results in creating a specific SPrL for the target or-
ganization; the target organization should then resolve the remaining variabilities to
create the specific processes. In [22,23], variants of the reference model are created at
different abstraction levels: company-specific level, unit-specific level, and project-
specific level. There are two specific differences between the multi-stage configura-
tion proposed in our approach with the one used in [21–23]: 1) We do not limit the
number of levels through which the variabilities are resolved; organizations can de-
fine the levels based on their needs and by using the framework proposed (Figure 7);
and 2) We exactly specify which variation points are resolved at which levels. This
level of detail is not provided in [21–23]; however, as these studies have paid ade-
quate attention to this aspect of complexity management, we have assigned the value
“Full-support” to them for managing configuration complexity

4. Post-derivation enhancement is performed in our approach in the implementation
subphase of AE by analyzing the process instantiated from the SPrL to identify delta
requirements; PIMB is then used to address those requirements. No other approach
provides mechanisms for this purpose.

Software 2023, 2, 21–70 51 of 70

5. Discussion on the Benefits and Limitations of the Proposed Approach
The proposed approach provides concrete benefits. Automatic execution of transfor-

mations has many advantages: building a process is done in a systematic manner, since
the transformations are uniformly executed based on the values of context attributes; fur-
thermore, the time required for building a specific process is shorter than before, so any
change in the context model, values of context attributes, and transformation rules can be
propagated to process models faster and easier. Gradual resolution of variabilities
through modeling levels has many benefits too, including enhancing the maintainability,
complexity management, and reusability of models. Our approach also covers post-deri-
vation activities: after a specific process is built, it is analyzed to identify the organiza-
tional-needs/project-characteristics that have not been satisfied; in case such shortcomings
are found, the PIMB is used for identifying suitable process elements for resolving them.
Using PIMB and enriching it over time with best practices can help enhance the maturity
of processes; it can also help share process knowledge across the organization.

However, evaluation results indicate that there are specific limitations in using the
approach, including the following:
(1) Although providing tool support for representing variabilities and executing trans-

formations has its own benefits, user-friendliness is an important feature that should
be considered when implementing a tool; this requirement has not been adequately
satisfied by our proposed tool. This may jeopardize the adoption of the approach by
organizations.

(2) Although automatic execution of transformations can facilitate change propagation,
it is imperative that specific mechanisms be provided for preserving traceability be-
tween the SPrL and the processes already instantiated from it. Our approach lacks
such mechanisms, to the detriment of the evolvability of the SPrL.

(3) Another challenge is assigning specific values to situational factors during AE. Our
approach fails to provide guidelines on how to assign these values based on the struc-
ture of the organization/teams and the type of the project at hand.

6. Conclusions and Future Work
Our proposed SPrLE approach is executed in two phases: Domain Engineering (DE),

and Application Engineering (AE). During the DE phase, a context model is created along
with a core process. During the AE phase, specific processes are built for the organization
by resolving the variabilities of the core process. The MDD approach is explicitly used in
this phase: transformations are automatically executed, gradually generating the model
of the target process as it passes through the modeling levels; these transformations are
based on the core process and the context model. Evaluation and comparative analysis
have shown that the proposed approach is applicable to real situations, is useful and easy
to use, and is superior to existing SPrLE approaches as to the support that it provides for
the four SPrLE activities that have been found to be deficient in existing approaches. The
proposed approach can be used by process engineers to create an SPrL and by project
managers to build a bespoke process. It helps process engineers to examine the suitability
of the SPrL approach for an organization and to then create the core process by following
a multi-step bottom-up approach. If the organization’s processes are based on Scrum, the
process engineer can use our proposed metaprocess [56] to improve the initial core pro-
cess; in such cases, the transformations implemented in the tool can be reused. However,
if the processes are not based on Scrum, the process engineer should create a metaprocess
by identifying the variabilities in a well-known framework. The multi-level modeling pro-
vided in our approach can be used to manage the inherent complexity involved in varia-
bility resolution.

Although the resolution of variabilities in the proposed approach is performed auto-
matically, the next step for facilitating the adoption of SPrLs in organizations is providing
a high level of user friendliness in the user interface of the tool used for executing the

Software 2023, 2, 21–70 52 of 70

transformations. This research can be furthered in several other directions as well, such as
extending PIMB with additional practices, empirically evaluating the metamodel pro-
posed for modeling SPrLs, conducting more case studies to evaluate the approach’s prac-
ticality in different contexts, providing mechanisms to define traceability relationships be-
tween the core process and instantiated processes to facilitate change propagation and
identification of situations for evolving the constructed SPrL, and providing organizations
with guidelines on how to assign values to context attributes based on different organiza-
tional/team structures and project categories.

Author Contributions: Conceptualization, H.A. and R.R.; methodology, H.A. and R.R.; software,
H.A.; validation, H.A. and R.R.; formal analysis, H.A.; investigation, H.A.; resources, R.R.; data cu-
ration, H.A.; writing—original draft preparation, H.A.; writing—review and editing, R.R.; visuali-
zation, H.A.; supervision, R.R.; project administration, R.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the reported results has been uploaded to Men-
deley Data and can be found at: https://data.mendeley.com/datasets/r62gjghx52/1 (accessed on 22
November 2022). This link has also been added to the list of references (Reference 64) and has been
referred to in the manuscript where necessary.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
To clarify the application of requirements for feasibility analysis purposes, consider

an organization in which the importance level of requirements has already been specified
by conducting one or more case studies, shown in the second column of Table A1. Fur-
thermore, suppose that the threshold value has been set to 10. The evaluation of require-
ments in the organization is shown in the third column of Table A1. Each cell of the second
column should be multiplied by the corresponding cell in the third column; summing up
the results shows the satisfaction level of requirements in the organization, shown in the
fourth column of Table A1. Since the total score (13) is greater than the threshold value
(10), the organization is a suitable candidate for creating the SPrL.

Table A1. An example of application of requirements for deciding about creating the process line.

Requirement Level of Importance
(0–10)

Satisfaction by Organization
(Yes = 1, No = 0) Score

Significantly different
criticality levels in dif-

ferent products
3 1 3

Projects of significantly
different sizes/dura-

tions undertaken
5 1 5

Resource constraints 1 0 0
Specific level of similar-
ity as to the structure of

methodologies
2 1 2

Similarity in type of
methodologies 3 1 3

Sum =

13

Software 2023, 2, 21–70 53 of 70

Appendix B
Figure A1 shows an example of modeling context attributes in Medini QVT; instances

of the classes defined in the metamodel have been highlighted in this figure.

Figure A1. An instance of the context metamodel implemented in the Medini-QVT tool.

