
Citation: ter Beek, M.H.; Ferrari, A.

Empirical Formal Methods:

Guidelines for Performing Empirical

Studies on Formal Methods. Software

2022, 1, 381–416. https://doi.org/

10.3390/software1040017

Academic Editor: Li Li

Received: 9 August 2022

Accepted: 21 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Empirical Formal Methods: Guidelines for Performing
Empirical Studies on Formal Methods
Maurice H. ter Beek † and Alessio Ferrari *,†

Formal Methods and Tools Lab, ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
* Correspondence: alessio.ferrari@isti.cnr.it
† The authors contributed equally to this work.

Abstract: Empirical studies on formal methods and tools are rare. In this paper, we provide guidelines
for such studies. We mention their main ingredients and then define nine different study strategies
(usability testing, laboratory experiments with software and human subjects, case studies, qualitative
studies, surveys, judgement studies, systematic literature reviews, and systematic mapping studies)
and discuss for each of them their crucial characteristics, the difficulties of applying them to formal
methods and tools, typical threats to validity, their maturity in formal methods, pointers to external
guidelines, and pointers to studies in other fields. We conclude with a number of challenges for
empirical formal methods.

Keywords: formal methods; empirical studies; guidelines

1. Introduction

For over two decades, empirical strategies, such as controlled experiments, case stud-
ies, surveys, literature reviews, etc., have largely been used to assess software engineering
methods and tools, to study software practice, and to summarise research findings [1].
However, empirical studies on formal methods (FM), which are mathematically-based
techniques and associated withols that typically target the development of demonstrably
dependable software, are notably scarce. This has been highlighted already in 2007, by
Höfer and Tichy [2], in their analysis of the status of empirical research in software engi-
neering, and has been further stressed in 2015 by the research agenda of Jeffery et al. [3],
calling for a better uptake of empirical methods in FM. A more recent call to arms for the
FM community comes from the the manifesto for applicable FM by Gleirscher et al. [4]
from 2021. One of the points of the manifesto states that “[FM] effectiveness should be
evidenced. For example, it should be demonstrated (e.g., by means of case studies or
controlled experiments) what would have been different if a conventional or non-formal
alternative had been used instead.” Among the expected impacts of the manifesto, it is
worth mentioning the “Impact on the Conduct, Writing, and Review of Formal Method
Research” and the “Impact on the Evaluation of Future Formal Method Research”, both
calling for case studies, action research, and controlled experiments. “Following these
methods would greatly benefit the FM community”. Additionally, Huisman et al. [5]
recommend to “Invest time in industrially-relevant case studies in order to understand
what techniques are actually needed for industrially-relevant applications.”

Despite these statements, FM research remains focused on developing novel tech-
niques, typically tackling more complex problems or performance issues, and tends to
remain a method/tool focused discipline, rather than an evidence-based one. Furthermore,
by focusing solely on the technical dimension, FM research does not sufficiently take into
account human and social factors, which nevertheless affect the usage of FM tools [6].
In other terms, the discipline of empirical formal methods still remains a poorly explored
avenue. Without demonstrated evidence of effectiveness and applicability, skepticism

Software 2022, 1, 381–416. https://doi.org/10.3390/software1040017 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1040017
https://doi.org/10.3390/software1040017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0002-0636-5663
https://doi.org/10.3390/software1040017
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1040017?type=check_update&version=1


Software 2022, 1 382

about FM remains among practitioners, and the industrial uptake of FM is still limited.
We argue that, among other factors, this is also hampered by the absence in the FM com-
munity of a sufficient knowledge of the available empirical strategies, their fundamental
principles, and typical guidelines. Empirical guidelines exist for software engineering
research. The book by Wohlin et al. [7] provides an overview of a selection of strategies
(case studies, experiments, surveys, and systematic literature reviews), and gives detailed
guidelines for laboratory experiments, mainly involving human subjects. The volume
edited by Shull et al. [8] collects a set of articles about guidelines for qualitative methods,
experiments, and principles of theory building in research. The more recent volume edited
by Felderer and Travassos [9] includes a set of articles that update the body of knowledge
in empirical software engineering, accounting for novel paradigms such as reviews of
grey literature, Bayesian data analysis, optimisation methods, and data science. Further-
more, summary articles on the topic have been published during the first decade of the
century [10,11], as well as complete overviews such as the ABC framework from Stol and
Fitzgerald [12], which focuses on identifying the differences between different strategies
and explicitly lists their limitations, considering the generalisability of the findings and
the level of obtrusiveness of the research setting. Another notable effort of the software
engineering community is the Empirical Standards initiative [13], which aims to provide
checklists for conducting, and in particular reviewing empirical studies. A GitHub reposi-
tory (https://github.com/acmsigsoft/EmpiricalStandards, accessed on 20 September 2022)
is available where essential, desirable, and exceptional attributes are listed for each research
strategy, together with links to exemplary papers. Despite this substantial amount of work,
we are not aware of any publication that provides a concise and comprehensive set of
guidelines with a specific focus on FM research. We argue that this is one of the hurdles
that hamper a more widespread application of empirical research in FM.

To address this gap, this paper aims to support future research in empirical formal
methods with a summary of the main strategies, and a set of guidelines to better apply them
in FM. In particular, we consider nine empirical strategies, namely laboratory experiments
with software subjects; laboratory experiments with human subjects; usability testing;
surveys; qualitative studies—with reference to grounded theory; judgement studies; case
studies—arguably including design science and action research; systematic literature re-
views; and systematic mapping studies. Though other research strategies exist (cf., e.g.,
Stol and Fitzgerald [12] for a comprehensive framework), we believe that these can be con-
sidered as the most representative and useful for FM researchers. With respect to existing
guidelines in software engineering, this paper makes the following main contributions:

• A practical foundation for empirical formal methods, aiming to encourage further empir-
ical research in this field;

• A comprehensive overview of research strategies that can be applied to contribute to
theory building in FM, together with their fundamental characteristics, and specific
threats to validity;

• For each strategy, a reflection of the main difficulties and potential weaknesses for its
application in FM;

• For each strategy, pointers to papers within FM and software engineering, as well as
an up-to-date list of references providing detailed guidelines;

• An easy-to-use informal guide for selecting the most appropriate empirical strategy
(cf. Figure 1).

In the remainder of this paper, we first provide an overview of the main ingredients that
each empirical study should contain, such as research questions, data collection and analysis
procedures, and threats to validity (Section 2). Then, for each strategy (Sections 3–10), we
summarise: their crucial characteristics, the difficulties of applying them to FM and tools,
typical threats to validity, their maturity in FM, pointers to external guidelines, and pointers
to studies in other fields. Finally, we provide final remarks as well as recommendations on
how to choose the most appropriate research strategy for the problem at hand (Section 11).

https://github.com/acmsigsoft/EmpiricalStandards


Software 2022, 1 383

Do you want
to evaluate a

tool/method or
investigate a

topic?

What is the stage
of development?

Can you evaluate
it in a real-world

context?

Is it fully
automatic

or is human
interaction
required?

Do you foresee
a direct inter-
vention of the
researchers?

Do you want
to evaluate
the GUI?

What is the
level of available
knowledge on the

topic in recent
literature?

How many
subjects have
expertise on

the topic?

Do you want
to provide a gen-
eral overview or
answer specific

questions?

Usability Testing

§5

Laboratory
Experiments

with Software
Subjects

§3

Laboratory
Experiments
with Human

Subjects

§4

Case Studies

§9

Action Research

§9

Design Science

§9

Qualitative
Studies

§7

Surveys

§6

Judgement
Studies

§8

Systematic
Literature
Reviews

§10

Systematic
Mapping
Studies

§10

topic

tool/method

prototype

mature

not yet developed

yes

no

fully automatic

human interaction

no

yes

no

yes

low

medium

high

many

few

specific questions

overview

Figure 1. Informal guide to the selection of the most appropriate research strategy.

This paper can be used as a concise reference for FM researchers who want to carry
out an empirical study, but do not know where to start from—and do not want to incur in
typical pitfalls. Our wish is to facilitate the development of an empirical mindset in the
FM community.



Software 2022, 1 384

2. Fundamental Ingredients

Empirical studies are structured research procedures that aim to derive some theory
from the observation of phenomena in a study setting. They apply systematic protocols
for data collection and analysis, accompanied by validity procedures to reduce researcher
bias and mitigate threats to validity. Empirical studies differ for their degree of realism,
the ability to generalise outside the study setting, and the ability to isolate the observed
phenomena from exogenous factors. However, they all have in common a general structure
to keep in mind, which can be useful also for reporting. The fundamental ingredients of
this structure are:

• Research Questions (RQs): these are statements in the interrogative form that drive
the research. They are useful as a guideline for the researchers, who has a set of
clear objectives to address, but also for the reader. The RQs also typically include the
constructs of interest, which are the abstract concepts (e.g., efficiency, usability) to be
investigated through the research.

• Data Collection Procedure: since empirical studies stem from data, these need to be
collected, and a systematic and repeatable procedure needs to be established. The data
collection procedure specifies which are the data sources, and how data is collected.
Data are related to the constructs of interest, as one aims to use the data to measure or
evaluate such constructs.

• Data Analysis Procedure: this specifies how the data is elaborated and interpreted to
answer the RQs, thus establishing a chain of evidence that goes from data to constructs
of interest. In other terms, the data analysis procedure establishes a link between
empirical data and RQs. Both data collection and analysis procedures require to
consider possible validity threats, and countermeasures to prevent possible threats
need to be established and made explicit.

• Execution and Results: these specify how data collection and analysis have been
carried out, and what is the specific output of these procedures. This part also sys-
tematically answers the RQs, based on the available evidence, while in principle data
collection and analysis abstract away from concrete data, here the focus is specifically
on the data and their interpretation.

• Threats to Validity: these specify what are the possible uncontrolled threats that could
have occurred in data collection and analysis, and that could have influenced the
observed results. In this part, the researchers should reinstate the mitigation strategies
oriented to address typical threats to validity, and acknowledge residual threats.
Different threats can typically occur depending on the type of study. Nevertheless,
there are three main categories of threats, which in principle apply only to experiments,
but that introduce a reasoning framework that can be useful for other types of studies:

– Construct Validity: indicates to what extent the abstract constructs are correctly
operationalised into variables that can be quantitatively measured, or qualitative
evaluated. To ensure construct validity the researcher should show that the
constructs of interests are well-defined and well-understood based on existing
literature. Furthermore, the researcher should argue about the soundness of
the proposed quantitative measures or evaluation strategies. For example, if a
researcher wishes to measure effectiveness of a certain tool T, they should present
related literature defining the concept of effectiveness, and defining a sound
measure for this construct.

– Internal Validity: indicates to what extent the researcher has ensured control of
confounding external factors that could have impacted the results. These factors
includes researcher bias, i.e., expectations/inclinations of the researcher that may
have impacted the study design (e.g., in a questionnaire definition, or in the data
analysis), and any aspect related to subjectivity or context-dependency in the
production of the results. Internal validity can also be threatened by time-related
aspects, e.g., with a maturation effect that could occur when the participants
perform multiple tasks one after the other, or with fatigue effects due to long



Software 2022, 1 385

experimental treatments. For example, consider the case of comparing two tools
A and B on a certain task K. If the subjects first use tool A and then tool B on task
K, a learning effect could occur. Indeed, with tool A, they could have learned
about task K, and this would have facilitated them in performing the same task
when using tool B. To address this issue, the researcher could allocate some
subjects only on tool A and others only on tool B.

– External Validity: indicates to what extent the results can be applicable to contexts
other than the one of the study, or, in other terms, to what extent the results can
be considered general, i.e., what is the scope of validity of the study.

When selecting a research strategy for an empirical study, and defining a study design,
one should consider that there is always a trade-off between internal and external validity,
and also between the knowledge depth that one could achieve, and the generalisability of
the results [12]. For example, an experiment should include realistic elements, but its results
are typically hardly applicable to real-world cases as the lab context is largely different
from a real context—e.g., time constraints, limited realism of models or programs analysed,
and the overall in vitro, fictional context. Conversely, a case study is highly realistic, but
its results are specific to the organisation in which the case study is carried out, and can
hardly be applicable to other contexts. A survey can achieve a high degree of external
validity, as a statistically relevant set of subjects are included, but the degree of internal
validity is limited, as one can hardly control the subjectivity of the responses. Furthermore,
since surveys are oriented to a large number of subjects, the questions should be easy to
understand, which limits the knowledge depth that one can achieve, compared, e.g., with
case studies or qualitative studies, in which highly informative interviews are carried out,
with the possibility of follow-up questions.

3. Laboratory Experiments with Software Subjects

• Definition of the Strategy: a laboratory experiment is a research strategy carried out
in a contrived setting in which the researcher wishes to minimise the influence of
confounding factors on the study results. In an experiment with software subjects,
the researcher typically compares different tools, algorithms or techniques, to col-
lect evidence, e.g., of their efficiency or effectiveness on a certain representative set
of problems.

• Crucial characteristics: in a laboratory experiment with software subjects, one typi-
cally defines measurable constructs to be assessed and used for comparison between
different software subjects. More specifically, the researcher identifies the constructs of
interest, and how these constructs are mapped into variables that can be quantitatively
measured, or, if this is not feasible, qualitatively estimated. The constructs of interest
are typically strictly connected with the RQs, and the data are the source information
that can be used to answer the RQs. Therefore, the researcher also needs to specify
how one aims to collect the data associated with the variables. For example, in a
quantitative study one may want to focus on the construct of effectiveness of a certain
tool, with the RQ: What is the effectiveness of tool T? If the tool T is designed to find bugs
in a certain artefact, this construct can be measured with the variable bug identification
rate = number of identified bugs/total bugs. The data collection strategy could con-
sist of measuring the number of bugs found by tool T on a specific dataset given as
input (number of identified bugs), which contain a pre-defined set of bugs (total bugs).
The dataset, also called benchmark, should be representative of the set of programs
that the tool T aims to verify. If the tool T is designed for a specific type of artefact,
then the artefacts should vary across different variables that characterise the artefact:
e.g., language, size of the artefact, complexity. It is important to always report the
characteristics of the dataset across these salient dimensions. Furthermore, to assess
whether the effectiveness of a certain software subject is ‘good enough’, one also needs
to define one or more baselines, i.e., other tools previously developed, or an artificial



Software 2022, 1 386

predictor (e.g., random, majority class), that can allow the researchers to state that the
software subject overcomes the existing baselines for the given dataset.

• Weaknesses/Difficulties in FM: several difficulties may occur when applying this
type of strategy in FM. Typically, a software subject is a tool such as, e.g., a model
checker or a theorem prover. If the tool requires some interaction with the user, then
this can affect the results, as the variable that is measured, e.g., bug identification rate,
also depends on the human operator. To address this issue, the experiments should
also include design elements that are proper of laboratory experiments with human
subjects (cf. Section 4). Another pitfall can occur when the tool uses some random
or probabilistic principle, and thus the results of the experiment can vary from one
execution to the other. In these cases, the tool should be executed multiple times, and
confidence intervals, e.g., on its effectiveness or other performance-related constructs,
should be estimated and reported with appropriate p-values [14]. Furthermore, if one
aims to report differences between different tools across multiple runs, appropriate
statistical tests, e.g., t-test or Mann–Whitney U test, should be also performed, again
reporting p-values and evaluating effect size. Another typical difficulty is identifying a
baseline. Indeed, formal tools often target specific fine-grained objectives, e.g., runtime
verification vs. property proving, and, in the case of model checkers, can use different
modelling languages and different logics for expressing properties. Therefore, the
comparison between tools is often hardly possible. In these cases, one can (i) define
simple artificial baselines, against which the tools can be compared; (ii) restrict the
comparison to the subset of the dataset for which a comparison is possible; and
(iii) complement the quantitative evaluation with a qualitative evaluation, involving
human subjects in the assessment of the effectiveness of the tool, e.g., with a usability
study/judgement study (cf. Sections 5 and 8), a questionnaire provided to users after
using the tool, or qualitative effect analysis [15].

• Typical threats to validity: typical threats are related to the representativeness of the
dataset (external validity), the soundness of the research design (internal validity), and
the definition of variables and associated measures (construct validity). An inherent
threat of this type of study, as for laboratory experiments in general, is the limited
realism, as the lab setting is typically contrived and does not account for real-world
aspects, e.g., learning curve required to learn a tool, incremental and iterative inter-
action with tools, or iterative nature of artefact development, which is normally not
captured by a fixed dataset.

• Maturity in FM: laboratory experiments with software subjects and in particular tool
comparison is relatively mature in FM. Many different competitions exist in which
tools are evaluated in terms of performance (evaluation of their usability is rare).
Experiments are typically conducted on a representative set of benchmark problems
and executed by benchmarking environments like BenchExec [16], BenchKit [17],
DataMill [18], or StarExec [19]. The oldest competitions concern Boolean satisfiability
(SAT) solvers [20], initiated three decades ago, and Automated Theorem Provers
(ATP) [21]. In 2019, 16 competitions in FM joined TOOLympics [22] to celebrate
the 25th anniversary of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). For several years now, TACAS
and other FM conferences also feature artefact evaluations to improve and reward
reproducibility, following their success in software engineering conferences, where
they have been introduced over a decade ago [23,24]. A recent survey on FM ([25],
Section 5.9) showed that their adoption in industry would benefit a lot from the
construction of benchmarks and datasets for FM.

• Pointers to external guidelines: guidelines and recommendations for this kind of
studies, also called benchmarking studies, are provided by Beyer et al. [16] and
Vitek et al. [26]. Guidelines for combining these studies with other assessment meth-
ods are part of the DESMET (Determining an Evaluation Methodology for Software
Methods and Tools) methodology by Kitchenham et al. [15].