Appendix C
Figure A2 shows an example of the variability modeling performed in the tool. Var-

iabilities have been signified by the keyword “Variation Point”.

Figure A2. Variabilities modeled via the Medini-QVT tool (signified by the keyword “Variation
Point”).

Software 2023, 2, 21–70 54 of 70

Appendix D
Figure A3 shows an example of the variabilities identified in this metaprocess. The

metaprocess has been implemented in the tool; however, Figure A3 shows a manually-
produced graphical view of it. To clarify the variabilities identified in the “Grooming the
product backlog” activity, consider the “Prioritizing PBIs” task. Prioritizing backlog items
can be performed based on four guidances: cost, value, knowledge, and risk. If “Value” is
selected, there are two ways for prioritizing PBIs based on “Value”: Kano analysis and
Relative weighting; one of these guidances should be selected, since these variants are
connected to a variation point with the Alternative-XOR relationship.

Figure A3. Variabilities identified in “Grooming the product backlog”.

Appendix E
The process elements defined in PIMB are shown in Table A2. For each process ele-

ment (practice), the situation in which the process element can be used has also been iden-
tified. The sign ‘*’ in the table means that the value assigned to the factor has no effect on
resolving the variation point.

Table A2. Process elements defined in PIMB.

Practice Situation
Post-mortem ses-

sion
Personnel cohesion = (*, High) OR Application connectivity = High

Feasibility study Degree of risk = High OR Application complexity = High OR Person-
nel experience = (Inexperienced, *)

Prototyping
Personnel experience = (Inexperienced, *) OR Requirements standards
= Inadequate OR Application complexity = High OR Degree of risk =

High OR End-user experience = Inadequate
Facilitated work-

shops
(Number of teams = High OR External dependencies = High) AND Or-

ganization facilities = Adequate

Coding standards
Number of teams = High OR Personnel cohesion = (*, High) OR Appli-
cation connectivity = High OR Application reuse = High OR Applica-

tion quality = High

Software 2023, 2, 21–70 55 of 70

Simple design Personnel skill and knowledge = Inadequate OR Application reuse =
High OR Application quality = High

Exploring the method base is automatically performed by executing transformations.
Input models to transformations are the method base and the context model. An excerpt
of the PIMB defined in the tool is shown in Figure A4.

Figure A4. Excerpt of PIMB defined in the tool.

Appendix F
Table A3 shows an excerpt of the transformation implemented for resolving the “Pair

programming” variability in the Scrum metaprocess; pair programming is an optional
guidance and should be added to the target process by considering the values of context
attributes. In Table A3, Part 1 checks if specific context attributes have been assigned spe-
cific values. The process element related to the “pair programming” guidance is specified
in Part 2. In Part 3, the guidance is added to the process element. Parts 1 and 2 constitute
the ‘before’ state of the transformation, whereas Part 3 denotes the ‘after’ state.

Table A3. An excerpt of the transformation implemented for resolving “Pair programming”.

QVT Definition Top Relation Rule9

Part 1

checkonly domain left1 L1: Context_Metamodel::Context{
Contains = D1 : Context_Metamodel::Dimension { Name = ‘Applica-

tion’, Contains = C1 : Context_Metamodel::ContextAttribute {
Name = ‘Quality’, Value = ‘High’}}};

Part 2
checkonly domain left2 L2: SPrL_Metamodel::Task{

Name = ‘Task performance’};

Part 3
enforce domain right R1: SPrL_Metamodel::Guidance{

Name = ‘Pair programming’, Is_Contained_by_Task = L2};}

Appendix G
To provide an overall overview, examples of the work products of DE subphases are

shown in Figure A5. As shown in this figure, two different instances of Scrum have been
fed to the analysis subphase (X and Y); we have just shown an excerpt of “Grooming

Software 2023, 2, 21–70 56 of 70

product backlog” activity in this example. Organizational goals are used to help identify
the context attributes that are important to the organization. Models of the two processes
and a set of context attributes are the outputs of the analysis subphase. During design,
context attributes are modeled by instantiating the context metamodel. As shown in Fig-
ure A5, one variability has been identified between the two processes. Different criteria
are used for prioritizing PBIs: “Value” in X, and “Value” and “Knowledge” in Y; hence,
“Value” is added as mandatory, whereas “Knowledge” is specified as optional. During
implementation, the core process is completed by combining the initial core process with
the Scrum metaprocess. The details and variabilities of the “Grooming product backlog”
activity of the metaprocess are more comprehensive than the same activity in the initial
core process. Therefore, the result of combination will be the same as the activity defined
in the metaprocess, as shown in Figure A3. However, if the initial core process had in-
cluded process elements other than the ones in the metaprocess, they would have shown
up in the combined process. Transformations are also produced in this subphase. PIMB is
the other output produced.

Figure A5. Examples of work products of DE subphases.

Appendix H
Figure A6 shows an example of an OCM implemented in the tool. As shown in Figure

A6, the value of “Culture Collaboration Level” has been set to “Collaborative”.

Software 2023, 2, 21–70 57 of 70

Figure A6. The Organizational Context Model (OCM) implemented in the tool.

Appendix I
Figure A7 shows an example of the resolution of the variabilities related to the

“Sprint Execution” activity, which only includes role, task, and guidance variabilities, the
resolution of which depends on environmental and project factors; therefore, there is no
resolvable variation point at levels 1.1 to 2.1, and 3.1. Resolution is performed as follows:
1. Transformation 2.2: Sprint Execution and the OCM are fed to this transformation.

For sake of brevity, only the relevant parts of the activity are shown in Figure A7.
Variation points that are dependent to environmental factors (Tasks, Work Products,
and Roles) are resolved at this level; therefore, “Daily Scrum”, which is designated as
an optional task in the input model, is resolved by executing the transformation.
Based on the values assigned to the situational factors, this task is added to the target
process.

2. Transformation 2.3: The Sprint Execution produced at level 2.2 and the OCM are fed
to this level as input models. Variation points that are dependent to project factors
are resolved at this level (Guidance); therefore, “Three questions”, designated as an
optional guidance, is resolved by executing the transformation. Based on the values
assigned to situational factors, this guidance is added to the target process.

3. Transformation 3.2: The Sprint Execution produced at level 2.3 and the OCM are fed
to this transformation as input models. Roles that are dependent to project factors are
resolved at this level; therefore, “Other people”, designated as an optional role, is
targeted by the transformation. Based on the values assigned to situational factors,
“other people” is added to the target process as a role involved in the Daily Scrum.