Software 2022, 1 387

• Pointers to studies outside FM: an example in the field of automatic program repair is
the study by Ye et al. [27], which applies different automatic program repair techniques
to the QuixBugs dataset and extensively report also the characteristics of the dataset.
In automated GUI testing, Su et al. [28] compare different tools for the constructs
of effectiveness, stability and efficiency. This is also a good example of applying
statistical tests to the comparison of different tools. Herbold et al. [29] also uses
statistical tests to compare cross-project defect prediction strategies from the literature
on a common dataset. Another representative example, in the field of requirements
engineering, is the work by Falessi et al. [30]. This can be taken as reference in case a set
of building blocks need to be combined to produce different variants to be compared.
The work is particularly interesting because it also illustrates the empirical principles
that underpin the comparison. It should be noticed that the paper does not use a
public and representative dataset as benchmark, but a dataset that is specifically from
a company, thus including the laboratory experiment in the context of a case study (cf.
Section 9). A similar problem of composition of building blocks is considered also by
Maalej et al. [31], in the field of app review analysis, and by Abualhaija et al. [32], in
the field of natural language processing applied to requirements engineering. This
latter study is particularly interesting as it complements the performance evaluation
with a survey with experts.

4. Laboratory Experiments with Human Subjects

• Definition of the Strategy: similarly to laboratory experiments with software subjects,
an experiment with human subjects is a research strategy carried out in a contrived set-
tings, in which the researcher wishes to minimise the influence of confounding factors
on the study results. In these experiments, the typical goal is to evaluate constructs
(e.g., understandably, effectiveness) concerning notations, tools, or methodologies,
when their evaluation depends on human interaction.

• Crucial characteristics: in a laboratory experiment with human subjects, one typically
defines measurable constructs to be assessed and used for comparison between differ-
ent study objects, i.e., notations, tools, or methodologies. More technically, a laboratory
experiment with software subjects typically evaluates the effect of certain independent
variables (e.g., the tool under study, or the experience of the subjects) on other depen-
dent variables (e.g., understandability, effectiveness). The researcher thus identifies
the constructs of interest, and how these constructs are mapped into variables that
can be measured quantitatively or, if this is not feasible, estimated qualitatively. The
constructs of interest are typically strictly connected with the RQs, and the data is the
source information that can be used to answer the RQs. As for laboratory experiments
with software subjects, the researcher also needs to specify how one aims to collect the
data associated with the variables. To this end, the researcher typically recruits a set of
human subjects, either professional, or, more often, students, and asks them to perform
a given task using the objects of the study, i.e., notations, tools, or methodologies.
Subjects are typically divided into groups, or treatments, the experimental group and
the control group. The former uses the object of the study to perform the task. The
latter performs the task without using the object of the study. In the task, data is
collected concerning the dependent variables, and in relation to the RQs. In these
experiments, it is typical to refine the RQs into hypotheses to be statistically tested,
based on evidence collected from the data of the experiment itself. An experiment
with statistical hypothesis testing can be seen as two sequential black boxes, an experi-
ment box, and a statistical assessment box. The first box represents the experiment
itself which produces data, while the second one represents the actual procedure of
hypothesis testing, which uses the data produced by the experiment box to state to
what extent one can be confident that, given the data, the effect observed in the data is
not due to chance. In the experiment box: (i) the inputs are the so-called independent
variables, i.e., the variables that the researcher wants to manipulate, for example the



Software 2022, 1 388

type of tool to be used in the treatment; (ii) the outputs are dependent variables, i.e., the
variables that represent the constructs that one wishes to observe, e.g., effectiveness,
understandability; and (iii) additional input parameters, e.g., maximum time to exe-
cute the task, exercise used in the task. These are the controlled variables that are not
considered independent variables, but that could influence the effect of independent
variables on dependent variables, if not properly controlled, and if their effect is not
properly cancelled. In the hypothesis testing box, the inputs are all the data associated
with the dependent and independent variables, and the main outputs are: (i) the effect
size, which represents the degree of the observed impact of independent variables on
dependent variables; and (ii) the statistical significance of the results obtained, which
is given by the p-value. The statistical significance roughly indicates how likely it is
that the results obtained are due to chance, and not to the treatment. Therefore, lower
p-values are preferable, and one normally identifies a significance level, called α, often
set to 0.05. When p-value ≤ α, results are considered significant. In the hypothesis
testing box, the output is produced from the input using a certain statistical test (e.g.,
t-test, ANOVA) that depends on the type of experimental design, and the nature of
the variables under study (e.g., rate variables, categorical).

• Weaknesses/Difficulties in FM: applying this type of strategy in FM is made hard
by the inherent complexity of most FM. A laboratory experiment typically wants to
assess the effectiveness of a tool, but the subjects who will use the tool sometimes also
need to be trained on the theory that underlies the tool, e.g., formal language, notation,
and usage itself. This means that laboratory experiments may need to involve ‘experts’
in FM. However, experts in FM are typically proficient on a specific and well-defined
set of approaches (e.g., theorem proving vs. model checking), and even tools [33,34].
Therefore, comparable subjects with similar expertise and in a sufficient number to
achieve both statistical power and significance, are hard to recruit, and this makes it
difficult to carry out experiments in FM. A possible solution is to focus experiments on
fine grained, simple, aspects that can be taught in the time span of a class or a limited
tutorial, e.g., a graphical notation or a specific temporal logic. If one wishes to evaluate
formal tools, and in particular their user interfaces, it is feasible to perform usability
studies (cf. Section 5). These do not normally require a large sample size (in many
settings, 10 ± 2 subjects are considered sufficient [35,36], when one adopts specific
usability techniques), as they do not aim to assess significance but rather to spot out
specific usability pitfalls. If, instead, one wishes to evaluate entire methodologies, it is
recommended to decompose them into steps, and design experiments that evaluate
one step at the time, e.g., distinguishing between comprehension, modelling phase,
verification phase.

• Typical threats to validity: typical threats to validity are associated with construct
validity, i.e., to what extent the constructs are correctly operationalised into variables,
internal validity, i.e., to what extent the research design is sound, and all possible
factors that could have affected the outcome have been properly controlled, external
validity, i.e., to what extent the results obtained are applicable to other setting, for
example a real-world setting, and conclusion validity, which specifies to what extent
the statistical tests provide confidence on the conclusion. For conclusion validity, one
needs to specify: that the assumption of statistical tests are considered and properly
assessed—most of the tests (so called parametric) assume a normal distribution of the
variables; the value of the statistical power of the tests, which can be estimated based
on the number of subjects involved, and that gives an indication of how likely it is that
one has incorrectly missed an effect between the variables, while an effect is actually
present. Similarly to laboratory experiments with software subjects, an inherent threat
is the low degree of realism, as human subjects undertake a task in a constrained
environment which somewhat simulates how the task would be carried out in the
real world. In other terms, the external validity is inherently limited for these types of
study, which tend to maximise internal validity.



Software 2022, 1 389

• Maturity in FM: not surprisingly, given the complexity of many FM, laboratory ex-
periments with human subjects are not extremely mature in FM, but quite some exper-
iments exist. Sobel and Clarkson [37] conducted one of the first quasi-experiments, in
an instructional setting, where undergraduate students developed an elevator schedul-
ing system—with and without using FM. “The FM group produced better designs
and implementations than the control group”. Debatably [38,39], this contradicts
Pfleeger and Hatton [40], who investigated the effects of using FM in a case study, in
an industrial setting, where professionals developed an air-traffic-control information
system. They “found no compelling quantitative evidence that formal design tech-
niques alone produced code of higher quality than informal design techniques”, yet
“conclude that formal design, combined with other techniques, yielded highly reliable
code”. We are also aware of some well-conducted controlled experiments for the
comprehensibility of FM like Petri nets [41], Z [42,43], OBJ [44,45], and B [46,47], for a
set of state-based (semi-)formal languages like Statecharts and the Requirements State
Machine Language (RSML) [48], and for domain-specific methods and languages in
business process modelling [49–51], software product lines [52,53] and security [54–56].
Further empirical studies on the usability of such FM would be very welcome. The
same holds for human comprehensibility and usability of other well-known FM (e.g.,
Abstract State Machines (ASM), the Temporal Logic of Actions (TLA), and calculi
like the Calculus of Communicating Systems (CCS) and Communicating Sequential
Processes (CSP)), even prior to evaluating the effectiveness of tools based on such FM.
We note that the formalisms of attack trees and attack-defense trees, popularised by
Schneier [57] and formalised by Mauw et al. [58,59], are claimed to have an easily un-
derstandable human-readable notation [57,60]. However, as reported in [61,62], there
have apparently been no empirical studies on their human comprehensibility. Thus,
also in this case laboratory experiments with human subjects would be much needed.

• Pointers to external guidelines: Wholin et al. [7] published a book on experimenta-
tion in software engineering and the principles expressed in the book also apply to
experiments in FM. A practical guide on conducting experiments with tools involving
human participants is provided by Ko et al. [63]. Guidelines for analysing families of
experiments or replications are provided by Santos et al. [64]. To have more insights
on experiment design with human subjects, one can also refer to the Research Methods
Knowledge Base (https://conjointly.com/kb/, accessed on 20 September 2022) [65],
an online manual primarily designed for social science, but appropriate also for exper-
iments in FM. When psychometric is involved because some questionnaire are used to
evaluate certain variables, the reader should refer to the guidelines by Graziotin et
al. [66], specific to software engineering research. To acquire background on the statis-
tics used in experiments, the handbook by Box et al. [14] is a major reference. To focus
on hypothesis testing, with clear and intuitive guidelines for the selection of the types
of tests to apply, one of the main reference is the book by Motulsky [67]. The book is,
in principle, oriented to biologists, but the provided guidelines are presented in an
intuitive and general way, which is appropriate also for an FM readership. It should
be noted that, though widely adopted, hypothesis testing has several shortcomings
that have been criticised by the research community. Bayesian Data Analysis has been
advocated as an alternative option, and guidelines in the field of software engineering
have been provided by Furia et al. [68].

• Pointers to studies outside FM: in software engineering it is quite common to use
this strategy, for example to evaluate visual/model-based languages, as done for
example by the works of Abrahão et al. [69,70], focused on modelling notations. In the
evaluation of methodologies, a representative work is the one by Santos et al. [71] on
test-driven development. When one wants to focus on single specific methodological
step, a reference work is the one by Mohanani et al. [72], about different strategies
for framing requirements and their impact on creativity. When the focus is human
factors, e.g., competence or domain knowledge, a representative work is the one by

https://conjointly.com/kb/


Software 2022, 1 390

Aranda et al. [73], on the effect of domain knowledge on elicitation activities. Finally a
comparison between an automated procedure and a manual one for feature location is
presented by Perez et al. [74].

5. Usability Testing

• Definition of the strategy: usability testing focuses on observing users working with
a product, and performing realistic tasks that are meaningful to them. The objective
of the test is to measure usability-related variables (e.g., efficiency, effectiveness,
satisfaction), and analyse users’ qualitative feedback. It can be seen as a laboratory
experiment, but (i) with a more standardised design; (ii) with a limited amount of
subjects (6 to 12, belonging to 2–3 user profile groups are considered sufficient by
Dumas and Redish [75]); (iii) collecting both quantitative and qualitative data; and
(iv) whose goal is to identify usability issues, rather than testing hypothesis and
achieving statistical significance, which typically require larger samples. If larger
groups of subjects are available, though, quantitative results of usability tests can be
evaluated with statistical tests.

• Crucial characteristics: usability studies can be classified into three main types:
(i) heuristic inspections (or expert reviews), in which a usability expert critically analyses a
product according to pre-defined usability criteria (cf. the list from Nielsen and Molich [76]),
without involving users; (ii) cognitive walkthrough, in which a researcher goes through
the steps of the main tasks that one expects to perform with a product, and reflects
on potential user reactions [77]; and (iii) usability testing, in which users are directly
involved. Here we focus on usability testing, which is also the most common and
most studied technique. Usability and usability tests are also the topic of the ISO
9241-11:2018 Part 11 standard [78]. In usability tests, the constructs to evaluate, and
the related RQs, are pre-defined by the literature, as the researcher typically wants to
assess a product according to a set of usability attributes. The usability attributes con-
sidered by the ISO standard are effectiveness (to what extent users’ goals are achieved),
efficiency (how much resources are used), and satisfaction (the user personal judgement
with the experience of using the tool). Other possible framing of the usability attributes
are the 5E expected from a product, i.e., efficient, effective, engaging (equivalent to
satisfaction), error tolerant, and easy to learn (i.e., time to become proficient with the
tool) [79]. Holzinger, instead, considers learnability, efficiency, satisfaction, low error
rate (analogous to effectiveness), and also memorability (to what extent a casual user
can return to work with the tool without a full re-training) [80]. After a selection of the
usability attributes (constructs) that the researcher wants to assess, one needs to define
the user profile that will be considered in the test. Test subjects will be selected accord-
ingly and a screening and/or pre-test (i.e., a sort of demographic questionnaire) will be
carried out to assess that the expected profile is actually matched by the subjects. Data
collection is performed through the test itself, which is supposed to last about one hour
for each subject. A set of task-based scenarios are defined (e.g., installation, loading a
model, modifying a model, verification, etc.), which the user needs to perform with
the tool. Typically, a moderator is present at the test, who will interact with the users,
instruct them, incrementally assign tasks and tests, and be available for support, if
needed. An observer should also be appointed, who will take notes on user’s physical
and verbal reactions. Video equipment, as well as microphones, logging computers,
logging software (e.g., Inputlog (https://www.inputlog.net/overview/, accessed
on 20 September 2022), Userlytics (https://www.userlytics.com/, accessed on 20
September 2022), ShareX (https://www.goodfirms.co/software/sharex, accessed on
20 September 2022)), and eye-tracking devices can be used, depending on the available
resources. During the usability test sessions, it is highly recommended to ask the
participants to think aloud, which means verbalising actions, expectations, decisions,
and reactions (e.g., “now I am pressing the button to verify the model, I expect it to
start verification, and to have the results immediately”; “the tool is stuck, I do not

https://www.inputlog.net/overview/
https://www.userlytics.com/
https://www.goodfirms.co/software/sharex


Software 2022, 1 391

know if it is doing something or not”; “now I see this result, and I cannot interpret
it”). After each task, the user should answer at least the Single Easy Questionnaire
(SEQ) test, which means asking how easy was the task in a 7-point scale from 1—Very
Difficult to 7—Very Easy. Other short questions about the perceived time required,
and the intention to use can also be asked. After completion of all the tasks, the user
typically fills a post-test questionnaire, which measure perception-related variables.
Several standard questionnaires exist, e.g., SUS (System Usability Scale) and CSUQ
(Computer System Usability Questionnaire)—cf. Sauro and Lewis for a complete
list [81]. Data from the test are both quantitative and qualitative. Quantitative data
include: time on tasks, success or completion rate for the tasks, error rate with recovery
from errors, failure rate (no completion or no recovery), assistance requests, search
(support from documentation) and other data that can be logged. Results of the post-
task and post-test questionnaires, associated with perception-related aspects, are also
quantitative. Typical variables evaluated in usability studies, with associated metrics,
are reported by Hornbaek [82]. Qualitative data include think aloud and observation.
Data analysis for quantitative data consists of assessing to what extent the different
rates are acceptable, after establishing expected rates beforehand. Since, in the end,
what matters is the user perception, the results of post-task and post-test questionnaire
are somehow prioritised in terms of relevance, together with qualitative data. For the
SUS test, scores go from 0 to 100, and rates above 68 are considered above average.
For qualitative data, coding and thematic analysis can be used, similar to qualitative
studies (cf. Section 7). Overall, as for laboratory experiments with human subjects,
it is important to establish a clear link between constructs to evaluate and measure
variables. Quantitative and qualitative data should be also triangulated to identify
further insight. For example, qualitative data may indicate satisfaction in learning the
tool, although, e.g., the error rate is high. When more subjects are available for the
test, e.g., 30 or more, and one wants to establish statistical relations between variables
such as effectiveness, perceived usability and intention to use, one can refer to the
Technology Acceptance Model (TAM) [83]. The relation between usability dimensions
and TAM are discussed by Lin [84].

• Weaknesses/Difficulties in FM: applying usability tests for FM tools is complicated
by the typical need to first learn the underlying theory and principles, and then
using an FM tool. It is sometimes difficult to separate difficulty in learning, e.g.,
a modelling language or a temporal logic, from the usability of a model checker.
Therefore, the researcher should first assess the learnability of the theory, e.g., with
laboratory experiments with human subjects, and afterwards should evaluate the
FM tool. Selected subjects should have learned the theory before using the tool, and
usability of FM tools should preferably be evaluated also after some time of usage,
so that initial learning barriers have already been overcome by users. If one aims
to make a first usability test with users that are not acquainted with FM—which
can happen if the target users are industrial practitioners—one can present a tool,
perform some tasks and use available post-test questionnaires, like SUS, to get a first
measurable feedback, as was done in previous studies [85]. When industrial subjects
are involved, the difficulty for the researcher is to find problems that are meaningful
to the domain of the users, so that these can perceive the potential relevance of the
tool. Another difficulty is the typical focus of FM tool developers on the performance
of tools, especially for model checkers, with respect to usability aspects, because tools
often come from research, which rewards technical aspects instead of user-relevant
ones. To be effective, usability tests should be iterative, with versions of an FM tool
that are incrementally improved based on the test output. This requires resources
specifically dedicated to usability testing. However, if this is not possible, heuristic
inspections or cognitive walkthrough should at least be performed on an intermediate
version of the tool. Another issuse with FM tools is that these are not websites, but
complex systems, which can have several functionalities to test (e.g., simulation or



Software 2022, 1 392

different types of verification as in many model checkers). Given the complexity, one
should focus on the most critical aspects to be tested. Another issue with FM tools is
the time that is sometimes required to perform verification which makes a realistic
test on a complex model often infeasible. In these cases, it is useful to use the so-called
Wizard of Oz method (WOZ) [86], in which the output is prepared and produced
beforehand, or part of the interaction is simulated remotely by a human.

• Typical threats to validity: the typical construct validity threats are generally addressed
thanks to the usage of well-defined usability attributes and measures. Particular care
should be dedicated to the selection of the subjects, so that these are actually repre-
sentative of the user group considered in the study. Pre-tests or initial screening can
mitigate threats. Additional threats to construct validity are related to the way ques-
tionnaires are presented. Depending on the formulation of the tests, error of central
tendency (the tendency to avoid the selection of extreme values in a scale), consistent
response bias (responding with the same answer to similar questions), and serial
position effect (tendency to select the first or final items in a list) need to be prevented.
Error of central tendency can be addressed by eliminating central answers, or by
asking respondents to explicitly rank items. Consistent response bias can be addressed
by using negative versions of the same question, and shuffling the questions. Serial
position effect is addressed by shuffling the list of possible answers. To guarantee that
the answers to the different questions are a correct proxy of the constructs that one
wishes to evaluate, it is also important to perform inter-item correlation analysis [87].
Internal validity can be hampered by think-aloud activities, which can influence the
behaviour of the user, interaction with the moderators, expectations from the tool and
possible rewards given after the activity. These threats cannot be entirely mitigated,
but the researcher should clarify the following with the user: (i) what is the status of
the tool and the goal of the activity, so that expectations are clear; (ii) interaction should
be minimised; (iii) it is the tool that is under evaluation and not the user; and (iv) the
reward will be given regardless of the results. Overall, to ensure that the analysis is
not biased, it is also important to perform triangulation, that is reasoning about rela-
tions between think aloud, observations and post/task and post-test questionnaires.
Concerning external validity, this can be limited by the low degree of realism given by
the test environment, which happens for laboratory experiments. To reduce this, one
can perform the test in the real environment, in which the user is typically working,
so that interruption, noise and other factors can make the evaluation more realistic.

• Maturity in FM: throughout the years there have been efforts to address usability, but
it has by no means become standard practice and many FM tools have never been
analysed for what concerns their usability. The PhD thesis of Kadoda [88] addresses
the usability aspects of FM tools. First, using the usability evaluation criteria proposed
by Shackel [89], two syntax-directed editing tools for writing formal specifications are
compared in a practical setting; second, using the cognitive dimensions framework
proposed by Green and Petre [90], the usability of 17 theorem provers is analysed.
Hussey et al. [91] demonstrate usability analysis of Object-Z user-interface designs
through two small case studies. In parallel, there have been many attempts at improv-
ing the usability of specific FM through the use of dedicated user-friendly toolsets and
the like to hide FM intricacies from non-expert users like practitioners, ranging from
the SCR Requirements Reuse (SC(R)3) toolset [92] through the IFADIS toolkit [93,94] to
FRAMA-C platform [95] and the ASMETA toolset [96] built around the ASM method.
Recently, a preliminary comparative usability study of seven FM (verification) tools
involving railway practitioners was conducted [85]. The importance of usability
studies of FM is confirmed by the recent FM survey by Garavel et al., in which over
two-thirds of the 130 experts that participated responded that it is a top priority for
FM researchers to “develop more usable software tools” ([25], Section 4.5).

• Pointers to external guidelines: for a prescriptive introduction to usability, the reader
should refer to the ISO 9241-11:2018 Part 11 standard [78]. A main reference for



Software 2022, 1 393

usability testing is the handbook by Rubin and Chisnell [97]. Nielsen and Molich
provide 10 ways to perform heuristic evaluation [76], while Mahatody et al. [77] report
the state of the art of cognitive walkthrough. Quantitative metrics to measure usability
attributes are given by Hornbaek [82]. Several resources are made available also
via specialised websites (e.g., https://usabilitygeek.com/, accessed on 20 September
2022).

• Pointers to papers outside FM: A systematic literature review on usability testing,
with references scored by their quality, is provided by Sagar and Anju [98]. A recent
work addressing usability of two modelling tools is presented by Planas [99]. For
works using TAM, and focusing on the assessment of attributes related to usability,
also including understandability of languages, the reader can consider the works by
Abrahão et al. [70,100].

6. Surveys

• Definition of the Strategy: A survey is a method to systematically gather qualita-
tive and quantitative data related to certain constructs of interests from a group of
individuals that are representative of a population of interest. The constructs are
concepts that one wants to evaluate, e.g., usability of a certain tool or developers’
habits. The population of interest (also target population or population) is the group of
individuals that is the focus of the survey, e.g., users of tool T, companies in a certain
area, users of tool T from University A vs. users from University B, potential users
of tool T with a background in computer science, etc. Surveys are normally oriented
to produce statistics, so their output normally takes a quantitative form. Surveys
are typically conducted by means of questionnaires, but they can be also carried out
through interviews.

• Crucial characteristics: The survey process starts from RQs, and the identification of
the constructs of interest just as for the other methods discussed. Then, one needs to
characterise the target population, i.e., what are the characteristics of the subjects that
will take the survey. Based on these characteristics, the researcher performs sampling,
which means selecting a subset of subjects that can be considered representative for the
population. This is normally carried out with probability sampling, in which subjects
are selected according to some probability function (random, or stratified—i.e., based
on subgroups of the population) from a sampling frame (i.e., an identifiable list of sub-
jects that in an optimal scenario should cover the entire population of interest, for exam-
ple the list of e-mail addresses of a company). The sample size required for the survey
can be computed considering the size of the target population, desired confidence level,
confidence interval and other parameters [101,102]. When designing a survey, one also
needs to consider that a relevant portion of the selected subjects, usually about 80–90%,
will not respond to the inquiry. Therefore, to have significant results, one needs to
plan for a broad dissemination of the survey, so that, even with a low response rate,
the desired sample is reached. If personal data is collected, it is also important to make
sure to adhere to the GDPR [103] and to present an informed consent to the subjects.
In this phase, it is also important to define the data management plan (for a template,
check https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-
cutting-issues/open-access-data-management/data-management_en.htm#A1-template,
accessed on 20 September 2022), which includes how the data will be stored and when
it will be deleted. After determining the sample size, one needs to design the survey
instrument, which can be composed of open-ended and/or close-ended questions.
Each type of question has its own advantages and disadvantages, e.g., open-ended
questions are richer in information but harder to process, while close-ended questions
enable less spontaneous and extensive answers, but are easier to analyse and lead to
comparable results between subjects. Regardless of the types of questions selected, a
well-designed survey has the following attributes: (i) clarity, i.e., to what extent the
questions are sufficiently clear to elicit the desired information; (ii) comprehensiveness,

https://usabilitygeek.com/
https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/open-access-data-management/data-management_en.htm#A1-template
https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/open-access-data-management/data-management_en.htm#A1-template


Software 2022, 1 394

i.e., to what extent the questions and answers are relevant and cover all the impor-
tant information required to answer by the RQs; and (iii) acceptability, i.e., to what
extent the questions are acceptable in terms of time required to answer them and
preservation of privacy and ethical issues. To address these attributes, researchers
should perform repeated pilots of the survey instrument, with relevant subjects. If
the researcher is not sufficiently confident with the topic of the survey or the type
of respondents, it is also useful perform a set of interviews with selected subjects, to
better define the questions to be included in the survey instrument. After piloting,
the survey can be distributed to the selected sample, and the answers need to be
recorded, following the data management plan defined beforehand. Then data is
analysed and interpreted. In this phase, researchers should perform some form of
coding for answers to open-ended questions (cf. Section 7), and should adjust the data
considering missing answers. Data analysis and reporting can be performed by first
presenting quantitative statistics, with percentages of respondents, possibly followed
by more advanced statistical analysis. For example, if RQs concern relationships
between variables, statistical hypothesis tests can be performed similar to laboratory
experiments with human subjects (cf. Section 4). Other advanced methods include
Structured Equation Modeling (SEM), which allows researchers to identify relation-
ships between high-level, conceptual and so-called ‘latent’ variables (e.g., background,
success, industrial adoption), by analysing multiple observable indicators that can
be extracted from the survey (e.g., educational degree and current profession can be
considered as indicators of background) [104,105].

• Weaknesses/Difficulties in FM: similar to the case of laboratory experiments with
human subjects, the main issue is the selection of the participants, i.e., the respondents
to the survey. FM experts are an inherently limited population, and each expert is
specialised in a limited number of methods or tools. In practice, random sampling
is often not practicable, and one needs to recruit as many subjects as possible, thus
resorting to the so-called convenience sampling. Furthermore, the actual population
of FM users, which could be the target of a survey about an FM tool, or about FM
adoption in general, cannot be known in advance. Therefore, reasonable assumptions
and arguments need to be provided to show that the sample of respondents is actually
representative of a certain target population. The FM domain also uses technical
jargon, which could make questions and answers not sufficiently clear to a sufficiently
wide range of potential respondents. Therefore, in some cases the researchers are
constrained to ask only general questions, which however limit the degree of insight
that one can achieve.

• Typical threats to validity: the main threats to validity are associated with construct
validity, which in this case can be actually measured by using different survey ques-
tions to measure the same construct, and then performing an inter-item correlation
analysis [87]. This allows the researcher to discard some items related to a certain
construct of interest, because the responses do not appear to be correlated with other
items associated with the same construct, or because they are not sufficiently discrimi-
native with respect to other items measuring different constructs. In principle, survey
research distinguishes between validity (criterion, face, content, and construct) and
reliability [106]. Here, we use the term internal validity, to account for the different
validity types, in order to make the explanation more intuitive and consistent with
respect to the other strategies described. Threats to internal validity concern the
way in which the questionnaire is formulated, which could be leading to preferred
answers (e.g., all the first answers are checked in a long list of options), and that, if too
long, could lead to fatigue effects. The first issue is addressed by shuffling answers
between respondents. The second one could be addressed by reducing the length of
the questionnaire, and also by shuffling the questions between respondents, so that
fatigue effects are compensated. Internal validity can also be affected by systematic
response bias, especially in case Likert scales are used. This can occur when similar



Software 2022, 1 395

questions to measure the same construct are always presented in the same affirmative
form. The respondent may simply check the same answer, since the questions look
similar. To prevent this, the opposing question format is used, in which the same
question is asked in positive and negative form. Shuffling the questions also helps at
this regard. In survey research, external validity should be maximised, as one wants to
collect information about an entire population. Claims about the appropriateness of
the sample size should be included to support external validity. An additional threat,
typical of surveys, concerns reliability, which is to what extent similar results in terms
of distribution are obtained if the survey is repeated with a different sample on the
same population. In practical scenarios, this means that the questions should trigger
the same answers if asked to similar respondents, and can be addressed by verifying
that the questions are sufficiently clear by piloting the questionnaire with a subset
of respondents.

• Maturity in FM: while not particularly mature in FM, some seminal surveys exist. The
first systematic survey of the use of FM in the development of industrial applications
was conducted by Craigen et al. [107]. This extensive survey is based on twelve ‘case
studies’ from industry and it was widely publicized [108–110]. One of these case
studies is also reported in the classical survey on FM by Clarke, Wing et al. [111],
together with other ‘case studies’ in specification and verification. The comprehensive
survey on FM by Woodcock et al. [112] reviews the application of formal methods
in no less than 62 different industrial projects world-wide. Basile et al. [113] and Ter
Beek et al. [114] conducted a survey with FM industrial practitioners from the railway
domain, aimed at identifying the main requirements of FM for the railway industry.
Finally, Garavel et al. [25] conducted a survey on the past, present and future of FM in
research, industry and education among a selection of internationally renowned FM
experts, while Gleirscher and Marmsoler [115] conducted a survey on the academic
and industrial use of FM in safety-critical software domains among FM professionals
from Europe and North America.

• Pointers to external guidelines: Guidelines and suggestions specific to the software
engineering domain are: the introductory technical report by Linåker et al. [116];
the comprehensive article, especially covering survey design, by Kitchenham and
Pfleeger [117]; the article by Wagner et al. [118], which has a primary focus on data
analysis strategies, and related challenges; the checklist by Molleri et al. [119]; the
guidelines specific to sampling in software engineering, by Baltes and Ralph [120],
especially concerning cases in which probabilistic sampling is hardly applicable; the
guidelines by Ralph and Tempero about threats to construct validity [121]. More
general textbooks on survey research are: the introductory textbook from Rea and
Parker [102], covering all the relevant topics in an accessible way; the technical book
by Heeringa et al. [122], specific for data analysis; the extensive book on categorical
data analysis by Agresti [123], also covering topics that go beyond survey research
in a technical, yet accessible way, and including several examples. For SEM, a pri-
mary reference is the book by Kline “Principles and Practice of Structural Equation
Modeling” [105].

• Pointers to studies outside FM: a reference survey, oriented to uncover pain points
in requirements engineering, involving several companies across the globe, is the
NaPiRE (Naming the Pain in Requirements Engineering) initiative (http://www.
re-survey.org/#/home, accessed on 20 September 2022). The results of this family
of surveys have been published by Méndez-Fernández et al. [124]. Another recent
and rigorous survey, using SEM, is the one by Ralph et al. [125], on the effects of
COVID-19 on developers’ work. A survey using hypothesis testing based on multiple
regression models is the one by Chou and Kao [126], about critical factors on agile
software processes. Finally, a survey about modelling practices, also using hypothesis
testing but with different types of tests, is the work by Torchiano et al. [127].

http://www.re-survey.org/#/home
http://www.re-survey.org/#/home


Software 2022, 1 396

7. Qualitative Studies

• Definition of the Strategy: qualitative studies aim at collecting qualitative data by
means of interviews, focus groups, workshops, observations, documentation inspec-
tion or other qualitative data collection strategies [128], and systematically analyse
these data. These studies aim at inducing theories about constructs, based on the anal-
ysis of the data. Constructs and RQs can be defined beforehand, or—less frequently
in FM—can emerge from the data themselves. Qualitative studies are typically used
when the constructs of interest are abstract, conceptual and hardly measurable (e.g.,
human factors, social aspects, viewpoints, practices). Qualitative studies include the
general framework of Grounded Theory (GT) [129–132], which has recently been
specialised for the analysis of socio-technical systems [133].

• Crucial characteristics: qualitative studies typically start with general RQs about
abstract constructs, and perform iterations of data collection and analysis to provide
answers to the general RQs. Like surveys, qualitative studies require sampling of
subjects or objects from which data is collected, while with surveys it is typical to
resort to probabilistic sampling, with qualitative studies purposive sampling is typically
used. With purposive sampling, given the RQ, the researcher samples strategically,
by selecting the units that, in the given context, are the most appropriate to give
different internal perspectives to come to a (locally) complete view and answer the
RQ. In qualitative studies, the fundamental characteristic is the qualitative nature of
the data analysed, in most of the cases sentences produced by human subjects during
interviews. For example, one could formulate a general RQ: What are the human factors
that characterise the understanding of the notation N?, with associated constructs (i.e.,
human factors, understanding). Typically, RQs in qualitative studies, and in particular in
GT, are why and how questions [133], which are oriented to investigate the meaning
of the analysed situations. However, what questions are also common, especially to
induce descriptive theories. Furthermore, in the aforementioned RQ human factors
and understanding are classes, not constructs, as in qualitative studies one often aims
at providing classifications rather than measuring properties [121]. In this paper, we
treat them as constructs to facilitate the reader in making analogies with the more
quantitative strategies: while in quantitative studies one measures properties related
to the constructs of interest, in qualitative studies one typically creates a classification
related to the constructs. Coming back to our RQ, one can answer it by acquiring
information through interviews involving novice users of the notation. The interview
transcripts will be the qualitative data to be analysed. Data analysis is carried out
by means of so-called thematic analysis [134,135]. Thematic analysis aims to identify
concepts and relations thereof, based on the interpretation of the data. Thematic
analysis makes use of coding, which means associating essence-capturing labels (called
‘codes’) to relevant chunks of data (e.g., sentences, paragraphs, lines). The codes
represent concepts, which are then aggregated into categories, which in turn can be
aggregated and linked to one another. It should be noted that different terminology is
used by different researchers and schools of thought in GT. The terminology used here
(e.g., concepts, categories) generally follows from Strauss and Corbin [130]. Later, we
refer to coding families, which comes from Glaser [131]. For example, one interviewee
may say “I often suffer from fatigue when reading large diagrams”. This can be coded with
the labels fatigue, read, large diagrams. Another interviewee may say: “I find it hard to
memorise all the types of graphical constructs, they are too many, and this makes it frustrating
to read the diagrams”. The labels could be: construct types, read, frustration. The concepts
fatigue and frustration could then be aggregated into the more general category, coded
as feelings. Once concepts and categories are identified, one can identify relationships
(hierarchical, causal, similarity, etc.), between concepts and categories. The process is
iterative, and through the iterations some concepts and categories may be added or
removed. The iterations need to resort to memos and constant comparison. Memos are
notes that the researcher writes to justify codes, reflect on possible relations between



Software 2022, 1 397

concepts/categories, or about the analysis process itself. Constant comparison means
comparing the emerging graph of concepts and categories with the data, so that there
is clear evidence of the link between the more abstract categorisation and the data.
The process of data collection and analysis is normally carried out until saturation
is reached, i.e., until no further information appears to emerge from the collection
and analysis of novel data. The theory, which answers the RQ, is represented by the
conceptualisation that emerges from the data. In our example, the theory is a graph of
all human factors affecting different dimensions of understanding different aspects
of the notation N. The theory can also be represented by means of different classical
coding families, which are typical patterns of concepts and relations thereof [129,131].
This general procedure, which we refer to as thematic analysis, is applied as part of
the general framework of GT. With GT, data collection and analysis are executed as
intertwined and iterative activities, and one applies so-called theoretical sampling
to identify subjects to interview or objects to analyse based on the theory that has
emerged from the data so far. Here, we do not discuss the GT framework, but we
recommend the reader interested in qualitative studies to refer to the guidelines of
Hoda [133], which are defined for the software engineering field, and can apply also
to FM cases.