Software 2023, 2, 21–70 58 of 70

4. Transformation 3.3: All the remaining variabilities are resolved at this level. Based
on the values assigned to situational factors, “Pair programming”, “Refactoring”,
“TDD”, “Collective ownership”, “Continuous integration”, “Parking lot chart”,
“Task board”, “Sprint burndown line chart”, and “Effort-hours” are added to the
target process. By adding the “Sprint burndown chart” to the target process, the
“Sprint burnup chart”, and the guidances associated with “Sprint burnup chart”
(“Story point” and “Effort-hours”) are removed from the core process since there is
an exclusion relationship between “Sprint burndown chart” and “Sprint burnup
chart”. “CFD” is also removed based on the values of situational factors. The result-
ing “Sprint Execution” activity is the output of level 3.3.

Figure A7. Resolution of “Sprint Execution” variabilities for a specific situation.

Software 2023, 2, 21–70 59 of 70

Appendix J
Examples of AE work products are shown in Figure A8. In the analysis subphase,

context attributes are given specific values and the organizational context model is pro-
duced. During design, the variabilities defined in the “Grooming product backlog” activ-
ity are resolved by executing the pre-defined transformations (based on the values of con-
text attributes); we have shown just an excerpt of the activity due to space limitations.
Variabilities are resolved gradually by traversing the modeling levels and executing the
relevant transformations; due to space limitations, only the output of level 3.3 is shown
herein as the output of the design subphase (Figure A8). During implementation, the “Fa-
cilitated workshops” guidance is extracted from PIMB and added to the “Prioritizing
PBIs” task.

Figure A8. Examples of work products of AE subphases.

Appendix K
The questionnaire designed for feasibility analysis is shown in Table A4. It was filled

out by three of the four candidate companies. One of the companies stated that only one
category of products was developed by this company and they used only one version of
Scrum; therefore, the questionnaire was not filled out by this company. We used a
weighting approach to examine the candidate companies, in which a Yes/No answer was
given to each question, scored as: “Yes/Y” = 1, and “No/N” = 0. As the requirements in the

Software 2023, 2, 21–70 60 of 70

organization category are meaningful for only those organizations that have headquarters
in different locations, such as multi-national or international companies [13], the questions
included in this category have been answered by only one of the companies.

Table A4. Feasibility analysis questionnaire filled out by three companies.

Category Requirement for Adopting SPrL
Candidate
Companies
A B C

Product

Significantly different criticality levels in different products Y Y Y
Significantly different product types produced N Y Y
Significantly different product sizes produced Y Y Y

Significantly different security levels in different products N N N
Significantly different complexity levels in different products Y Y N

Significantly different maintainability needs in different products Y N Y
Significantly different usability needs in different products N N N

Significantly different performance efficiency levels in different products N Y N
Significant difference in the level of compatibility with organization laws/standards, or with exist-

ing systems, in different products
Y N N

Significantly different reliability needs in different products N N N
Significantly different complexity levels in predicting the requirements/project schedule/project

cost in different products
Y N Y

Significantly different levels of rigidity in meeting stated and implied needs of products Y N N

Project

Significantly different levels of resource constraints in different projects Y N N
Significant difference in the level of team members’ skill/knowledge in different projects Y Y N

Projects of significantly different sizes/durations undertaken Y Y Y
Significantly different risk/complexity levels in different projects Y Y Y

Significant difference in the number or size of teams in different projects Y Y N
Significant difference in changeability, understandability, or feasibility of user/system require-

ments in different projects
N N N

Significant difference in the level of stakeholder involvement, number of stakeholders involved,
and/or background/knowledge level of stakeholders in different projects

Y N N

Significant difference in team cohesion (Distributed/Collocated) in different projects N N N
Significantly different project types undertaken (i.e., outsourced and insourced) N Y N

Significant difference in technological environments (tool infrastructures, test environments,
COTS products) and/or architectural decisions in different projects

N N N

Significant difference in the level of cooperation, cooperation history, and/or disharmony among
team members, in different projects

N Y N

Variable types of development (developing new systems/modification of existing systems) under-
taken in different projects

N Y N

Significant difference in contract types (fixed date/fixed price) and/or the level of interaction be-
tween contractor and developers in different projects

N N N

Significant difference in customer cohesion and/or customer variety in different projects N N Y
Significant difference in the degree of novelty and/or the level of technology emerging in different

projects
N N Y

Significantly different productivity levels in the teams involved in different projects Y N N
Significant difference in the availability of legacy system information in different projects Y N N

Significant difference in the level of end-user variety, their availability, and/or their experience
with the system in different projects

N N N

Significant difference in the number of deployed versions of applications, or the number of de-
ployed applications in different projects

Y Y N

Significant difference in importance of user interface in different projects Y N N
Significant difference in the rate at which emergent opportunities occur in different projects Y Y Y

Significant difference in the importance of status information for the top management in different
projects

Y N N

Significant difference in the level of team members´ skill/knowledge in different projects Y N N

Software 2023, 2, 21–70 61 of 70

Organization

Significant difference in sizes of distributed organizations N -- --
Significant difference in structure/culture of distributed organizations Y -- --
Significant difference in maturity levels of distributed organizations N -- --

Significantly different levels of resource constraints in different organizations N -- --
Significant difference in the level of commitment, support, expertise, availability, accomplish-

ment, and/or continuity among the managers
N -- --

Significantly different crucial forces behind the successful development of a project in different
organizations

Y -- --

Significantly different product types in different organizations Y -- --
Significant difference in standards or legal aspects N -- --

Significantly different stability levels in different organizations N -- --
Significantly different innovation levels in different organizations N -- --

Appendix L
Semi-structured interviews were the main source of information in the case study.

Interview instruments were constructed to focus on the areas to discuss. The instruments
were adapted as the interviews progressed to gain further information about the process
used in the organization and its problems. The interview instruments used are as follows:

Appendix L.1. Session 1
• General (~15 min): Focusing on subjects’ personal history and details of the projects

performed in the specific unit;
• Explaining the study (~30 min): Focusing on the goals of the study, the proposed

approach for creating the process line, how the subjects will benefit from the results,
and guaranteeing the confidentiality and anonymity of the gathered data;

• Problems and challenges (~15 min): Focusing on the main problems and challenges
that subjects face in projects.

Appendix L.2. Session 2
• Scrum process (~60 min): Focusing on how the subjects perform Scrum activities (in-

cluding Portfolio Planning, Product Planning, Release Planning, Sprint Planning,
Sprint Execution, Grooming, Sprint Review, and Sprint Retrospective), what roles are
involved in each activity, what products are produced or received in each activity,
the other activities performed, guidance/techniques used in each activity, and the
problems faced when performing each activity.