• Weaknesses/Difficulties in FM: An inherent difficulty in applying qualitative re-
search methods in FM is the type of skills and attitude required from a qualitative re-
searcher, which typically takes a constructivist (humans construct knowledge through
interaction with the environment) rather than a positivist stance (humans discover
knowledge through logical deduction from observation) in developing their research.
This means that while FM practitioners search for proofs, and assume that mathemati-
cal objectivity can, and shall be achieved, qualitative research takes subjectivity and
contradiction as intrinsic characteristics of reality. For this reason, the type of profile
that is fit to do qualitative research in FM, and therefore has FM competence plus
a constructivist mindset, is rare. Another difficulty in FM is the limited application
of FM in industrial fields. Qualitative studies in FM should be based on interviews
and observations of subjects practicing FM in real-world settings. Since these subjects
are limited, one needs to resort to observations and interviews in research contexts,
where FM are practiced, tools are developed and interaction with industrial partners
takes place. These studies should complement the viewpoint of researchers with that
of industrial partners, in order to have a complete, possible contrasting view of the
subject matter.

• Typical threats to validity: threats to validity in qualitative studies can hardly be cat-
egorised according to the classes presented in Section 2. Other validity criteria shall be
fulfilled, and different categorisations are provided in the literature; cf., e.g., Guba and
Lincoln [136] (trustworthiness and authenticity) vs. Charmaz [132] (credibility, originality,
resonance and usefulness) vs. Leung [137] (validity, reliability and generalizability). We
refer to Charmaz and Thornberg for a discussion on the topic [138]. Regardless of the
type of classification selected, the researcher should ensure that four main practices are
followed, which are oriented to ensure that, despite the inherent subjectivity of quali-
tative research, interpretations are sound and reasonable: (i) clearly report the method
adopted for data analysis, with at least one complete example that describes how
the researcher passed from data to concepts, categories and relations thereof; (ii) in
the results section, report quotes that exemplify concepts/categories and relations
thereof; (iii) perform member checking/respondent validation: the researcher needs
to (a) agree with the participants that what is transcribed and reported is actually what
was meant by the participants; and (b) show the findings to the participants to under-
stand to what extent these are accepted and considered reasonable; and (iv) perform
triangulation: this means looking into multiple data sources (e.g., interviews, observa-
tions, documents) to corroborate the findings and involving more than one subject



Software 2022, 1 398

in the data analysis. A reference set of steps for structured triangulation between
different analysts is reported in the guidelines by Cruzes [135].

• Maturity in FM: qualitative studies are not mature at all. We are only aware of [139],
where Snook and Harrison report on five structured interviews, lasting around two
hours each, conducted with FM practitioners from different companies, all with some
experience of using of FM in real systems (e.g., B, Z, VDM, CCS, CSP, refinement, model
checking, and theorem proving). They discuss the impact of FM on the company, its
products, and its development processes, as well as their scalability, understandability,
and tool support. It is worth mentioning that for the aforementioned systematic
survey by Craigen et al. [107,110], the authors conducted 23 interviews involving
about 50 individuals in both North America and Europe, lasting from half an hour to
11 h. Moreover, the authors of [140] mention that they interviewed FM practitioners,
sponsors, and other technology stakeholders in an informal manner.

• Pointers to external guidelines: guidelines for conducting interviews are provided in
the book Social Research Methods by Bryman [141], which also contains a comprehensive
introductory manual with a relevant part on qualitative methods, including GT. For
observational studies—which belong to the field of ethnography [142]—a relevant
reference is Zhang [143]. A primary reference for coding is the book of Saldaña [144].
For GT, one can refer to the already cited article of Hoda [133]—which will be followed
by an upcoming manual in the form of a book—and to the guidelines of Stol [145].

• Pointers to papers outside FM: Examples of qualitative studies based on interviews
are: the one by Ågren et al. [146], studying the interplay between requirements and
development speed in the context of a multi-case study; Yang et al. [147], on the use of
exectution logs in software development; Strandberg et al. [148], on the information
flow in software testing. Example studies using GT in software engineering are:
Masood et al. [149], about the difference between Scrum by the book and Scrum in
practice; Leite et al. [150], on the organisation of software teams in DevOps contexts.

8. Judgement Studies

• Definition of the strategy: a judgement study is a research strategy in which the
researcher selects experts on a certain topic and aims to elicit opinions around a set of
questions, possibly triggered by some hands-on experience, with the goal of reaching
consensus among the experts.

• Crucial characteristics: in judgement studies, RQs cover aspects that require specific
expertise to be answered, and for which a survey may not provide sufficient insight,
or for which research is not sufficiently mature, like, e.g., What are the main problems of
applying FM in industry? In which way can the use of tool T improve the identification of
design issues? In judgement studies, the researcher typically selects a sample of subjects
that are are considered experts on the topic of interest. The results of a judgement
study can be used to drive the design of questionnaires to later be elaborated into
surveys. For instance, once one has identified the typical problems of FM in industry,
these problems can be presented as possible options to a larger set of participants.
Data collection is typically qualitative, and it is performed by means of focus groups,
brainstorming workshops, or Delphi studies. With focus groups, the experts (normally
8 to 10) participate in a synchronous meeting in which they are asked to provide
their viewpoint on a topic of interest. Before the meeting, a moderator and a note
taker are initially appointed, and recording, possibly with video, is set up. Before the
focus group, the experts can be faced with a reflection-triggering task, for example
observing a model of a system, playing with a tool interface or a more complex task
(e.g., designing a model with tool T). This latter case typically occurs when one wants
to evaluate a certain tool involving the opinion of multiple experts, e.g., building
on top of the DESMET project methodology [15]. During the focus group, general
warm-up questions are asked, also to elicit the expertise of each expert (e.g., In which
projects did you use FM in industry?) followed by more specific questions (e.g., What



Software 2022, 1 399

could be the difficulties of using tool T in industry?) and closing with a question for
final remarks (e.g., Do you have something to add?), after a summary. During focus
groups, it is recommended to have a whiteboard, in which the moderator reports the
results of the discussion so far. The moderator should make sure that all participants
express their opinion, and that consensus is eventually reached—or, if not, contrasting
opinions are clearly stated and agreed. Focus groups typically last one hour. If needed,
multiple focus groups can be organised in parallel, and participants share the final
findings in a plenary meeting. Focus groups can be carried out following the Nominal
Group Technique (NGT) designed by Delbecq and Van de Ven [151]. Workshops are
meetings that include between 10 and 30 participants, and are similar to focus groups
in terms of their goal, i.e., brainstorming opinions and reaching consensus. The
main difference is that workshops typically address more general questions, and can
include different types of experts, with different degrees of expertise, whereas focus
groups consist of more homogeneous participants focused on a more specific topic.
Workshops can be carried out through adaptations of the NGT technique [151], in
which each participant answers a general question using one or more sticky notes (e.g.,
What are the problems of applying FM in industry?). Then the sticky notes are read out
loud, explained, attached to a whiteboard by the participants, iteratively grouped and
prioritised. In focus groups and workshops, a crucial role is played by the moderator,
who needs to ensure that none of the participants overtakes the meeting, and that all
participants are able to express their viewpoint. With Delphi studies, a large number of
experts is normally involved with respect to other methods (i.e., more than 30 subjects)
and for longer periods of time (weeks to months), and the goal is to identify best
practices or define procedures, aiming also at quantitatively measuring the consensus.
The selected experts are individually asked to express their opinions around a certain
problem or question, normally in written form and anonymously. The opinions are
then shared with the other participants, and discussion takes place in order to reach
consensus, similar to a paper reviewing process. The process typically takes place
asynchronously. However, in practice, the discussion can also be carried out by means
of a dedicated focus group, depending on the goal and the complexity of the RQs. With
Delphi studies, multiple rounds of iterations are carried out to reach consensus. The
initial round normally consists of an open question oriented to define the items to be
discussed in later rounds (e.g., What are the best practices for introducing FM in industry?).
The second round can give ratings of relevance or agreement to the different items that
have been identified collectively (e.g., How relevant is it to have an internal contact person
having some knowledge of modelling?). Therefore, in this round, quantitative answers are
collected. In a third round, participants can re-evaluate their opinions based on the
average results of the group. Therefore, in the end, consensus about, e.g., relevance
or agreement, can be measured quantitatively. Focus groups, workshops and initial
rounds of Delphi studies typically produce qualitative data. Data analysis in all these
cases is carried out with thematic analysis, as described in Section 7. Quantitative
analysis in Delphi studies aims at establishing that about 75% consensus is reached
about the identified items [152].

• Weaknesses/Difficulties in FM: no particular difficulties characterise judgement stud-
ies in FM, which should therefore actually be encouraged as limited experts are typ-
ically available on certain techniques or tools, and the issues under discussion are
normally particularly complex, e.g., industrial acceptance or scalability of FM tools.
One practical difficulty arises with focus groups and workshops in which one needs
to record many different voices, and it is not always easy to reconstruct the event from
voice recordings only. Furthermore, poor equipment can make it difficult to record all
the voices in a room. Video recording can address part of these issues, together with
extensive note taking and transcriptions made early after the meeting.

• Typical threats to validity: an inherent threat to validity of judgement studies is the
limited generalisability across subjects, given the limited sample, which affects external



Software 2022, 1 400

validity. However, an accurate and extensive selection of experts on the topic of interest
can improve external validity by allowing generalisability across responses [12]. Other
threats are related to internal validity, since the results of the study may be biased
by dominant, disruptive or reluctant behaviour of participants. These issues can be
addressed by the moderator and by ensuring balanced protocols for participation.
Concerning construct validity, the main issue resides in the communication of questions,
and the definition of a shared terminology. Piloting the study, and defining a common
vocabulary beforehand can mitigate this issue. As for data analysis, typical threats of
qualitative studies apply here.

• Maturity in FM: we are aware of only one judgement study on FM. In [6], nine
different FM tools are analysed by 17 experts with experience in FM applied to railway
systems. The study identifies specific strengths and weaknesses of the tools and
characterises them by their suitability in specific development contexts.

• Pointers to external guidelines: for focus groups, the book by Grueger and Casey [153]
is a primary reference, while, for a quicker tour on this methodology, one should refer
to Breen [154]. A reflection on focus groups for software enigneering is reported by
Kontio et al. [155]. For Delphi studies, the initial guidelines have been proposed by
Dalkey and Helmer [156], but over 20 variants exist [157]. For the most commonly
used guidelines, we recommend to refer to the survey by Varndell et al. [158]. For the
NGT technique, which can be seen as a hybrid between focus groups and Delphi, the
reader can refer to the original article [151], to the comparative study between NGT
and Delphi by McMillan et al. [159] or to the simple guidelines by Dunham [160]. A
good overview of different, group-based, brainstorming techniques is reported by
Shestopalov [161].

• Pointers to papers outside FM: Delphi studies are not common in FM and not as
commo in software engineering research as they are in healthcare and social sciences.
In software engineering, Delphi studies have been used for software cost estimation,
since their introduction as one of the most suitable techniques in [162], as well as
for the identification of the most important skills required to excel in the software
engineering industry [163–165]. Another good example using the Delphi method is
reported by Murphy et al. [166], in the field of emergency nursing. An example of
usage of the NGT technique is presented by Harvey et al. [167]. Focus groups are more
frequently used in software engineering, typically to involve industrial participants in
the validation of prototypical solutions, cf., e.g., Abbas et al. [168]. An example of a
focus group study in software engineering, carried out via online tools, is presented by
Martakis and Daneva [169]. An example of a combination of in-person focus groups
and workshops in requirements engineering is presented by De Angelis et al. [170].

9. Case Studies, Action Research, and Design Science

• Definition of the Strategy: a case study is an empirical inquiry about a certain phe-
nomenon carried out in a real-world context, in which it is difficult to isolate the
studied phenomenon from the environment in which it occurs. In the software engi-
neering and FM literature, the term ‘case study’ is frequently misused, as it often refers
to retrospective experience reports with lessons learned, or to exemplary applications
of a technique on a specific case [171]. In principle, the researcher does not take an
active role in the phenomenon under investigation. When the researcher develops
an artefact—tool or method—and applies it to a real-world context, one should de-
sign the study as Action Research [172] or Design Science [173]. However, the term
case study is extremely common, and has established guidelines for reporting [174].
These guidelines are generally applicable also to those cases in which the researcher
develops an artefact, applies it to data or people belonging to one or more companies,
and possibly refines the artefact based on the feedback acquired through multiple
iterations. Therefore, in this paper we will discuss only case study research as unifying



Software 2022, 1 401

framework, including also those cases in which the researcher actively intervenes in
the context, as is common in software engineering and FM.

• Crucial characteristics: a crucial characteristic of a case study is the extensive char-
acterisation of the context in which the investigation takes place, typically one or
more companies or organisations—when more than one are considered, we speak
about multiple case study. The researcher needs to clearly specify what is the process
typically followed by the company, what are the documents produced, who are the
actors involved, which are the tools used to support the process and other salient char-
acteristics. Then, one needs to make explicit the unit(s) of analysis, i.e., the case being
investigated. The unit can be the entire company, a team, a project, a document, etc.,
or sets thereof, in case the researcher wants to perform a comparison between different
units. Furthermore, one needs to characterise the subjects involved in the research,
their profile, as well as the objects, e.g., documents or artefacts. As for other research
inquiries, a case study starts from the RQs. This is also what mainly differentiates a
case study from an experience report, which is typically a retrospective reflection, and
it is not guided by explicit RQs. In case studies, RQs typically start from the needs of
the company in which the study is carried out. The RQs of a case study can include
questions related to the application of a certain artefact, e.g., What is the applicability
of tool‘T?, with sub-questions: To what extent can we reduce the bugs by using tool T?, To
what extent is the performance of tool T considered acceptable by practitioners?. In other
cases, the RQs can be related to understand the process, e.g., What is the process of
adoption of FM in the company? or What is the process of V&V through FM? As one can
see, RQs in case studies can include both qualitative and quantitative aspects, and
therefore quantitative and qualitative approaches are used for data collection and
analysis, to answer the RQs. For example, to answer a general RQ such as What is the
applicability of FM in company C? and associated sub-questions outlined above, one can
first measure the performance in terms of bug reduction ensured by the application
of FM (quantitative) and then interview practitioners to understand if these measures
are acceptable (qualitative). More specifically, one can first observe the number of
bugs in one or more projects carried out without FM, and compare this number with
similar projects in which FM are applied—always providing an extensive account
of the characteristics of the projects. To understand the perception of practitioners,
one can interview them after they have experienced the usage of FM in the projects.
Overall, these different types of data contribute to give an answer to the initial RQ.
Techniques such as laboratory experiments, usability studies, surveys, qualitative
studies and judgement studies can be carried out in the context of case studies. How-
ever, one needs to consider the limited data points normally available in case studies,
and reasonably adapt the available techniques, applying their principles rather than
their full prescriptions, and reduce expectations about generality of the findings.

• Weaknesses/Difficulties in FM: a case study requires active participation from in-
dustry, and industrial skepticism is the main issue that FM researchers need to face.
Even when industrial partners are willing to be involved, researchers need to spend
a considerable time understanding the technical application domain and the charac-
teristics of the projects, so that, e.g., a formal model of a product or component can
be designed, and the expected properties can be correctly stated. In principle, the
researcher should not take part in the application of FM, but this is often impossible,
given the complexity and limited maturity of the interface of many a tool. Therefore, it
is common to have an interaction scheme in which the researcher develops and verifies
formal models, with the support of a main technical contact point from the company,
who ensures that the models are faithful to the real system. This communication loop
however, should always be completed with a larger involvement of practitioners,
who need to assess and confirm a larger applicability of FM in the company, and in
general provide some form of structured feedback, e.g., via surveys or interviews.
In practice, it is also hard to measure some possibly relevant variables, such as the



Software 2022, 1 402

learning curve of FM and actual bug reduction, throughout projects that can last for
years and have several dimensions of complexity (process phases, change of people
involved, budget, time constraint, etc.). To address this, it is acceptable to use data (e.g,
requirements) from previous projects as a main source, and to consider substantial
portions of products, instead of entire ones. The researcher somehow sacrifices the
realism of the case study in favour of something more manageable, keeping in mind
that one should always involve practitioners in a structured reflection about possible
consequences of the observed case in a real-world environment. Finally, one needs to
consider that case studies deal with proprietary data, which companies are typically
not inclined to disclose. This problem can be addressed by providing convincing
examples and portions of data, and by setting the terms of the collaboration with the
company beforehand, including intellectual property management that clearly states
what can be published.

• Typical threats to validity: case study research is typically evaluated according to
construct, internal and external validity. Other types of validity, e.g., from qualitative
studies or laboratory experiments are considered, when these strategies are used in
the context of case studies. Construct validity is concerned with the general constructs
and associated measurement instruments used in the study. The researcher should
comment on their soundness. Internal validity is typically concerned with the list
of contextual factors that could have impact on the results. As the characteristics
of the subjects and objects involved are specific to the case, and since context and
phenomena are hard to be separated in a case study, one needs to provide reasonable
mitigation measures to reach some form of objectivity. For example, considering more
than one single product or component, and involving multiple practitioners, also
with multiple roles and competences. External validity is also inherently limited in
case studies. However, one should report and discuss what are the dimensions of
the case that could make its results generalisable to other contexts, according to the
principles of case-based generalisation [175]. For example, safety-critical companies
follow highly structured and comparable processes, and railway and avionics are
basically oligopolies, following very similar practices. Therefore, a case study in one
domain could inform a company in a similar domain, having a comparable degree of
maturity. The possibility to generalise, especially based on similarity, drives the need
to provide an extensive account of the company or organisational context in a case
study paper.