Appendix L.3. Session 3
• Process line created (~25 min): Focusing on explaining the existing process line along

with the process line proposed for the organization;
• Target process created for the specific project (~25 min): Focusing on explaining the

specific process instantiated from the process line, and the mapping relationships be-
tween the problems of the unit and the practices defined in the proposed process;

• Subjects’ feedback on the proposed approach (~10 min);
• Ending (~5 min): Focusing on finishing with a brief summary, thanking the subject,

and scheduling a feedback after applying some of the proposed practices.

Appendix M
The values of context attributes in project A.2 are shown in Table A5.

Software 2023, 2, 21–70 62 of 70

Table A5. Values of context attributes in project A.2.

Factor Class Situational Factors Value Assigned

Personnel

Number of Teams Normal
Culture (Collaborative, Harmonious)

Experience (Experienced, Unfamiliar)
Cohesion (Normal, Normal)

Skill and Knowledge Adequate
Commitment Adequate

Require-
ments

Changeability (High, Normal)
Standards Adequate

Application

Degree of Risk High
Complexity Normal

Size Normal
Connectivity High

Reuse High
Deployment Profile High

Quality High

Organization
Maturity Adequate

Management Commitment and Expertise (Adequate, Adequate)
Facilities Adequate

Operation End-User Experience Adequate

Business

Time to Market Normal
External Dependencies Normal

Opportunities Normal

Business Drivers
Financial considerations and Maximizing

customer satisfaction
Magnitude of Potential Loss Normal

Appendix N
Figure A9 shows the transformation implemented for resolving the variability re-

lated to “Maintenance with Kanban”.

Figure A9. Transformation implemented for resolving the variability related to “Maintenance with
Kanban”.

Software 2023, 2, 21–70 63 of 70

Appendix O
For obtaining feedback on the impact of the process elements applied in project A.2,

we designed a questionnaire through which participants were asked to state their opinion
on whether each of the practices listed in Figure A10 would result in improving the pro-
cess being used in their project.

Figure A10. Questionnaire designed for obtaining feedback about the practices applied.

Appendix P
Examples of problems in existing processes and the solutions proposed based on the

produced processes are presented in Table A6.

Table A6. Problems identified through interview sessions and the solutions proposed for each.

Project Problems and Solutions

A.1

Problem: The capacity of team to complete work and then forecasting PBIs deliverable in the upcoming
sprint is determined by an experienced person who has enough knowledge about capabilities of team mem-

bers. Any change in the structure of the team can threat estimations performed.
Solution: Specific guidances, including Velocity, Planning poker, and Story point are proposed.

Problem: User stories defined in the product backlog are not split into tasks.
Solution: It is proposed that Sprint goal be defined for each sprint. Furthermore, specific process elements,

including Sprint backlog, and Task board are proposed.
Problem: Due to time constraints, unit testing is not performed; only black-box testing is automatically per-

formed for validating PBIs implemented through the current sprint.
Solution: Specific guidances, including Definition of ready and Definition of Done are proposed.

Problem: The size of PBIs is not properly estimated.
Solution: Planning poker is proposed.

A.2

Problem: Some of the top-most PBIs are not groomed into a ready state.
Solution: The guidance “Definition of ready criteria” is proposed.

Problem: The capacity of team to complete work and then forecasting PBIs deliverable in the upcoming
sprint is determined by an experienced person who has enough knowledge about capabilities of team mem-

bers. Any change in the structure of the team can threat estimations performed.
Solution: Specific guidances, including Velocity, Planning poker, and Story point are proposed.

Problem: The size of PBIs is not properly estimated.
Solution: Specific guidances, including Planning poker and Story point are proposed.

Problem: PBIs implemented in the current sprint are not properly presented to the product owner in sprint
reviews.

Solution: Definition of Done is proposed. Furthermore, defining the “How to Demo” template for specifying
contents that should be presented throughout sprint review meetings can help solve the problem.

A.3
Problem: Prioritizing PBIs are not performed properly.

Solution: Considering Cost, Value, Knowledge, and Risk factors for prioritizing PBIs is proposed.
Problem: The product backlog is not groomed in just-enough and just-in-time manner.

Software 2023, 2, 21–70 64 of 70

Solution: Specific process elements, including Definition of ready, Planning Poker, and Task board are pro-
posed.

A.4

Problem: The size of PBIs is not properly estimated.
Solution: Specific guidances, including Planning poker and Story point are proposed.

Problem: There are problems with intra-team knowledge sharing.
Solution: Guidances such as “Moving people around” and “Preparing documents of project status” are pro-

posed.
Problem: The capabilities of team members in writing high-quality code are significantly different from each

other.
Solution: “Training team members on code quality by a coach” guidance is proposed.

Appendix Q
The demographic data of the subjects is shown in Table A7.

Table A7. Demographic data of the subjects.

No. Current Work
Status

Highest Academic
Degree

Number of Projects
Participated in

Experience in Using
Scrum

Passed University Courses
Related to Process Engi-
neering Including Scrum

1 Professional MSc 10+ Yes Yes
2 Professional MSc 1–2 Yes Yes
3 Academic MSc 8–10 Yes Yes
4 Academic MSc 3–4 No Yes
5 Professional MSc 5–7 Yes Yes
6 Academic MSc 1–2 No Yes
7 Professional MSc 10+ Yes Yes
8 Professional MSc 3–4 No Yes
9 Academic MSc 8–10 Yes Yes

10 Professional MSc 8–10 Yes Yes
11 Professional MSc 10+ Yes Yes
12 Academic PhD 8–10 Yes Yes
13 Academic MSc 10+ Yes Yes
14 Professional MSc 5–7 Yes Yes

Appendix R
A hypothetical project situation was considered as the experiment object. Subjects

defined Sprint execution suitable for this situation throughout two treatments. The de-
scription of this situation is as follows:

“We consider a hypothetical software development project in a small-sized software
company as an example project situation. The company is CMMI level-2 certified, and its
organizational software process is based on Scrum. The application to be built is a me-
dium-sized, web-based application with high complexity. End-users have already used
applications similar to the new one, and there are representatives of the end-user commu-
nity that are capable of specifying the user requirements with high quality; however, these
requirements can be changed easily over time in response to market needs. There is con-
siderable time pressure to release the first version of the application by implementing a
portion of the requirements that significantly increases customer satisfaction. The quality
of the application is vital for the customer organization, and the competitive edge of the
organization can be seriously affected if quality standards are not observed. One Scrum
team, consisting of one Scrum master, one product owner and a development team of five,
is responsible for building the application. Development team members are technical peo-
ple who have worked together for two years, but they are unfamiliar with the application

Software 2023, 2, 21–70 65 of 70

to be built. The development team is collocated in a collaborative workspace. The com-
pany and its managers provide adequate support to the Scrum team; e.g., by providing
the facilities required for implementing agile practices.”