• Maturity in FM: not surprisingly, given the difficulties mentioned earlier, case studies
and the like are not very mature in FM. However, next to the aforementioned case
study by Pfleeger and Hatton [40], who investigated the effects of using FM in an
industrial setting in which professionals developed an air-traffic-control information
system, there are some examples of case studies developed by academics in close
collaboration with practitioners—and also partially carried out inside the companies
they work for [176,177]. In particular the railway domain contains a fair number of
case studies on applying FM [178–182], among which one of the best known success
stories of applying FM in industry [183].

• Pointers to external guidelines: the primary reference for case study research is the
book by Runeson [174], including also several examples. The reference for action
research is the recent book by Staron [172]. We recommend referring to action re-
search when the goal is the actual transformation in the company—e.g., through the
introduction of an FM tool—and both researchers and practitioners are active in this
transformation, e.g., the former as instructors and the latter as trainees. Finally, for
design science, one can refer to the books of Wieringa [173] and Johannesson and
Perjons [184]. We recommend referring to design science guidelines when the focus is
on the FM tool or interface to be developed.

• Pointers to papers outside FM: an example of a case study in the strict sense, i.e.,
without intervention of the researcher, is the one by Britto et al. [185]. The study



Software 2022, 1 403

focuses on on-boarding of software developers and, as is common, here the unit of
analysis is a single company. A multiple case study, concerning the usage of DevOps
in five companies, is presented by Lwakatare et al. [186]. Another reference case is
reported by Tomasdottir et al. [187]. The study is about the usage of a static analysis
tool by open-source developers. The case is interesting as the unit of analysis is a
tool and not a company, and multiple data sources are used, as required by case
study guidelines. An iterative case study, in which the researcher performs limited
intervention, is presented by Ferrari et al. [188]. The study concerns the incremental
development of a natural language processing tool for defect detection in requirements
documents. An example paper following action research guidelines is [189], about the
application of a machine-learning technique to detect violation of coding guidelines.
Finally, for a reference using the design science paradigm, the reader can refer to
Manzano et al. [190].

10. Systematic Literature Reviews and Mapping Studies

• Definition of the strategy: Systematic Literature Reviews (SLRs) and Systematic Map-
ping Studies (SMSs) are secondary studies (i.e., analysing other empirical research
papers, i.e., primary studies) systematically conducted using search engines of digital
libraries. These studies are oriented to ensure completeness, in terms of surveyed litera-
ture, and replicability, thus following well-defined guidelines, and carefully reporting
the study protocols. SLRs are typically oriented to survey and summarise findings from
previous research (e.g., identify reported industrial problems with model-checking
tools). SMSs mainly aim to scope a research field, identifying relevant dimensions and
categorising the literature accordingly (e.g., summarise the literature about theorem
proving for safety-critical systems). However, these studies follow similar guidelines
and protocols, and SLRs typically include also a categorisation of existing studies, as
do SMSs.

• Crucial characteristics: the main RQ of an SMS typically aims to identify the relevant
dimensions of a certain field, e.g., What are the relevant dimensions characterising the
literature about FM in avionics? The RQ is then decomposed into RQs about the demo-
graphic distribution of the studies (years, venues, etc.), the type of studies (case study,
surveys, lab experiments, etc.), and other aspects, e.g, What techniques are used? and
What tools are used? These questions are typically answered quantitatively, providing
statistics about the frequency distribution of the studies. Besides these RQs, which
are shared with SMSs, SLRs also provide more in-depth analyses, answering RQs
related to the effect of a technology (What is the effect on the avionic process of introducing
model checking?), its cost (What is the cost of introducing model checking in avionics?), its
performance (What is the performance of model-checking tools in avionics?) and other as-
pects that are considered relevant. Answering these questions can require qualitative
analyses, conducted using thematic analysis and coding (cf. Section 7). An SMS/SLR
needs to be justified, i.e., one should provide an account of related reviews that do not
address the same RQs, or do not address them systematically (e.g., systematic studies
exist on FM for railways, but not for avionics; studies exist on FM for avionics, but
are not systematic, or are outdated). Therefore, typical constructs of SMSs/SLRs are
the salient characteristics that the researcher wants to extract from the existing litera-
ture (e.g., demographic information, type of study, performance, etc.). SLRs/SMSs
start from a search string to be used as input for the search engines of specialised
digital libraries, which for computer science are IEEE eXplore, Scopus, Web of Science,
SpringerLink and ACM Digital Library. The search string is composed of terms that
are relevant to the main RQ, connected with AND/OR logical operators. The search
conducted via the search engines is called primary search. The search string should be
able to identify as many relevant studies as possible, and should limit the irrelevant
studies retrieved. To this end, pilot searches need to be performed, possibly adding
words to the string, if the researcher identifies terminological variations that are typ-



Software 2022, 1 404

ically used in the literature and enable a more focused search. After retrieving the
studies, the researcher needs to select them according to a set of inclusion/exclusion
criteria (e.g., removing short papers, removing other secondary studies, removing
low quality studies), also removing duplicates that can emerge since multiple search
engines are used. The selection activity is typically based on a screening performed
on titles and abstracts. To improve replicability, this activity is conducted in paral-
lel by multiple researchers, and disagreement in the selection is resolved through
dedicated meetings. Throughout the activities, it is important to always keep track
of the number of studies retrieved and selected, and all the search strings used, as
different variations of the string may be needed depending on the search engine. To
facilitate the removal of duplicates, and the tracing of the whole process, specialised
tools like, e.g., Zotero (https://www.zotero.org/, accessed on 20 September 2022) or
Mendeley (https://www.mendeley.com/, accessed on 20 September 2022), can be
used for support. After the selection, researchers can perform a quality assessment
of the studies, according to a dedicated rubric to be defined beforehand. This can
be carried out to further limit the number of included studies, to report about their
quality, or to answer a subset of the questions considering only high-quality studies.
Once the studies have been selected, one performs a secondary search to ensure com-
pleteness. This means performing forward/backward snowballing (i.e., looking for
cited papers, and citing papers, e.g., through Google Scholar), analysing the literature
of prominent authors or screening the papers from relevant venues. After the paper
selection process has been completed, the researchers extract information according to
extraction schemes. These are defined based on the RQs and, in some cases, already
outline the predefined options (e.g., the extraction scheme for ‘types of studies’ would
have ‘case study’, ‘survey’, etc. as options). When the options are not clear, one initially
extracts relevant text from the paper and then identifies the options after thematic
analysis. As for the study selection task, this activity should be performed in parallel
by multiple subjects. The results of SMSs/SLRs are reported in the form of plots (for
frequency-related RQs) and tables (for qualitative RQs). An SMS/SLR is not a mere
summary of the literature. It crucial to provide a contribution based on focuses and
gaps in the literature, thereby illustrating further avenues for research and providing
recommendations to the community.

• Weaknesses/Difficulties in FM: SMSs/SLRs in FM share the typical difficulties of
other fields like, e.g., software engineering [191,192]. These include the limitations of
search engines of digital libraries, and the difficulty of assessing relevance from the
title and abstract alone. Additional complexity dimensions are related to the publication
bias, i.e., certain evidence is not published in scientific venues. To address this issue,
multivocal literature reviews with systematic retrieval of grey literature, which includes
non-peer reviewed articles, such as blog posts, websites, news articles, white papers
and similar is recommended [193,194]. Another difficulty, also raised in different
points of this paper, is the difficulty of having expertise in multiple FM, which limits
the ability to fully understand papers that are within the scope of the RQs, but that
cover topics that the researchers do not know in detail. This can be addressed with
the involvement of researchers with multiple backgrounds. The reporting of empirical
studies in FM does not follow a consistent/standardised structure, and this make
it difficult to compare and assess them. The incorrect naming of research strategies,
typically ‘case study’ to refer to examples, is also complicating the evaluation, as
different quality criteria and extraction schemes are used depending on the study type.

• Typical threats to validity: threats to validity in SMSs/SLRs are partitioned into study
selection validity, data validity and research validity. Study selection validity concerns
threats in search and filtering, and includes bias in search string construction, the
selection of digital libraries and primary studies. Typical mitigations are strategies
for cross-checking and study selection involving multiple researches, best effort to
achieve completeness through secondary searches and appropriate justification for

https://www.zotero.org/
https://www.mendeley.com/


Software 2022, 1 405

the selection of digital libraries. Data validity concerns threats in data extraction and
analysis, and include publication bias (i.e., evidence may exist but it is not published
in scientific venues), bias in data extraction schemes and subjectivity in classification
and extraction. Mitigation strategies are the additional search for grey literature, the
reuse of schemes adopted by previous studies, and again, cross-checking involving
multiple researchers. Research validity is concerned with threats to the design as a
whole, including coverage of the RQs, replicability and generalisability. The threats
can be mitigated by sharing the protocol, clarifying the gap with previous reviews and
performing a broad search (e.g., without a starting date for the search time interval).

• Maturity in FM: maturity of SMSs and SLRs is increasing, as witnessed by two SMSs
and two SLRs published this year. As far as we know, the work by Ferrari and Ter
Beek [195] is the first SMS on FM focusing on applications of FM in the railway
domain. It considers 328 high-quality studies published during the last 30 years,
which are classified according to their empirical maturity, the types of FM applied
and railway specific aspects, identifying recent trends and the characteristics of the
studies involving practitioners. Moreover, the work by Filho et al. [196] is the first
SLR on the use of FM to evaluate security and energy in IoT, including wireless sensor
networks, which can be used as a guide for which FM and tools to use. It considers
38 high-quality studies from a period of 15 years and the findings include a clear
predominance of the use of manual proof methods, Dolev-Yao-like attack models,
and the AVISPA tool [197]. Furthermore, the work by Mishra and Mustafa [198] is
claimed to be the first SLR on FM focusing on the security requirement specification.
It considers 88 studies from the last 20 years and it is observed that model checking is
preferred over theorem proving, while it remains a research challenge to effectively
use FM in a cost-effective and time-saving way. Finally, as far as we know, the
work by Zahid et al. [199] is the first SMS on the use of FM, including semi-formal
methods, during the requirements engineering of industrial cyber–physical systems.
It considers 93 studies from the last decade and it is shown that safety and timing
requirements have been extensively analysed and verified, but there is a lack of work
on key phases like requirements elicitation and management, while also the adoption
of industrial standards is largely missing and so are methods to handle the currently
critical concerns of privacy and trust requirements. Additionally, worth mentioning
are some earlier studies, in particular in specific application domains [200–204], as
well as on teaching FM [205].

• Pointers to external guidelines: Kitchenham [206] provides the primary reference for
conducting SLRs in software engineering and the guidelines are generally appropriate
also for SMSs. For SMSs, however, the guidelines from Petersen [207,208] are a valid
alternative. For guidelines on how to select and assess an ‘optimal’ search string,
the interested reader can refer to Zhang [209]. For guidelines on how to perform
snowballing, the reader should refer to Wholin [210]. For multivocal literature reviews
to include grey literature, the reader should refer to Garousi et al. [194]. Guidelines for
reporting threats to validity are made available by Ampatzoglou et al. [211]. Finally,
guidelines to update SLRs are discussed by Wohlin et al. [212].

• Pointers to papers outside FM: a recent example of an SLR is the work by
Dąbrowski et al. [213]. Another example, which also includes a quality checklist,
is the one by Bano and Zowghi [214], about the practice of user involvement in
software development. A good SMS, on software engineering for AI, is the one by
Martinez et al. [215]. Another example, with a rigorous evaluation of agreement be-
tween researchers, is the work by Horkoff et al. [216], about goal-oriented requirements
engineering. Finally, for multivocal literature reviews, a representative example is the
study by Garousi et al. [217]. A more recent work, using reference guidelines [194], is
the one by Sheuner et al. [218].



Software 2022, 1 406

11. Discussion and Conclusions

Research in FM has traditionally focused on developing novel techniques, improving
the performance of FM tools, and tackling ever complex problems. On the other hand,
evidence-based, empirically grounded studies are currently limited. To foster a better
uptake of empirical formal methods in the community, this paper presents a summary of
the main empirical research strategies as they are defined in software engineering, and
specifically adapted for their application in FM. Of course, several challenges still exist.
In particular: the complexity of the theory behind FM tools, which leads to difficulties
in performing usability testing or experiments with human subjects with a sufficient
background; the wide differences among tools, which makes it hard to compare them on
real-world benchmarks; the development status of many tools, which are not sufficiently
mature to be evaluated by industrial practitioners, thus hampering case study research;
the fact that FM experts are often specialised on a single tool, thereby making it hard to
find sufficient subjects to perform an in-depth survey about a certain tool, and also an
experiment with human subjects having comparable backgrounds. Some recommendations
on how to overcome these issues in practice are presented throughout the paper. Our study
represents a reference guide for researchers who want to approach a FM problem with an
empirical mindset, and want to soundly evaluate FM, their tools, or systematically study
FM practice and literature. Guidelines for the selection of the specific strategy to choose
are not different from those of software engineering research, cf. Easterbrook et al. [11].
The choice primarily depends upon the types of research questions to be addressed, and
the maturity of the knowledge (i.e., existing theories) about the constructs of interest. An
informal diagram to guide the reader in the selection of the most appropriate research
strategy, also considering the peculiarity of FM research, is reported in Figure 1. For
example, usability testing should be considered when GUI-related aspects are the main
concern. Laboratory experiments are recommended when one wants to study relationships
between fine-grained, measurable variables, as, e.g., performance. Case studies, action
research, and design science are appropriate when one wants to evaluate specific theories
or artefacts in a real-world context. Qualitative studies are more appropriate when less
knowledge is available and one wants to have a first understanding of a topic, and possibly
generate more detailed research questions. Surveys can be applied after qualitative studies
to have a quantitative overview about the topic of interest. Judgement studies, instead, are
more suitable when the topic of interest is sufficiently defined, but either few subjects are
expert on it, or one wishes to have more informative, qualitative content, with respect to
the data that could be collected with a survey. Finally, systematic literature reviews and
mapping studies should be performed when the researcher has limited knowledge about a
topic, which has however been extensively studied in the literature. Of course, the choice
of the type of strategy to adopt also depends on the access to resources, e.g., students or
professionals as subjects, and their availability.

Author Contributions: Conceptualization, M.H.t.B and A.F.; methodology, A.F.; investigation,
M.H.t.B. and A.F.; writing—original draft preparation, M.H.t.B. and A.F.; writing—review and
editing, M.H.t.B. and A.F.; visualization, M.H.t.B. and A.F.; project administration, M.H.t.B.; fund-
ing acquisition, M.H.t.B. and A.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the MIUR-PRIN 2020TL3X8X project T-LADIES (Typeful
Language Adaptation for Dynamic, Interacting and Evolving Systems).

Conflicts of Interest: The authors declare no conflict of interest.



Software 2022, 1 407

Abbreviations
The following abbreviations are used in this manuscript:

ACM Association for Computing Machinery
ANOVA Analysis of Variance
ASM Abstract State Machines
ASMETA ASMs mETAmodelling
ATP Automated Theorem Provers
AVISPA Automated Validation of Internet Security Protocols and Applications
CCS Calculus of Communicating Systems
COVID-19 Coronavirus Disease 2019
CSP Communicating Sequential Processes
CSUQ Computer System Usability Questionnaire
DESMET Determining an Evaluation Methodology for Software Methods and Tools
FM Formal Method(s)
FRAMA-C Framework for Modular Analysis of C programs
GDPR General Data Protection Regulation
GT Grounded Theory
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
IFADIS Integrated Framework for the Analysis of Dependable Interactive Systems
ISO International Standards Organization
NGT Nominal Group Technique
RQ Research Question
RSML Requirements State Machine Language
SAT Boolean satisfiability
SC(R)3 Software Cost Reduction Requirements Reuse
SEM Structured Equation Modeling
SEQ Single Easy Questionnaire
SLR Systematic Literature Review
SMS Systematic Mapping Study
SUS System Usability Scale
TACAS Tools and Algorithms for the Construction and Analysis of Systems
TAM Technology Acceptance Model
TLA Temporal Logic of Actions
VDM Vienna Development Method
WOZ Wizard of Oz method

References
1. Zhang, L.; Tian, J.; Jiang, J.; Liu, Y.; Pu, M.; Yue, T. Empirical Research in Software Engineering—A Literature Survey. J. Comput.

Sci. Technol. 2018, 33, 876–899. https://doi.org/10.1007/s11390-018-1864-x.
2. Höfer, A.; Tichy, W.F. Status of Empirical Research in Software Engineering. In Proceedings of the International Workshop on

Empirical Software Engineering Issues: Critical Assessment and Future Directions, Dagstuhl Castle, Germany, 26–30 June 2006;
Basili, V.R., Rombach, H.D., Schneider, K., Kitchenham, B.A., Pfahl, D., Selby, R.W., Eds.; Springer: Berlin/Heidelberg, Germany,
2006; Volume 4336, pp. 10–19. https://doi.org/10.1007/978-3-540-71301-2_3.

3. Jeffery, D.R.; Staples, M.; Andronick, J.; Klein, G.; Murray, T.C. An empirical research agenda for understanding formal methods
productivity. Inf. Softw. Technol. 2015, 60, 102–112. https://doi.org/10.1016/j.infsof.2014.11.005.

4. Gleirscher, M.; van de Pol, J.; Woodcock, J. A Manifesto for Applicable Formal Methods. 2021. Available online: https:
//arxiv.org/abs/2112.12758 (accessed on 22 september 2022).

5. Huisman, M.; Gurov, D.; Malkis, A. Formal Methods: From Academia to Industrial Practice. A Travel Guide. 2020. Available
online: https://arxiv.org/abs/2002.07279 (accessed on 22 september 2022).