Appendix S
To gather subjective data, we designed a two-part questionnaire. The first part was

designed to evaluate the users’ perceived usefulness and ease of use. The second part was
designed to measure the completeness of the process produced (as a measure of its effec-
tiveness). Contents of each part are as follows:

Part 1: Subjects were asked to state their opinion on whether each of the characteris-
tics shown in Figure A11 is improved by using the proposed approach rather than using
the ad hoc approach for defining an instance of Scrum.

Figure A11. Questionnaire designed for measuring perceived usefulness and ease of use.

Part 2: In this part, subjects were asked to state their opinion about the suitability of
the process elements identified by the tool for the described situation. The responses given
by the subjects are shown in Table A8.

Table A8. Responses given to the suitability of the process elements identified by the tool.

Strongly

Agree Agree Neutral
Strongly
Disagree Disagree

Not
Sure Min Max Avg.

Sprint Execu-
tion

Scrum Team 9 2 0 0 0 0 4 5 4.82
Sprint Goal 9 1 0 0 0 1 0 5 4.45

Sprint Backlog 9 1 0 0 0 1 0 5 4.45
Potentially Shippa-

ble Product
7 2 1 0 0 1 0 5 4.18

Daily Scrum 8 3 0 0 0 0 4 5 4.73
Task Performance 6 3 1 0 0 1 0 5 4.09
Flow Management 4 2 1 0 0 4 0 5 2.82

Task Planning 6 4 1 0 0 0 3 5 4.45
Communicating 8 0 2 0 0 1 0 5 4.18

Daily Scrum

Scrum Team 8 3 0 0 0 0 4 5 4.73
Other People 2 3 4 1 0 1 0 5 3.27
Parking Lot 1 4 6 0 0 0 3 5 3.54

Three Questions 5 3 3 0 0 0 3 5 4.18
Pair Programming 2 4 3 0 2 0 1 5 3.36

Software 2023, 2, 21–70 66 of 70

Task Perfor-
mance

TDD 8 1 2 0 0 0 3 5 4.54
Refactoring 8 3 0 0 0 0 4 5 4.73

Collective Owner-
ship 6 3 2 0 0 0 3 5 4.36

Continuous Integra-
tion 10 1 0 0 0 0 4 5 4.91

Communicating
Sprint Burndown

Chart 3 5 2 0 0 1 0 5 3.73

Task Board 9 2 0 0 0 0 4 5 4.82
Burndown

Chart
Bar Chart 2 2 5 0 0 2 0 5 3

Effort-hours 2 1 5 1 1 1 0 5 2.91
 Total Average = 4.1

Legend: 5. Strongly agree/4. Agree/3. Neutral/2. Disagree/1. Strongly disagree.

Appendix T
Since the subjects were geographically distributed, the experiment was executed in

an online manner. Therefore, the following set of instruments was sent to the subjects:
1. Introductory document: The experiment goal and the tasks of the study were ex-

plained through this document.
2. Description of hypothetical situation
3. List of situational factors along with range of values
4. Transformations package: Transformations implemented for resolving the variabil-

ities of Sprint Execution were sent to the subjects via this package.
5. Voice-recorded power point presentation: A voice-recorded presentation was sent

to the subjects before the experiment execution. Through this file, we explained the
subjects how to install and configure the tool. We also provide subjects with an ex-
ample of assigning values to situational factors and executing transformations for
resolving the variabilities of Release Planning.

6. Pre-questionnaire: The demographic data were gathered through this questionnaire.
7. Post-questionnaire: The perceived usefulness and ease of use were quantified

through this questionnaire. Furthermore, the suitability of the process elements iden-
tified by the tool was measured via this questionnaire.

Appendix U
To measure the effectiveness of the proposed approach, we compared the instances

of “Sprint Execution” produced in the two treatments. The results of this comparison are
shown in Table A9. As shown in this table, only 32.79% of the process elements specified
by the tool (through our proposed approach) were identified by the subjects in the ad hoc
treatment. The fourth column of Table A9 shows the different words used by the subjects
for naming the process elements of Sprint Execution.

Table A9. Comparison of the process elements identified in the two treatments.

Number of Subjects Identify-

ing the Process Element Different Words Used

Sprint Execution

Scrum Team 14 -----
Sprint Goal 4 -----

Sprint Backlog 8 -----

Potentially Shippable
Product 9

Potentially shippable increment, Deployable
product, Increment, Potential product,

Working application
Daily Scrum 10 Daily meeting, face to face conversations

Software 2023, 2, 21–70 67 of 70

Task Performance 14 Develop task, Development
Flow Management 4 Review and Revise

Task Planning 5 -----
Communicating 3 -----

Daily Scrum

Scrum Team 10 -----
Other People 1 -----
Parking Lot 1 -----

Three Questions 0 -----

Task Perfor-
mance

Pair Programming 3 -----
TDD 2 -----

Refactoring 4 -----
Collective Ownership 3 -----

Continuous Integration 4 -----

Communicating
Sprint Burndown Chart 0 -----

Task Board 2 -----

Burndown Chart
Bar Chart 0 -----

Effort-hours 0 -----
 Average = 32.79%

References
1. Acuna, S.T.; Antonio, A.D.; Ferre, X.; Lopez, M.; Mate, L. The Software Process: Modelling, Evaluation and Improvement. In

Handbook of Software Engineering and Knowledge Engineering; Chang, S.K., Ed.; World Scientific: Singapore, 2000; pp. 193–238.
https://doi.org/10.1142/9789812389718_0011.

2. Pedreira, O.; Piattini, M.; Luaces, M.R.; Brisaboa, N.R. A systematic review of software process tailoring. ACM SIGSOFT Softw.
Eng. Notes 2007, 32, 1–6. https://doi.org/10.1145/1241572.1241584.

3. Mirbel, I.; Ralyté, J. Situational method engineering: Combining assembly-based and roadmap-driven approaches. Requir. Eng.
2006, 11, 58–78. https://doi.org/10.1007/s00766-005-0019-0.

4. Agh, H.; Ramsin, R. A pattern-based model-driven approach for situational method engineering. Inf. Softw. Technol. 2016, 78, 95–
120. https://doi.org/10.1016/j.infsof.2016.05.010.

5. Ocampo, A.; Bella, F.; Münch, J. Software process commonality analysis. Softw. Proc. Improv. Pract. 2005, 10, 273–285.
https://doi.org/10.1002/spip.229.

6. Washizaki, H. Building Software Process Line Architectures from Bottom Up. In Proceedings of the 7th International Conference
on Product-Focused Software Process Improvement (PROFES), Amsterdam, The Netherlands, 12–14 June 2006; pp. 415–421.
https://doi.org/10.1007/11767718_37.

7. Jaufman, O.; Münch, J. Acquisition of a project-specific process. In Proceedings of the 6th International Conference on Product-
Focused Software Process Improvement (PROFES), Oulu, Finland, 13–18 June 2005; pp. 328–342.
https://doi.org/10.1007/11497455_27.

8. Pohl, K.; Böckle, G.; van der Linden, F. Software Product Line Engineering: Foundations, Principles and Techniques; Springer: Ber-
lin/Heidelberg, Germany, 2005.

9. Northrop, L.M. SEI’s Software Product Line Tenets. IEEE Softw. 2002, 19, 32–40. https://doi.org/10.1109/MS.2002.1020285.
10. Hurtado Alegría, J.A.; Bastarrica, M.C. Building Software Process Lines with CASPER. In Proceedings of the International Con-

ference on Software and Systems Process (ICSSP), Zurich, Switzerland, 2–3 June 2012; pp. 170–179.
https://doi.org/10.1109/ICSSP.2012.6225962.

11. Armbrust, O.; Katahira, M.; Miyamoto, Y.; Münch, J.; Nakao, H.; Ocampo, A. Scoping Software Process Lines. Softw. Proc. Improv.
Pract. 2009, 14, 181–197. https://doi.org/10.1002/spip.412.

12. Hurtado, J.A.; Bastarrica, M.C.; Ochoa, S.F.; Simmonds, J. MDE Software Process Lines in Small Companies. J. Syst. Softw. 2013,
86, 1153–1171. http://doi.org/10.1016/j.jss.2012.09.033.

13. Agh, H.; Garcia, F.; Piattini, M.; Ramsin, R. Requirements for Adopting Software Process Lines. J. Syst. Softw. 2020, 164, 1–21.
https://doi.org/10.1016/j.jss.2020.110546.

14. Agh, H.; Ramsin, R. Towards a generic framework for model-driven engineering of software process lines. In Proceedings of the
5th European Conference on the Engineering of Computer-Based Systems (ECBS), Larnaca, Cyprus, 31 August–1 September
2017; pp. 19:1–19:4. https://doi.org/10.1145/3123779.3123810.

15. Atkinson, C.; Gerbig, R.; Kühne, T. Comparing multi-level modeling approaches. In Proceedings of the Workshop on Multi-
Level Modelling (MULTI@MoDELS), Valencia, Spain, 28 September 2014; pp. 53–61.

16. Clark, T.; Gonzalez-Perez, C.; Henderson-Sellers, B. A foundation for multi-level modelling. In Proceedings of the Workshop on
Multi-Level Modelling (MULTI@MoDELS), Valencia, Spain, 28 September 2014; pp. 43–52.

Software 2023, 2, 21–70 68 of 70

17. de Lara, J.; Guerra, E. Multi-level model product lines. In Proceedings of the 23rd International Conference on Fundamental
Approaches to Software Engineering (FASE), Dublin, Ireland, 25–30 April 2020; pp. 161–181.

18. Czarnecki, K.; Helsen, S.; Eisenecker, U. Staged configuration using feature models. In Proceedings of the 3rd International
Conference on Software Product Lines (SPLC), Boston, MA, USA, 30 August–2 September 2004; pp. 266–283.
https://doi.org/10.1007/978-3-540-28630-1_17.

19. White, J.; Dougherty, B.; Schmidt, D.C.; Benavides Cuevas, D.F. Automated reasoning for multi-step feature model configuration
problems. In Proceedings of the 13th International Conference on Software Product Lines (SPLC), San Francisco, CA, USA, 24–
28 August 2009; pp. 11–20.

20. Arboleda, H.; Casallas, R.; Royer, J.C. Dealing with fine-grained configurations in model-driven SPLs. In Proceedings of the 13th
International Conference on Software Product Lines (SPLC), San Francisco, CA, USA, 24–28 August 2009; pp. 1–10.

21. Barreto, A.; Duarte, E.; Rocha, A.R.; Murta, L. Supporting the Definition of Software Processes at Consulting Organizations via
Software Process Lines. In Proceedings of the 7th International Conference on the Quality of Information and Communications
Technology (QUATIC), Porto, Portugal, 29 September–2 October 2010; pp. 15–24. https://doi.org/10.1109/QUATIC.2010.19.

22. Kuhrmann, M.; Méndez Fernández, D.; Ternité, T. On the use of variability operations in the V-Modell XT software process line.
J. Softw. Evol. Proc. 2016, 28, 241–253. https://doi.org/10.1002/smr.1751.

23. Kuhrmann, M.; Ternité, T.; Friedrich, J.; Rausch, A.; Broy, M. Flexible software process lines in practice: A metamodel-based
approach to effectively construct and manage families of software process models. J. Syst. Softw. 2016, 121, 49–71.
https://doi.org/10.1016/j.jss.2016.07.031.

24. Blum, F.R.; Simmonds, J.; Bastarrica, M.C. The v-algorithm for discovering software process lines. J. Softw. Evol. Proc. 2016, 28,
783–799. https://doi.org/10.1002/smr.1778.

25. Aleixo, F.A.; Freire, M.A.; dos Santos, W.C.; Kulesza, U. Automating the Variability Management, Customization and Deploy-
ment of Software Processes: A Model-Driven Approach. In Proceedings of the 12th International Conference on Enterprise In-
formation Systems (ICEIS), Funchal, Portugal, 8–12 June 2010; pp. 372–387. https://doi.org/10.1007/978-3-642-19802-1_26.

26. Simmonds, J.; Perovich, D.; Bastarrica, M.C.; Silvestre, L. A Megamodel for Software Process Line Modeling and Evolution. In
Proceedings of the 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS), Ottawa,
ON, Canada, 27 September–2 October 2015; pp. 406–415. https://doi.org/10.1109/MODELS.2015.7338272.

27. Silvestre, L.; Bastarrica, M.C.; Ochoa, S.F. A usable MDE-based tool for software process tailoring. In Proceedings of the Poster
and Demo Session co-located with the 18th International Conference on Model Driven Engineering Languages and Systems
(P&D@MoDELS), Ottawa, ON, Canada, 27 September 2015; pp. 36–39.

28. Costa, D.M.; Teixeira, E.N.; Werner, C.M. Odyssey-ProcessCase: A Case-Based Software Process Line Approach. In Proceedings
of the 17th Brazilian Symposium on Software Quality (SBQS), Curitiba, Brazil, 17–19 October 2018; pp. 170–179.
https://doi.org/10.1145/3275245.3275263.

29. Teixeira, E.N.; Vasconcelos, A.; Werner, C. OdysseyProcessReuse- A Component-based Software Process Line Approach. In
Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS), Heraklion, Greece, 3–5 May 2019;
pp. 231–238.