6. Ferrari, A.; Mazzanti, F.; Basile, D.; ter Beek, M.H.; Fantechi, A. Comparing Formal Tools for System Design: A Judgment Study.
In Proceedings of the 42nd ACM International Conference on Software Engineering (ICSE’20), Seoul, Korea, 27 June–19 July 2020;
pp. 62–74. https://doi.org/10.1145/3377811.3380373.

7. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012. https://doi.org/10.1007/978-3-642-29044-2.

8. Shull, F.; Singer, J.; Sjøberg, D.I.K. (Eds.) Guide to Advanced Empirical Software Engineering; Springer: Berlin/Heidelberg, Germany,
2008. https://doi.org/10.1007/978-1-84800-044-5.

https://arxiv.org/abs/2112.12758
https://arxiv.org/abs/2112.12758
https://arxiv.org/abs/2002.07279


Software 2022, 1 408

9. Felderer, M.; Travassos, G.H. (Eds.) Contemporary Empirical Methods in Software Engineering; Springer: Berlin/Heidelberg,
Germany, 2020. https://doi.org/10.1007/978-3-030-32489-6.

10. Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.; Jones, P.W.; Hoaglin, D.C.; Emam, K.E.; Rosenberg, J. Preliminary Guidelines for Em-
pirical Research in Software Engineering. IEEE Trans. Softw. Eng. 2002, 28, 721–734. https://doi.org/10.1109/TSE.2002.1027796.

11. Easterbrook, S.; Singer, J.; Storey, M.D.; Damian, D.E. Selecting Empirical Methods for Software Engineering Research. In Guide to
Advanced Empirical Software Engineering; Shull, F., Singer, J., Sjøberg, D.I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 285–311. https://doi.org/10.1007/978-1-84800-044-5_11.

12. Stol, K.J.; Fitzgerald, B. The ABC of software engineering research. ACM Trans. Softw. Eng. Methodol. 2018, 27, 1–51.
https://doi.org/10.1145/3241743.

13. Ralph, P. (Ed.) Empirical Standards for Software Engineering Research. 2020. Available online: https://arxiv.org/abs/2010.03525
(accessed on 22 september 2022).

14. Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley: Hoboken, NJ, USA,
2005.

15. Kitchenham, B.; Linkman, S.; Law, D. DESMET: A methodology for evaluating software engineering methods and tools. Comput.
Control Eng. J. 1997, 8, 120–126. https://doi.org/10.1049/cce:19970304.

16. Beyer, D.; Löwe, S.; Wendler, P. Reliable benchmarking: Requirements and solutions. Int. J. Softw. Tools Technol. Transf. 2019,
21, 1–29. https://doi.org/10.1007/s10009-017-0469-y.

17. Kordon, F.; Hulin-Hubard, F. BenchKit, a Tool for Massive Concurrent Benchmarking. In Proceedings of the 14th International
Conference on Application of Concurrency to System Design (ACSD’14), IEEE, Tunis La Marsa, Tunisia, 23–27 June 2014;
pp. 159–165. https://doi.org/10.1109/ACSD.2014.12.

18. Petkovich, J.C.; de Oliveira, A.B.; Zhang, Y.; Reidemeister, T.; Fischmeister, S. DataMill: A distributed heterogeneous infrastructure
for robust experimentation. Softw. Pract. Exp. 2016, 46, 1411–1440. https://doi.org/10.1002/spe.2382.

19. Stump, A.; Sutcliffe, G.; Tinelli, C. StarExec: A Cross-Community Infrastructure for Logic Solving. In Proceedings of the 7th
International Joint Conference on Automated Reasoning (IJCAR’14), Vienna, Austria, 19–22 July 2014; Demri, S., Kapur, D.,
Weidenbach, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8562, pp. 367–373. https://doi.org/10.1007/978-3-
319-08587-6_28.

20. Järvisalo, M.; Berre, D.L.; Roussel, O.; Simon, L. The International SAT Solver Competitions. AI Mag. 2012, 33, 89–92.
https://doi.org/10.1609/aimag.v33i1.2395.

21. Sutcliffe, G. The CADE ATP System Competition-CASC. AI Mag. 2016, 37, 99–101. https://doi.org/10.1609/aimag.v37i2.2620.
22. Bartocci, E.; Beyer, D.; Black, P.E.; Fedyukovich, G.; Garavel, H.; Hartmanns, A.; Huisman, M.; Kordon, F.; Nagele, J.; Sighireanu,

M.; et al. TOOLympics 2019: An Overview of Competitions in Formal Methods. In Proceedings of the 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems: TOOLympics (TACAS’19), Prague, Czech
Republic, 6–7 April 2019; Beyer, D., Huisman, M., Kordon, F., Steffen, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 11429, pp. 3–24. https://doi.org/10.1007/978-3-030-17502-3_1.

23. Krishnamurthi, S. Artifact Evaluation for Software Conferences. ACM Sigsoft Softw. Eng. Notes 2013, 38, 7–10.
https://doi.org/10.1145/2464526.2464530.

24. Krishnamurthi, S.; Vitek, J. The Real Software Crisis: Repeatability as a Core Value–Sharing experiences running artifact
evaluation committees for five major conferences. Commun. ACM 2015, 58, 34–36. https://doi.org/10.1145/2658987.

25. Garavel, H.; ter Beek, M.H.; van de Pol, J. The 2020 Expert Survey on Formal Methods. In Proceedings of the 25th International
Conference on Formal Methods for Industrial Critical Systems (FMICS’20), Vienna, Austria, 2–3 September 2020; ter Beek, M.H.,
Ničković, D., Eds. Springer: Berlin/Heidelberg, Germany, 2020; Volume 12327, pp. 3–69. https://doi.org/10.1007/978-3-030-
58298-2_1.

26. Vitek, J.; Kalibera, T. R3–Repeatability, Reproducibility and Rigor. ACM Sigplan Not. 2012, 47, 30–36. https://doi.org/10.1145/
2442776.2442781.

27. Ye, H.; Martinez, M.; Durieux, T.; Monperrus, M. A comprehensive study of automatic program repair on the QuixBugs
benchmark. J. Syst. Softw. 2021, 171, 110825. https://doi.org/10.1016/j.jss.2020.110825.

28. Su, T.; Wang, J.; Su, Z. Benchmarking automated GUI testing for Android against real-world bugs. In Proceedings of the
29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’21), Athens, Greece, 23–28 August 2021; pp. 119–130. https://doi.org/10.1145/3468264.3468620.

29. Herbold, S.; Trautsch, A.; Grabowski, J. A Comparative Study to Benchmark Cross-Project Defect Prediction Approaches. IEEE
Trans. Softw. Eng. 2018, 44, 811–833. https://doi.org/0.1109/TSE.2017.2724538.

30. Falessi, D.; Cantone, G.; Canfora, G. Empirical Principles and an Industrial Case Study in Retrieving Equivalent Requirements
via Natural Language Processing Techniques. IEEE Trans. Softw. Eng. 2013, 39, 18–44. https://doi.org/10.1109/TSE.2011.122.

31. Maalej, W.; Kurtanovic, Z.; Nabil, H.; Stanik, C. On the automatic classification of app reviews. Requir. Eng. 2016, 21, 311–331.
https://doi.org/10.1007/s00766-016-0251-9.

32. Abualhaija, S.; Arora, C.; Sabetzadeh, M.; Briand, L.C.; Traynor, M. Automated demarcation of requirements in textual
specifications: A machine learning-based approach. Empir. Softw. Eng. 2020, 25, 5454–5497. https://doi.org/10.1007/s10664-020-
09864-1.

https://arxiv.org/abs/2010.03525


Software 2022, 1 409

33. Steffen, B. The Physics of Software Tools: SWOT Analysis and Vision. Int. J. Softw. Tools Technol. Transfer 2017, 19, 1–7.
https://doi.org/10.1007/s10009-016-0446-x.

34. Garavel, H.; Mateescu, R. Reflections on Bernhard Steffen’s Physics of Software Tools. In Models, Mindsets, Meta: The What, the
How, and the Why Not? Margaria, T., Graf, S., Larsen, K.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11200,
pp. 186–207. https://doi.org/10.1007/978-3-030-22348-9_12.

35. Hwang, W.; Salvendy, G. Number of people required for usability evaluation: The 10 ± 2 rule. Commun. ACM 2010, 53, 130–133.
https://doi.org/10.1145/1735223.1735255.

36. Macefield, R. How To Specify the Participant Group Size for Usability Studies: A Practitioner’s Guide. J. Usability Stud. 2009,
5, 34–45.

37. Sobel, A.E.K.; Clarkson, M.R. Formal Methods Application: An Empirical Tale of Software Development. IEEE Trans. Softw. Eng.
2002, 28, 308–320. https://doi.org/10.1109/32.991322.

38. Berry, D.M.; Tichy, W.F. Comments on “Formal Methods Application: An Empirical Tale of Software Development”. IEEE Trans.
Softw. Eng. 2003, 29, 567–571. https://doi.org/10.1109/TSE.2003.1205183.

39. Sobel, A.E.K.; Clarkson, M.R. Response to “Comments on ‘Formal Methods Application: An Empirical Tale of Software
Development’”. IEEE Trans. Softw. Eng. 2003, 29, 572–575. https://doi.org/10.1109/TSE.2003.1205184.

40. Pfleeger, S.L.; Hatton, L. Investigating the Influence of Formal Methods. IEEE Comput. 1997, 30, 33–43. https://doi.org/10.1109/2.566148.
41. Moher, T.G.; Mak, D.C.; Blumenthal, B.; Leventhal, L.M. Comparing the Comprehensibility of Textual and Graphical Programs:

The Case of Petri Nets. In Proceedings of the 5th Workshop on Empirical Studies of Programmers (ESP’93), Palo Alto, CA, USA,
3–5 December 1993; Cook, C.R., Scholtz, J.C., Spohrer, J.C., Eds.; Ablex: Norwood, NJ, USA, 1993; pp. 137–162.

42. Finney, K.; Rennolls, K.; Fedorec, A.M. Measuring the comprehensibility of Z specifications. J. Syst. Softw. 1998, 42, 3–15.
https://doi.org/10.1016/S0164-1212(98)00003-X.

43. Snook, C.F.; Harrison, R. Experimental comparison of the comprehensibility of a Z specification and its implementation in Java.
Inf. Softw. Technol. 2004, 46, 955–971. https://doi.org/10.1016/j.infsof.2004.04.003.

44. Neary, D.S.; Woodward, M.R. An Experiment to Compare the Comprehensibility of Textual and Visual Forms of Algebraic
Specifications. J. Vis. Lang. Comput. 2002, 13, 149–175. https://doi.org/10.1006/jvlc.2001.0213.

45. Carew, D.; Exton, C.; Buckley, J. An empirical investigation of the comprehensibility of requirements specifications. In Proceedings
of the International Symposium on Empirical Software Engineering (ISESE’05), IEEE, Noosa Heads, Australia, 17–18 November
2005; pp. 256–265. https://doi.org/10.1109/ISESE.2005.1541834.

46. Razali, R.; Snook, C.F.; Poppleton, M.; Garratt, P.W.; Walters, R.J. Experimental Comparison of the Comprehensibility of a
UML-based Formal Specification versus a Textual One. In Proceedings of the 11th International Conference on Evaluation and
Assessment in Software Engineering (EASE’07), Keele University, UK, 2–3 April 2007; Kitchenham, B.A., Brereton, P., Turner, M.,
Eds.; BCS: Swindon, UK, 2007. https://doi.org/10.14236/ewic/EASE2007.1.

47. Razali, R.; Snook, C.F.; Poppleton, M.R. Comprehensibility of UML-Based Formal Model: A Series of Controlled Experiments.
In Proceedings of the 1st ACM International Workshop on Empirical Assessment of Software Engineering Languages and
Technologies (WEASELTech’07), Atlanta, GA, USA, 5 November 2007; pp. 25–30. https://doi.org/10.1145/1353673.1353680.

48. Zimmerman, M.K.; Lundqvist, K.; Leveson, N.G. Investigating the Readability of State-Based Formal Requirements Specification
Languages. Proceedings of the 24th ACM International Conference on Software Engineering (ICSE’02), Orlando, FL, USA, 19–25
May 2002; pp. 33–43. https://doi.org/10.1145/581339.581347.

49. Sarshar, K.; Loos, P. Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective. In Proceedings of the
3rd International Conference on Business Process Management (BPM’05), Nancy, France, 5–8 September 2005; van der Aalst,
W.M.P., Benatallah, B., Casati, F., Curbera, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3649, pp. 434–439.
https://doi.org/10.1007/11538394_36.

50. Mendling, J.; Reijers, H.A.; Cardoso, J. What Makes Process Models Understandable? In Proceedings of the 5th International
Conference on Business Process Management (BPM’07), Brisbane, Australia, 24–28 September 2007; Alonso, G., Dadam, P.,
Rosemann, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4714, pp. 48–63. https://doi.org/10.1007/978-3-540-
75183-0_4.

51. Reijers, H.A.; Mendling, J. A Study Into the Factors That Influence the Understandability of Business Process Models. IEEE Trans.
Syst. Man Cybern. Part A 2011, 41, 449–462. https://doi.org/10.1109/TSMCA.2010.2087017.

52. Reinhartz-Berger, I.; Figl, K.; Haugen, Ø. Comprehending Feature Models Expressed in CVL. In Proceedings of the 17th
International Conference on Model-Driven Engineering Languages and Systems (MoDELS’14), Valencia, Spain, 28 September–3
October 2014; Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfrán, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 8767, pp. 501–517. https://doi.org/10.1007/978-3-319-11653-2_31.

53. Reinhartz-Berger, I.; Sturm, A. Comprehensibility of UML-based software product line specifications—A controlled experiment.
Empir. Softw. Eng. 2014, 19, 678–713. https://doi.org/10.1007/s10664-012-9234-8.

54. Labunets, K.; Massacci, F.; Paci, F.; Tran, L.M.S. An Experimental Comparison of Two Risk-Based Security Methods. In
Proceedings of the IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’13), Baltimore,
MD, USA, 10–11 October 2013; pp. 163–172. https://doi.org/10.1109/ESEM.2013.29.



Software 2022, 1 410

55. Labunets, K.; Paci, F.; Massacci, F.; Ruprai, R.S. An Experiment on Comparing Textual vs. Visual Industrial Methods for Security
Risk Assessment. In Proceedings of the 4th IEEE International Workshop on Empirical Requirements Engineering (EmpiRE’14),
Karlskrona, Sweden, 25 August 2014; pp. 28–35. https://doi.org/10.1109/EmpiRE.2014.6890113.

56. Labunets, K.; Massacci, F.; Paci, F. On the Equivalence Between Graphical and Tabular Representations for Security Risk
Assessment. In Proceedings of the 23rd International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’17), Essen, Germany, 27 February–2 March 2017; Grünbacher, P., Perini, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017; Volume 10153, pp. 191–208. https://doi.org/10.1007/978-3-319-54045-0_15.

57. Schneier, B. Attack Trees. Dr. Dobb’s J. Softw. Tools 1999, 24, 21–29.
58. Mauw, S.; Oostdijk, M. Foundations of Attack Trees. In Proceedings of the 8th International Conference on Information Security

and Cryptology (ICISC’05), Seoul, Korea, 1–2 December 2015; Won, D., Kim, S., Eds.; Springer: Berlin/Heidelberg, Germany,
2005; Volume 3935, pp. 186–198. https://doi.org/10.1007/11734727_17.

59. Kordy, B.; Mauw, S.; Radomirovic, S.; Schweitzer, P. Foundations of Attack-Defense Trees. In Proceedings of the 7th International
Workshop on Formal Aspects of Security and Trust (FAST’10), Pisa, Italy, 16–17 September 2010; Degano, P., Etalle, S., Guttman,
J.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6561, pp. 80–95. https://doi.org/10.1007/978-3-642-19751-2_6.

60. Amenaza Technologies Limited. The SecuITree® BurgleHouse Tutorial (a.k.a., Who wants to be a Cat Burglar?) 2006. Available online:
https://www.amenaza.com/downloads/docs/Tutorial.pdf (accessed on 22 september 2022).

61. Gadyatskaya, O.; Trujillo-Rasua, R. New Directions in Attack Tree Research: Catching up with Industrial Needs. In Proceedings of
the 4th International Workshop on Graphical Models for Security (GraMSec’17), Santa Barbara, CA, USA, 21 August 2017; Liu, P.,
Mauw, S., Stølen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10744, pp. 115–126. https://doi.org/10.1007/978-
3-319-74860-3_9.

62. Eisentraut, J.; Holzer, S.; Klioba, K.; Kretínský, J.; Pin, L.; Wagner, A. Assessing Security of Cryptocurrencies with Attack-
Defense Trees: Proof of Concept and Future Directions. In Proceedings of the 18th International Colloquium on Theoretical
Aspects of Computing (ICTAC’21), Nur-Sultan, Kazakhstan, 6–10 September 2021; Cerone, A., Ölveczky, P.C., Eds.; Springer:
Berlin/Heidelberg, Germany, 2021; Volume 12819, pp. 214–234. https://doi.org/10.1007/978-3-030-85315-0_13.

63. Ko, A.J.; LaToza, T.D.; Burnett, M.M. A practical guide to controlled experiments of software engineering tools with human
participants. Empir. Softw. Eng. 2015, 20, 110–141. https://doi.org/10.1007/s10664-013-9279-3.

64. Santos, A.; Vegas, S.; Oivo, M.; Juristo, N. A Procedure and Guidelines for Analyzing Groups of Software Engineering Replications.
IEEE Trans. Softw. Eng. 2019, 47, 1742–1763. https://doi.org/10.1109/TSE.2019.2935720.

65. Trochim, W.M.K. The Research Methods Knowledge Base. 2022. Available online: https://conjointly.com/kb/ (accessed on 20
September 2022).