30. Costa, D.M.; Teixeira, E.N.; Werner, C.M. Evaluating the Usefulness and Ease of Use of a Software Process Line Tool. In Pro-
ceedings of the 23rd Iberoamerican Conference on Software Engineering (CIbSE), Curitiba, Brazil, 9–13 November 2020; pp. 1–
14.

31. Casare, S.; Ziadi, T.; Brandão, A.A.F.; Guessoum, Z. Meduse: An approach for tailoring software development process. In Pro-
ceedings of the 21st International Conference on Engineering of Complex Computer Systems (ICECCS), Dubai, United Arab
Emirates, 6–8 November 2016; pp. 197–200. https://doi.org/10.1109/ICECCS.2016.033.

32. Javed, M.A.; Gallina, B. Safety-oriented process line engineering via seamless integration between EPF composer and BVR tool.
In Proceedings of the 22nd International Systems and Software Product Line Conference (SPLC), Gothenburg, Sweden, 10–14
September 2018; pp. 23–28. https://doi.org/10.1145/3236405.3236406.

33. Ruiz, P.; Agredo, V.; Camacho, C.; Hurtado, J. A canonical software process family based on the Unified Process. Sci. Tech. 2018,
23, 369–380.

34. Arcia, C.; Paludo, M.; Malucelli, A.; Reinehr, S. A software process line for service-oriented applications. In Proceedings of the
30th Symposium on Applied Computing (SAC), Salamanca, Spain, 13–17 April 2015; pp. 1680–1687.

35. Ocampo, A.; Soto, M. Connecting the rationale for changes to the evolution of a process. In Proceedings of the 8th International
Conference on Product-Focused Software Process Improvement (PROFES), Riga, Latvia, 2–4 July 2007; pp. 160–174.
https://doi.org/10.1007/978-3-540-73460-4_16.

36. Murguzur, A.; Sagardui, G.; Intxausti, K.; Trujillo, S. Process variability through automated late selection of fragments. In Pro-
ceedings of the 25th International Conference on Advanced Information Systems Engineering (CAiSE), Valencia, Spain, 17–21
June 2013; pp. 371–385. https://doi.org/10.1007/978-3-642-38490-5_35.

37. Rosemann, M.; van der Aalst, W.M. A configurable reference modelling language. Inf. Syst. 2007, 32, 1–23.
https://doi.org/10.1016/j.is.2005.05.003.

38. Meinicke, J.; Thüm, T.; Schröter, R.; Benduhn, F.; Leich, T.; Saake, G. Mastering Software Variability with FeatureIDE; Springer:
Berlin/Heidelberg, Germany, 2017.

Software 2023, 2, 21–70 69 of 70

39. Golpayegani, F.; Azadbakht, K.; Ramsin, R. Towards process lines for agent-oriented requirements engineering. In Proceedings
of the International Conference on Computer as a Tool (EUROCON), Zagreb, Croatia, 1–4 July 2013; pp. 550–557.
https://doi.org/10.1109/EUROCON.2013.6625035.

40. Sozen, N. Use of Model-Based Software Product Line Engineering for Certifiable Avionics Software Development. Doctoral
Dissertation, École Polytechnique de Montréal, Montreal, QC, Canada, 2016.

41. Jahanbanifar, A. A Model-Based Framework for System Configuration Management. Doctoral Dissertation, Concordia Univer-
sity, Montreal, QC, Canada, 2016.

42. Oliveira, A.L.D.; Braga, R.T.; Masiero, P.C.; Papadopoulos, Y.; Habli, I.; Kelly, T. Model-based safety analysis of software product
lines. Int. J. Embed. Syst. 2016, 8, 412–426. https://doi.org/10.1504/IJES.2016.080387.

43. Verdier, F.; Seriai, A.D.; Tiam, R.T. Combining model-driven architecture and software product line engineering: Reuse of plat-
form-specific assets. In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), Funchal, Portugal, 22–24 January 2018; pp. 430–454. https://doi.org/10.1007/978-3-030-11030-7_19.

44. Rombach, D. Integrated software process and product lines. In Unifying the Software Process Spectrum; Li, M., Boehm, B., Oster-
weil, L.J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3840, pp. 83–90.
https://doi.org/10.1007/11608035_9.

45. Czarnecki, K.; Eisenecker, U.W. Generative Programming: Methods, Tools and Applications; Addison-Wesley: New York, NY, USA,
2000.

46. Van der Linden, F.J.; Schmid, K.; Rommes, E. Software Product Lines in Action: The Best Industrial Practice in Product Line Engineer-
ing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.

47. Object Management Group. Software and Systems Process Engineering Metamodel Specification-Version 2.0; OMG: Milford, MA, USA,
2008. Available online: https://www.omg.org/spec/SPEM/About-SPEM/ (accessed on 22 November 2022).

48. Beck, K.; Andres, C. Extreme Programming Explained: Embrace Change, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2004.
49. DSDM Consortium. The DSDM Project Framework Handbook; Agile Business Consortium: Ashford, Kent, UK, 2014. Available

online: https://www.agilebusiness.org/dsdm-project-framework.html (accessed on 22 November 2022).
50. Henderson-Sellers, B.; Ralyté, J.; Rossi, M.; Ågerfalk, P.J. Situational Method Engineering; Springer: Berlin/Heidelberg, Germany,

2014.
51. Clarke, P.; O’Connor, R.V. The situational factors that affect the software development process: Towards a comprehensive ref-

erence framework. Inf. Softw. Technol. 2012, 54, 433–447. https://doi.org/10.1016/j.infsof.2011.12.003.
52. Ally, M.; Darroch, F.; Toleman, M. A framework for understanding the factors influencing pair programming success. In Pro-

ceedings of the 6th International Conference on Extreme Programming and Agile Processes in Software Engineering (XP), Shef-
field, UK, 18–23 June 2005; pp. 82–91. https://doi.org/10.1007/11499053_10.

53. Shakeri, Z.; Alipour, A.; Ramsin, R. Enhancing tool support for situational engineering of agile methodologies in Eclipse. In
Proceedings of the 10th International Conference on Software Engineering Research, Management and Applications (SERA),
Shanghai, China, 30 May–1 June 2012; pp. 141–152. https://doi.org/10.1007/978-3-642-30460-6_10.