66. Graziotin, D.; Lenberg, P.; Feldt, R.; Wagner, S. Psychometrics in Behavioral Software Engineering: A Methodological Introduction
with Guidelines. ACM Trans. Softw. Eng. Methodol. 2021, 31, 1–36. https://doi.org/10.1145/3469888.

67. Motulsky, H. Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking; Oxford University Press: Oxford, UK, 2013.
68. Furia, C.A.; Feldt, R.; Torkar, R. Bayesian Data Analysis in Empirical Software Engineering Research. IEEE Trans. Softw. Eng.

2019, 47, 1786–1810. https://doi.org/10.1109/TSE.2019.2935974.
69. Abrahão, S.; Gravino, C.; Insfrán, E.; Scanniello, G.; Tortora, G. Assessing the Effectiveness of Sequence Diagrams in the

Comprehension of Functional Requirements: Results from a Family of Five Experiments. IEEE Trans. Softw. Eng. 2013,
39, 327–342. https://doi.org/10.1109/TSE.2012.27.

70. Abrahão, S.; Insfrán, E.; Carsí, J.A.; Genero, M. Evaluating requirements modeling methods based on user perceptions: A family
of experiments. Inf. Sci. 2011, 181, 3356–3378. https://doi.org/10.1016/j.ins.2011.04.005.

71. Santos, A.; Vegas, S.; Dieste, O.; Uyaguari, F.; Tosun, A.; Fucci, D.; Turhan, B.; Scanniello, G.; Romano, S.; Karac, I.; et al. A family
of experiments on test-driven development. Empir. Softw. Eng. 2021, 26, 1–53. https://doi.org/10.1007/s10664-020-09895-8.

72. Mohanani, R.; Turhan, B.; Ralph, P. Requirements Framing Affects Design Creativity. IEEE Trans. Softw. Eng. 2021, 47, 936–947.
https://doi.org/10.1109/TSE.2019.2909033.

73. Aranda, A.M.; Dieste, O.; Juristo, N. Effect of Domain Knowledge on Elicitation Effectiveness: An Internally Replicated Controlled
Experiment. IEEE Trans. Softw. Eng. 2016, 42, 427–451. https://doi.org/10.1109/TSE.2015.2494588.

74. Pérez, F.; Echeverría, J.; Lapeña, R.; Cetina, C. Comparing manual and automated feature location in conceptual models: A
Controlled experiment. Inf. Softw. Technol. 2020, 125, 106337. https://doi.org/10.1016/j.infsof.2020.106337.

75. Dumas, J.S.; Redish, J. A Practical Guide to Usability Testing; Intellect: Exeter, UK, 1999.
76. Nielsen, J.; Molich, R. Heuristic evaluation of user interfaces. In Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI’90), Seattle, WA, USA, 1–5 April 1990; pp. 249–256. https://doi.org/10.1145/97243.97281.
77. Mahatody, T.; Sagar, M.; Kolski, C. State of the Art on the Cognitive Walkthrough Method, Its Variants and Evolutions. Int. J.

Hum. Comput. Interact. 2010, 26, 741–785. https://doi.org/10.1080/10447311003781409.
78. ISO 9241-11:2018; Ergonomics of Human-System Interaction–Part 11: Usability: Definitions and Concepts; ISO: Geneva,

Switzerland, 2018.
79. Quesenbery, W. The Five Dimensions of Usability. In Content and Complexity: Information Design in Technical Communication; Albers,

M.J., Mazur, M.B., Eds.; Taylor & Francis: London, UK, 2003; Chapter 4, pp. 81–102. https://doi.org/10.4324/9781410607409-11.
80. Holzinger, A. Usability engineering methods for software developers. Commun. ACM 2005, 48, 71–74. https://doi.org/10.1145/

1039539.1039541.

https://www.amenaza.com/downloads/docs/Tutorial.pdf
https://conjointly.com/kb/


Software 2022, 1 411

81. Sauro, J.; Lewis, J.R. Standardized usability questionnaires. In Quantifying the User Experience: Practical Statistics for User
Research; Sauro, J., Lewis, J.R., Eds.; Morgan Kaufmann: Amsterdam, The Netherlands, 2016; Chapter 8, pp. 185–248.
https://doi.org/10.1016/B978-0-12-802308-2.00008-4.

82. Hornbæk, K. Current practice in measuring usability: Challenges to usability studies and research. Int. J. Hum. Comput. Stud.
2006, 64, 79–102. https://doi.org/10.1016/j.ijhcs.2005.06.002.

83. Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989,
13, 319–340.

84. Lin, C. Exploring the relationship between technology acceptance model and usability test. Inf. Technol. Manag. 2013, 14, 243–255.
https://doi.org/10.1007/s10799-013-0162-0.

85. Ferrari, A.; Mazzanti, F.; Basile, D.; ter Beek, M.H. Systematic Evaluation and Usability Analysis of Formal Methods Tools for
Railway Signaling System Design. IEEE Trans. Softw. Eng. 2021.https://doi.org/10.1109/TSE.2021.3124677.

86. Kelley, J.F. An empirical methodology for writing user-friendly natural language computer applications. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI’83), ACM, Boston, MA, USA, 12–15 December 1983;
pp. 193–196. https://doi.org/10.1145/800045.801609.

87. Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959,
56, 81–105.

88. Kadoda, G.F. Formal Software Development Tools (An Investigation into Usability). Ph.D. Thesis, Loughborough University,
Loughborough, UK, 1997.

89. Shackel, B. Ergonomics in Design for Usability. In Proceedings of the 2nd Conference of the British Computer Society, Human
Computer Interaction Specialist Group on People and Computers: Designing for Usability, York, UK, 23–26 August 1986;
Cambridge University Press: Cambridge, UK, 1986; pp. 44–64.

90. Green, T.R.G.; Petre, M. Usability Analysis of Visual Programming Environments: A ‘Cognitive Dimensions’ Framework. J. Vis.
Lang. Comput. 1996, 7, 131–174. https://doi.org/10.1006/jvlc.1996.0009.

91. Hussey, A.; MacColl, I.; Carrington, D.A. Assessing Usability from Formal User-Interface Designs. In Proceedings of the
13th IEEE Australian Software Engineering Conference (ASWEC’01), Canberra, Australia, 27–28 August 2001; pp. 40–47.
https://doi.org/10.1109/ASWEC.2001.948496.

92. Chechik, M. SC(R)3: Towards Usability of Formal Methods. In Proceedings of the 8th Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’98), IBM, Toronto, ON, Canada, 30 November–3 December 1998; pp. 8:1–8:16.

93. Loer, K.; Harrison, M.D. Towards Usable and Relevant Model Checking Techniques for the Analysis of Dependable Interactive
Systems. In Proceedings of the 17th International Conference on Automated Software Engineering (ASE’02), IEEE, Edinburgh,
UK, 23–27 September 2002; pp. 223–226. https://doi.org/10.1109/ASE.2002.1115016.

94. Loer, K.; Harrison, M.D. An integrated framework for the analysis of dependable interactive systems (IFADIS): Its tool support
and evaluation. Autom. Softw. Eng. 2006, 13, 469–496. https://doi.org/10.1007/s10515-006-7999-y.

95. Maroneze, A.; Perrelle, V.; Kirchner, F. Advances in Usability of Formal Methods for Code Verification with Frama-C. Electron.
Commun. Eur. Assoc. Softw. Sci. Technol. 2019, 77, 1–6. https://doi.org/10.14279/tuj.eceasst.77.1108.

96. Arcaini, P.; Bonfanti, S.; Gargantini, A.; Riccobene, E.; Scandurra, P. Addressing Usability in a Formal Development Environment.
In Revised Selected Papers of the International Workshops at the 3rd World Congress on Formal Methods (FM’19); Sekerinski, E., Moreira,
N., Oliveira, J.N., Ratiu, D., Guidotti, R., Farrell, M., Luckcuck, M., Marmsoler, D., Campos, J., Astarte, T., et al., Eds.; Springer:
Berlin/Heidelberg, Germany, 2019; Volume 12232, pp. 61–76. https://doi.org/10.1007/978-3-030-54994-7_6.

97. Rubin, J.; Chisnell, D. Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests; Wiley: Hoboken, NJ, USA,
2008.

98. Sagar, K.; Saha, A. A systematic review of software usability studies. Int. J. Inf. Technol. 2017, 1–24. https://doi.org/10.1007/
s41870-017-0048-1.

99. Planas, E.; Cabot, J. How are UML class diagrams built in practice? A usability study of two UML tools: Magicdraw and Papyrus.
Comput. Stand. Interfaces 2020, 67, 103363. https://doi.org/10.1016/j.csi.2019.103363.

100. Abrahão, S.; Insfrán, E.; González-Ladrón-de-Guevara, F.; Fernández-Diego, M.; Cano-Genoves, C.; de Oliveira, R.P. Assessing
the effectiveness of goal-oriented modeling languages: A family of experiments. Inf. Softw. Technol. 2019, 116, 106171.
https://doi.org/10.1016/j.infsof.2019.08.003.

101. Ryan, T.P. Sample Size Determination and Power; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2013.
102. Rea, L.M.; Parker, R.A. Designing and Conducting Survey Research: A Comprehensive Guide; Wiley: Hoboken, NJ, USA, 2014.
103. European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of

natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation), 2016.

104. Kaplan, D. Structural Equation Modeling: Foundations and Extensions; Vol. 10, Advanced Quantitative Techniques in the Social Sciences;
SAGE: Thousand Oaks, CA, USA, 2008. https://doi.org/10.4135/9781452226576.

105. Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2015.
106. Taherdoost, H. Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a

Research. Int. J. Acad. Res. Manag. 2016, 5, 28–36. https://doi.org/10.2139/ssrn.3205040.



Software 2022, 1 412

107. Craigen, D.; Gerhart, S.; Ralston, T. Industrial Applications of Formal Methods to Model, Design and Analyze Computer Systems:
An International Survey; Advanced Computing and Telecommunication Series; William Andrew: Norwich, NY, USA, 1995.
https://doi.org/10.1016/C2009-0-20452-1.

108. Craigen, D.; Gerhart, S.L.; Ralston, T. An International Survey of Industrial Applications of Formal Methods. In Proceedings
of the 7th Z User Workshop, London, UK, 14–15 December 1992; Bowen, J.P., Nicholls, J.E., Eds.; Springer: Berlin/Heidelberg,
Germany, 1992; pp. 1–5. https://doi.org/10.1007/978-1-4471-3556-2_1.

109. Craigen, D. Formal Methods Technology Transfer: Impediments and Innovation. In Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR’95), Philadelphia, PA, USA, 21–24 August 1995; Lee, I., Smolka, S.A., Eds.;
Springer: Berlin/Heidelberg, Germany, 1995; Volume 962, pp. 328–332. https://doi.org/10.1007/3-540-60218-6_24.

110. Craigen, D.; Gerhart, S.L.; Ralston, T. Formal Methods Reality Check: Industrial Usage. IEEE Trans. Softw. Eng. 1995, 21, 90–98.
https://doi.org/10.1109/32.345825.

111. Clarke, E.M.; Wing, J.M. Formal Methods: State of the Art and Future Directions. ACM Comput. Surv. 1996, 28, 626–643.
https://doi.org/10.1145/242223.242257.

112. Woodcock, J.; Larsen, P.G.; Bicarregui, J.; Fitzgerald, J. Formal methods: Practice and experience. ACM Comput. Surv. 2009,
41, 19:1–19:36 https://doi.org/10.1145/1592434.1592436.

113. Basile, D.; ter Beek, M.H.; Fantechi, A.; Gnesi, S.; Mazzanti, F.; Piattino, A.; Trentini, D.; Ferrari, A. On the Industrial Uptake
of Formal Methods in the Railway Domain: A Survey with Stakeholders. In Proceedings of the 14th International Conference
on Integrated Formal Methods (iFM’18), Maynooth, Ireland, 5–7 September 2018; Furia, C.A., Winter, K., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11023, pp. 20–29. https://doi.org/10.1007/978-3-319-98938-9_2.

114. ter Beek, M.H.; Borälv, A.; Fantechi, A.; Ferrari, A.; Gnesi, S.; Löfving, C.; Mazzanti, F. Adopting Formal Methods in an Industrial
Setting: The Railways Case. In Proceedings of the 3rd World Congress on Formal Methods: The Next 30 Years (FM’19), Porto,
Portugal, 7–11 October 2019; ter Beek, M.H., McIver, A., Oliveira, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume
11800, pp. 762–772. https://doi.org/10.1007/978-3-030-30942-8_46.

115. Gleirscher, M.; Marmsoler, D. Formal Methods in Dependable Systems Engineering: A Survey of Professionals from Europe and
North America. Empir. Softw. Eng. 2020, 25, 4473–4546. https://doi.org/10.1007/s10664-020-09836-5.

116. Linåker, J.; Sulaman, S.M.; Maiani de Mello, R.; Höst, M. Guidelines for Conducting Surveys in Software Engineering; Technical
report; Department of Computer Science, Lund University: Lund, Sweden, 2015.

117. Kitchenham, B.A.; Pfleeger, S.L. Personal Opinion Surveys. In Guide to Advanced Empirical Software Engineering; Shull, F., Singer, J.,
Sjøberg, D.I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–92. https://doi.org/10.1007/978-1-84800-044-5_3.

118. Wagner, S.; Méndez, D.; Felderer, M.; Graziotin, D.; Kalinowski, M. Challenges in Survey Research. In Contemporary Empirical
Methods in Software Engineering; Felderer, M.; Travassos, G.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 93–125.
https://doi.org/10.1007/978-3-030-32489-6_4.

119. Molléri, J.S.; Petersen, K.; Mendes, E. An empirically evaluated checklist for surveys in software engineering. Inf. Softw. Technol.
2020, 119, 106240. https://doi.org/10.1016/j.infsof.2019.106240.

120. Baltes, S.; Ralph, P. Sampling in software engineering research: A critical review and guidelines. Empir. Softw. Eng. 2022,
27, 94:1–94:31. https://doi.org/10.1007/s10664-021-10072-8.

121. Ralph, P.; Tempero, E.D. Construct Validity in Software Engineering Research and Software Metrics. In Proceedings of the 22nd
ACM International Conference on Evaluation and Assessment in Software Engineering (EASE’18), Christchurch, New Zealand,
28–29 June 2018; pp. 13–23. https://doi.org/10.1145/3210459.3210461.

122. Heeringa, S.G.; West, B.T.; Berglund, P.A. Applied Survey Data Analysis; Statistics in the Social and Behavioral Sciences; Taylor &
Francis: London, UK, 2020.

123. Agresti, A. Categorical Data Analysis; Wiley: Hoboken, NJ, USA, 2012.
124. Fernández, D.M.; Wagner, S.; Kalinowski, M.; Felderer, M.; Mafra, P.; Vetrò, A.; Conte, T.; Christiansson, M.T.; Greer, D.; Lassenius,

C.; et al. Naming the pain in requirements engineering: Contemporary problems, causes, and effects in practice. Empir. Softw.
Eng. 2017, 22, 2298–2338. https://doi.org/10.1007/s10664-016-9451-7.

125. Ralph, P.; Baltes, S.; Adisaputri, G.; Torkar, R.; Kovalenko, V.; Kalinowski, M.; Novielli, N.; Yoo, S.; Devroey, X.; Tan, X.; et al.
Pandemic programming. Empir. Softw. Eng. 2020, 25, 4927–4961. https://doi.org/10.1007/s10664-020-09875-y.

126. Chow, T.; Cao, D. A survey study of critical success factors in agile software projects. J. Syst. Softw. 2008, 81, 961–971.
https://doi.org/10.1016/j.jss.2007.08.020.

127. Torchiano, M.; Tomassetti, F.; Ricca, F.; Tiso, A.; Reggio, G. Relevance, benefits, and problems of software modelling and model
driven techniques—A survey in the Italian industry. J. Syst. Softw. 2013, 86, 2110–2126. https://doi.org/10.1016/j.jss.2013.03.084.

128. Lethbridge, T.C.; Sim, S.E.; Singer, J. Studying Software Engineers: Data Collection Techniques for Software Field Studies. Empir.
Softw. Eng. 2005, 10, 311–341. https://doi.org/10.1007/s10664-005-1290-x.

129. Vollstedt, M.; Rezat, S. An Introduction to Grounded Theory with a Special Focus on Axial Coding and the Coding Paradigm. In
Compendium for Early Career Researchers in Mathematics Education; Kaiser, G., Presmeg, N., Eds.; ICME-13 Monographs; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 81–100. https://doi.org/10.1007/978-3-030-15636-7_4.

130. Corbin, J.M.; Strauss, A. Grounded Theory Research: Procedures, Canons, and Evaluative Criteria. Qual. Sociol. 1990, 13, 3–21.
https://doi.org/10.1007/BF00988593.

131. Glaser, B.G. Theoretical Sensitivity: Advances in the Methodology of Grounded Theory; Sociology Press: Mill Valley, CA, USA, 1978.



Software 2022, 1 413

132. Charmaz, K. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis; SAGE: Thousand Oaks, CA, USA, 2006.
133. Hoda, R. Socio-Technical Grounded Theory for Software Engineering. IEEE Trans. Softw. Eng. 2021. https://doi.org/10.1109/

TSE.2021.3106280.
134. Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. https://doi.org/10.1191/

1478088706qp063oa.
135. Cruzes, D.S.; Dybå, T. Recommended Steps for Thematic Synthesis in Software Engineering. In Proceedings of the 5th

International Symposium on Empirical Software Engineering and Measurement (ESEM’11), IEEE, Banff, AB, Canada, 22–23
September 2011; pp. 275–284. https://doi.org/10.1109/ESEM.2011.36.