54. Kruchten, P. Contextualizing agile software development. J. Softw. Evol. Proc. 2013, 25, 351–361. https://doi.org/10.1002/smr.572.
55. Medini QVT: IKV++ Technologies. Available online: http://www.mdetools.com/detail.php?toolId=11 (accessed on 22 November

2022).
56. Agh, H.; Ramsin, R. Scrum metaprocess: A process line approach for customizing Scrum. Softw. Qual. J. 2021, 29, 337–379.

https://www.doi.org/10.1007/s11219-021-09551-4.
57. Simmonds, J.; Bastarrica, M.C.; Silvestre, L.; Quispe, A. Variability in Software Process Models: Requirements for Adoption in

Industrial Settings. In Proceedings of the 4th International Workshop on Product LinE Approaches in Software Engineering
(PLEASE), San Francisco, CA, USA, 20 May 2013; pp. 33–36. https://doi.org/10.1109/PLEASE.2013.6608661.

58. Martínez-Ruiz, T.; García, F.; Piattini, M.; Munch, J. Modelling software process variability: An empirical study. IET Softw. 2011,
5, 172–187. https://doi.org/10.1049/iet-sen.2010.0020.

59. Simmonds, J.; Bastarrica, M.C. Modeling Variability in Software Process Lines; Technical Report; University of Chile: Santiago, Chile,
2011.

60. van der Linden, F.; Schmid, K.; Rommes, E. Software Product Lines in Action; Springer: Berlin/Heidelberg, Germany, 2007.
61. Assunção, W.K.; Lopez-Herrejon, R.E.; Linsbauer, L.; Vergilio, S.R.; Egyed, A. Reengineering legacy applications into software

product lines: A systematic mapping. Empir. Softw. Eng. 2017, 22, 2972–3016. https://doi.org/10.1007/s10664-017-9499-z.
62. Xue, Y. Reengineering legacy software products into software product line based on automatic variability analysis. In Proceed-

ings of the 33rd International Conference on Software Engineering (ICSE), Honolulu, HI, USA, 21–28 May 2011; pp. 1114–1117.
https://doi.org/10.1145/1985793.1986009.

63. Ambler, S.W.; Lines, M. Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise; IBM Press:
Indianapolis, IN, USA, 2012.

64. Agh, H.; Ramsin, R. A Model-Driven Approach for SPrLE—Appendices; Mendeley Data, 2019. Available online:
https://data.mendeley.com/datasets/r62gjghx52/1 (accessed on 22 November 2022).

65. Niknafs, A.; Ramsin, R. Computer-Aided Method Engineering: An Analysis of Existing Environments. In Proceedings of the
20th International Conference on Advanced Information Systems Engineering (CAiSE), Montpellier, France, 16–20 June 2008;
pp. 525–540. https://doi.org/10.1007/978-3-540-69534-9_39.

Software 2023, 2, 21–70 70 of 70

66. Kornyshova, E.; Deneckere, R.; Salinesi, C. Method Chunks Selection by Multicriteria Techniques: An extension of the Assembly-
based Approach. In Proceedings of the IFIP WG 8.1 Working Conference, Geneva, Switzerland, 12–14 September 2007; pp. 64–
78. https://doi.org/10.1007/978-0-387-73947-2_7.

67. Runeson, P.; Host, M.; Rainer, A.; Regnell, B. Case Study Research in Software Engineering: Guidelines and Examples; John Wiley &
Sons: Hoboken, NJ, USA, 2012.

68. Lindvall, M.; Basili, V.; Boehm, B.; Costa, P.; Dangle, K.; Shull, F.; Tesoriero, R.; Williams, L.; Zelkowitz, M. Empirical findings
in agile methods. In Proceedings of the 2nd XP Universe and 1st Agile Universe Conference (XP/Agile Universe), Chicago, IL,
USA, 4–7 August 2002; pp. 197–207. https://doi.org/10.1007/3-540-45672-4_19.

69. Campanelli, A.S.; Parreiras, F.S. Agile methods tailoring: A systematic literature review. J. Syst. Softw. 2015, 110, 85–100.
https://doi.org/10.1016/j.jss.2015.08.035.

70. Fitzgerald, B.; Hartnett, G.; Conboy, K. Customising agile methods to software practices at Intel Shannon. Eur. J. Inf. Syst. 2006,
15, 200–213. https://doi.org/10.1057/palgrave.ejis.3000605.

71. Stankovic, D.; Nikolic, V.; Djordjevic, M.; Cao, D.B. A survey study of critical success factors in agile software projects in former
Yugoslavia IT companies. J. Syst. Softw. 2013, 86, 1663–1678. https://doi.org/10.1016/j.jss.2013.02.027.

72. Hoda, R.; Kruchten, P.; Noble, J.; Marshall, S. Agility in context. In Proceedings of the 25th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Reno, NV, USA, 17–21 October 2010; pp. 74–88.
https://doi.org/10.1145/1932682.1869467.

73. Hodgetts, P. Refactoring the development process: Experiences with the incremental adoption of agile practices. In Proceedings
of the 15th Australasian Database Conference (ADC), Dunedin, New Zealand, 18–22 January 2004; pp. 106–113.
https://doi.org/10.1109/ADEVC.2004.17.

74. Gill, A.Q.; Henderson-Sellers, B. Measuring agility and adoptability of agile methods: A 4-dimensional analytical tool. In Pro-
ceedings of the IADIS International Conference on Applied Computing, San Sebastian, Spain, 25–28 February 2006; pp. 503–507.

75. Jyothi, V.E.; Rao, K.N. Effective Implementation of Agile Practices: In coordination with Lean Kanban. Int. J. Comput. Sci. Eng.
2012, 4, 87–91.

76. Law, A.; Charron, R. Effects of agile practices on social factors. In Proceedings of the Workshop on Human and Social Factors of
Software Engineering (HSSE), St. Louis, MO, USA, 16 May 2005; pp. 1–5. https://doi.org/10.1145/1083106.10.

77. Cervera, M.; Albert, M.; Torres, V.; Pelechano, V. On the usefulness and ease of use of a model-driven Method Engineering
approach. Inf. Syst. 2015, 50, 36–50. https://doi.org/10.1016/j.is.2015.01.006.

78. Hornbæk, K. Current practice in measuring usability: Challenges to usability studies and research. Int. J. Hum. Comput. Stud.
2006, 64, 79–102. https://doi.org/10.1016/j.ijhcs.2005.06.002.

79. Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quart. 1989, 13,
319–340. https://doi.org/10.2307/249008.

80. Lee, Y.; Kozar, K.A.; Larsen, K.R. The technology acceptance model: Past, present, and future. Commun. Assoc. Inf. Syst. 2003, 12,
752–780. https://doi.org/10.17705/1CAIS.01250.

81. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012.

82. Falessi, D.; Juristo, N.; Wohlin, C.; Turhan, B.; Münch, J.; Jedlitschka, A.; Oivo, M. Empirical software engineering experts on the
use of students and professionals in experiments. Empir. Softw. Eng. 2018, 23, 452–489. https://doi.org/10.1007/s10664-017-9523-
3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