136. Guba, E.G.; Lincoln, Y.S. Competing Paradigms in Qualitative Research. In Handbook of Qualitative Research; Denzin, N.K., Lincoln,
Y.S., Eds.; SAGE: Thousand Oaks, CA, USA, 1994; Chapter 6; pp. 105–117.

137. Leung, L. Validity, reliability, and generalizability in qualitative research. J. Family Med. Prim. Care 2015, 4, 324–327.
https://doi.org/10.4103/2249-4863.161306.

138. Charmaz, K.; Thornberg, R. The pursuit of quality in grounded theory. Qual. Res. Psychol. 2021, 18, 305–327.
https://doi.org/10.1080/14780887.2020.1780357.

139. Snook, C.F.; Harrison, R. Practitioners’ views on the use of formal methods: An industrial survey by structured interview. Inf.
Softw. Technol. 2001, 43, 275–283. https://doi.org/10.1016/S0950-5849(00)00166-X.

140. Bloomfield, R.E.; Craigen, D.; Koob, F.; Ullmann, M.; Wittmann, S. Formal Methods Diffusion: Past Lessons and Future Prospects.
In Proceedings of the 19th International Conference on Computer Safety, Reliability and Security (SAFECOMP’00), Rotterdam,
The Netherlands, 24–27 October 2020; Koornneef, F., van der Meulen, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000;
Volume 1943, pp. 211–226. https://doi.org/10.1007/3-540-40891-6_19.

141. Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2016.
142. Sharp, H.; Dittrich, Y.; de Souza, C.R.B. The Role of Ethnographic Studies in Empirical Software Engineering. IEEE Trans. Softw.

Eng. 2016, 42, 786–804. https://doi.org/10.1109/TSE.2016.2519887.
143. Zhang, H.; Huang, X.; Zhou, X.; Huang, H.; Babar, M.A. Ethnographic Research in Software Engineering: A Critical

Review and Checklist. In Proceedings of the 27th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’19), Tallinn, Estonia, 26–30 August 2019; pp. 659–670.
https://doi.org/10.1145/3338906.3338976.

144. Saldaña, J. The Coding Manual for Qualitative Researchers; SAGE: Thousand Oaks, CA, USA, 2021.
145. Stol, K.J.; Ralph, P.; Fitzgerald, B. Grounded Theory in Software Engineering Research: A Critical Review and Guidelines. In

Proceedings of the ACM 38th International Conference on Software Engineering (ICSE’16), Austin, TX, USA, 14–22 May 2016;
pp. 120–131. https://doi.org/10.1145/2884781.2884833.

146. Ågren, S.M.; Knauss, E.; Heldal, R.; Pelliccione, P.; Malmqvist, G.; Bodén, J. The impact of requirements on systems development
speed: A multiple-case study in automotive. Requir. Eng. 2019, 24, 315–340. https://doi.org/10.1007/s00766-019-00319-8.

147. Yang, N.; Cuijpers, P.J.L.; Schiffelers, R.R.H.; Lukkien, J.; Serebrenik, A. An Interview Study of how Developers use Execution
Logs in Embedded Software Engineering. In Proceedings of the 43rd IEEE International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP’21), Madrid, Spain, 25–28 May 2021; pp. 61–70. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00015.

148. Strandberg, P.E.; Enoiu, E.P.; Afzal, W.; Sundmark, D.; Feldt, R. Information Flow in Software Testing—An Interview Study With
Embedded Software Engineering Practitioners. IEEE Access 2019, 7, 46434–46453. https://doi.org/10.1109/ACCESS.2019.2909093.

149. Masood, Z.; Hoda, R.; Blincoe, K. Real World Scrum A Grounded Theory of Variations in Practice. IEEE Trans. Softw. Eng. 2022,
48, 1579–1591. https://doi.org/10.1109/TSE.2020.3025317.

150. Leite, L.A.F.; Pinto, G.; Kon, F.; Meirelles, P. The organization of software teams in the quest for continuous delivery: A grounded
theory approach. Inf. Softw. Technol. 2021, 139, 106672. https://doi.org/10.1016/j.infsof.2021.106672.

151. Delbecq, A.L.; Van de Ven, A.H. A Group Process Model for Problem Identification and Program Planning. J. Appl. Behav. Sci.
1971, 7, 466–492. https://doi.org/10.1177/002188637100700404.

152. Keeney, S.; Hasson, F.; McKenna, H. Consulting the oracle: Ten lessons from using the Delphi technique in nursing research. J.
Adv. Nurs. 2006, 53, 205–212. https://doi.org/10.1111/j.1365-2648.2006.03716.x.

153. Krueger, R.A.; Casey, M.A. Focus Groups: A Practical Guide for Applied Research; SAGE: Thousand Oaks, CA, USA, 2014.
154. Breen, R.L. A Practical Guide to Focus-Group Research. J. Geogr. High. Educ. 2006, 30, 463–475. https://doi.org/10.1080/

03098260600927575.
155. Kontio, J.; Bragge, J.; Lehtola, L. The Focus Group Method as an Empirical Tool in Software Engineering. In Guide to Advanced

Empirical Software Engineering; Shull, F., Singer, J., Sjøberg, D.I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 93–116.
https://doi.org/10.1007/978-1-84800-044-5_4.

156. Dalkey, N.; Helmer, O. An Experimental Application of the DELPHI Method to the Use of Experts. Manag. Sci. 1963, 9, 458–467.
https://doi.org/10.1287/mnsc.9.3.458.

157. Mullen, P.M. Delphi: Myths and reality. J. Health Organ. Manag. 2003, 17, 37–52. https://doi.org/10.1108/14777260310469319.
158. Varndell, W.; Fry, M.; Lutze, M.; Elliott, D. Use of the Delphi method to generate guidance in emergency nursing practice: A

systematic review. Int. Emerg. Nurs. 2021, 56, 100867. https://doi.org/10.1016/j.ienj.2020.100867.



Software 2022, 1 414

159. McMillan, S.S.; King, M.; Tully, M.P. How to use the nominal group and Delphi techniques. Int. J. Clin. Pharm. 2016, 38, 655–662.
https://doi.org/10.1007/s11096-016-0257-x.

160. Dunham, R.B. Nominal Group Technique: A Users’ Guide; Technical report, University of Wisconsin-Madison: Madison, WI, USA,
1998.

161. Shestopalov, S. Organizing Brainstorming Workshops: A Designer’s Guide. Smashing Mag. 2019.
162. Fairley, R. Software Engineering Concepts; Series in Software Engineering and Technology; McGraw-Hill: New York, NY, USA,

1985.
163. Keil, M.; Lee, H.K.; Deng, T. Understanding the most critical skills for managing IT projects: A Delphi study of IT project

managers. Inf. Manag. 2013, 50, 398–414. https://doi.org/10.1016/j.im.2013.05.005.
164. Holtkamp, P.; Jokinen, J.P.P.; Pawlowski, J.M. Soft competency requirements in requirements engineering, software design,

implementation, and testing. J. Syst. Softw. 2015, 101, 136–146. https://doi.org/10.1016/j.jss.2014.12.010.
165. Groeneveld, W.; Jacobs, H.; Vennekens, J.; Aerts, K. Non-cognitive Abilities of Exceptional Software Engineers: A Delphi Study.

In Proceedings of the 51st Technical Symposium on Computer Science Education (SIGCSE’20), ACM, Portland, OR, USA, 11–14
March 2020; pp. 1096–1102. https://doi.org/10.1145/3328778.3366811.

166. Murphy, J.P.; Rådestad, M.; Kurland, L.; Jirwe, M.; Djalali, A.; Rüter, A. Emergency department registered nurses’ disaster
medicine competencies. An exploratory study utilizing a modified Delphi technique. Int. Emerg. Nurs. 2019, 43, 84–91.
https://doi.org/10.1016/j.ienj.2018.11.003.

167. Harvey, N.; Holmes, C.A. Nominal group technique: An effective method for obtaining group consensus. Int. J. Nurs. Pract. 2012,
18, 188–194. https://doi.org/10.1111/j.1440-172X.2012.02017.x.

168. Abbas, M.; Ferrari, A.; Shatnawi, A.; Enoiu, E.; Saadatmand, M.; Sundmark, D. On the relationship between similar requirements
and similar software: A case study in the railway domain. Requir. Eng. 2022. https://doi.org/10.1007/s00766-021-00370-4.

169. Martakis, A.; Daneva, M. Handling requirements dependencies in agile projects: A focus group with agile software development
practitioners. In Proceedings of the 7th International Conference on Research Challenges in Information Science (RCIS’13), IEEE,
Paris, France, 29–31 May 2013; pp. 1–11. https://doi.org/10.1109/RCIS.2013.6577679.

170. De Angelis, G.; Ferrari, A.; Gnesi, S.; Polini, A. Requirements elicitation and refinement in collaborative research projects. J. Softw.
Evol. Process. 2018, 30, e1990. https://doi.org/10.1002/smr.1990.

171. Wohlin, C. Case Study Research in Software Engineering—It is a Case, and it is a Study, but is it a Case Study? Inf. Softw. Technol.
2021, 133, 106514. https://doi.org/10.1016/j.infsof.2021.106514.

172. Staron, M. Action Research as Research Methodology in Software Engineering. In Action Research in Software Engineering: Theory
and Applications; Staron, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 2, pp. 15–36. https://doi.org/10.1007/978-
3-030-32610-4_2.

173. Wieringa, R.J. Design Science Methodology for Information Systems and Software Engineering; Springer: Berlin/Heidelberg, Germany,
2014. https://doi.org/10.1007/978-3-662-43839-8.

174. Runeson, P.; Höst, M.; Rainer, A.; Regnell, B. Case Study Research in Software Engineering: Guidelines and Examples; Wiley: Hoboken,
NJ, USA, 2012.

175. Wieringa, R.J.; Daneva, M. Six strategies for generalizing software engineering theories. Sci. Comput. Program. 2015, 101, 136–152.
https://doi.org/10.1016/j.scico.2014.11.013.

176. Galloway, A.J.; Cockram, T.J.; McDermid, J.A. Experiences with the Application of Discrete Formal Methods to the Development
of Engine Control Software. IFAC Proc. Vol. 1998, 31, 49–56. https://doi.org/10.1016/S1474-6670(17)36335-8.

177. Chudnov, A.; Collins, N.; Cook, B.; Dodds, J.; Huffman, B.; MacCárthaigh, C.; Magill, S.; Mertens, E.; Mullen, E.; Tasiran, S.; et al.
Continuous Formal Verification of Amazon s2n. In Proceedings of the 30th International Conference on Computer Aided
Verification (CAV’18), Oxford, UK, 14–17 July 2018; Chockler, H., Weissenbacher, G., Eds.; Springer: Berlin/Heidelberg, Germany,
2018; Volume 10982, pp. 430–446. https://doi.org/10.1007/978-3-319-96142-2_26.

178. Leuschel, M.; Falampin, J.; Fritz, F.; Plagge, D. Automated property verification for large scale B models with ProB. Form. Asp.
Comput. 2011, 23, 683–709. https://doi.org/10.1007/s00165-010-0172-1.

179. Ferrari, A.; Fantechi, A.; Magnani, G.; Grasso, D.; Tempestini, M. The Metrô Rio case study. Sci. Comput. Program. 2013,
78, 828–842. https://doi.org/10.1016/j.scico.2012.04.003.

180. Bosschaart, M.; Quaglietta, E.; Janssen, B.; Goverde, R.M.P. Efficient formalization of railway interlocking data in RailML. Inf.
Syst. 2015, 49, 126–141. https://doi.org/10.1016/j.is.2014.11.007.

181. Hamid, B.; Pérez, J. Supporting pattern-based dependability engineering via model-driven development: Approach, tool-support
and empirical validation. J. Syst. Softw. 2016, 122, 239–273. https://doi.org/10.1016/j.jss.2016.09.027.

182. Comptier, M.; Leuschel, M.; Mejia, L.F.; Perez, J.M.; Mutz, M. Property-Based Modelling and Validation of a CBTC Zone Controller
in Event-B. In Proceedings of the 3rd International Conference on Reliability, Safety, and Security of Railway Systems: Modelling,
Analysis, Verification, and Certification (RSSRail’19), Lille, France, 4–6 June 2019; Collart-Dutilleul, S., Lecomte, T., Romanovsky,
A.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11495, pp. 202–212. https://doi.org/10.1007/978-3-030-18744-
6_13.



Software 2022, 1 415

183. Behm, P.; Benoit, P.; Faivre, A.; Meynadier, J.M. Météor: A Successful Application of B in a Large Project. In Proceedings
of the 1st World Congress on Formal Methods in the Development of Computing Systems (FM’99), Toulouse, France, 20–24
September 1999; Wing, J.M., Woodcock, J., Davies, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1708, pp. 369–387.
https://doi.org/10.1007/3-540-48119-2_22.

184. Johannesson, P.; Perjons, E. An Introduction to Design Science; Springer: Berlin/Heidelberg, Germany, 2014. https://doi.org/10.
1007/978-3-319-10632-8.

185. Britto, R.; Smite, D.; Damm, L.O.; Börstler, J. Evaluating and strategizing the onboarding of software developers in large-scale
globally distributed projects. J. Syst. Softw. 2020, 169, 110699. https://doi.org/10.1016/j.jss.2020.110699.

186. Lwakatare, L.E.; Kilamo, T.; Karvonen, T.; Sauvola, T.; Heikkilä, V.; Itkonen, J.; Kuvaja, P.; Mikkonen, T.; Oivo, M.;
Lassenius, C. DevOps in practice: A multiple case study of five companies. Inf. Softw. Technol. 2019, 114, 217–230.
https://doi.org/10.1016/j.infsof.2019.06.010.

187. Tómasdóttir, K.F.; Aniche, M.F.; van Deursen, A. The Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE
Trans. Softw. Eng. 2020, 46, 863–891. https://doi.org/10.1109/TSE.2018.2871058.

188. Ferrari, A.; Gori, G.; Rosadini, B.; Trotta, I.; Bacherini, S.; Fantechi, A.; Gnesi, S. Detecting requirements defects with NLP patterns:
An industrial experience in the railway domain. Empir. Softw. Eng. 2018, 23, 3684–3733. https://doi.org/10.1007/s10664-018-
9596-7.

189. Ochodek, M.; Hebig, R.; Meding, W.; Frost, G.; Staron, M. Recognizing lines of code violating company-specific coding guidelines
using machine learning. Empir. Softw. Eng. 2020, 25, 220–265. https://doi.org/10.1007/s10664-019-09769-8.

190. Manzano, M.; Ayala, C.P.; Gómez, C.; Abherve, A.; Franch, X.; Mendes, E. A Method to Estimate Software Strategic Indicators in Soft-
ware Development: An Industrial Application. Inf. Softw. Technol. 2021, 129, 106433. https://doi.org/10.1016/j.infsof.2020.106433.

191. Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process
within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. https://doi.org/10.1016/j.jss.2006.07.009.

192. Kitchenham, B.A.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S.G. Systematic literature reviews in software
engineering - A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

193. Garousi, V.; Felderer, M.; Mäntylä, M.V. The need for multivocal literature reviews in software engineering: comple-
menting systematic literature reviews with grey literature. In Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering (EASE’16), ACM, Limerick, Ireland, 1–3 June 2016; pp. 26:1–26:6.
https://doi.org/10.1145/2915970.2916008.

194. Garousi, V.; Felderer, M.; Mäntylä, M.V. Guidelines for including grey literature and conducting multivocal literature reviews in
software engineering. Inf. Softw. Technol. 2019, 106, 101–121. https://doi.org/10.1016/j.infsof.2018.09.006.

195. Ferrari, A.; ter Beek, M.H. Formal Methods in Railways: A Systematic Mapping Study. ACM Comput. Surv. 2022.
https://doi.org/10.1145/3520480.

196. Filho, R.M.P.T.; Oliveira, L.P.; Carneiro, L.N. Security, Power Consumption and Simulations in IoT Device Networks: A Systematic
Review. In Proceedings of the 36th International Conference on Advanced Information Networking and Applications (AINA’22),
Sydney, Australia, 13–15 April 2022; Barolli, L., Hussain, F., Enokido, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2022;
Volume 451, pp. 370–379. https://doi.org/10.1007/978-3-030-99619-2_35.

197. Armando, A.; Basin, D.A.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.; Kouchnarenko, O.; Man-
tovani, J.; et al. The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In Proceedings of
the 17th International Conference on Computer Aided Verification (CAV’05), Scotland, UK, 6–10 June 2005; Etessami, K., Rajamani,
S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 281–285. https://doi.org/10.1007/11513988_27.

198. Mishra, A.D.; Mustafa, K. A review on security requirements specification by formal methods. Concurr. Comput. Pract. Exp. 2022,
34, 6702. https://doi.org/10.1002/cpe.6702.

199. Zahid, F.; Tanveer, A.; Kuo, M.M.Y.; Sinha, R. A systematic mapping of semi-formal and formal methods in requirements
engineering of industrial Cyber-Physical systems. J. Intell. Manuf. 2022, 33, 1603–1638. https://doi.org/10.1007/s10845-021-
01753-8.

200. Durelli, R.S.; Durelli, V.H.S. A systematic review on mining techniques for crosscutting concerns. In Proceedings of the IX
Experimental Software Engineering Latin American Workshop (ESELAW’12), Brasília, Brazil, 12–14 December 2012; pp. 1–9.

201. Weyns, D.; Iftikhar, M.U.; de la Iglesia, D.G.; Ahmad, T. A survey of formal methods in self-adaptive systems. In Proceedings
of the 5th ACM International C∗ Conference on Computer Science & Software Engineering (C3S2E’12), Montreal, QC, Canada,
27–29 June 2012; pp. 67–79. https://doi.org/10.1145/2347583.2347592.

202. Bonfanti, S.; Gargantini, A.; Mashkoor, A. A systematic literature review of the use of formal methods in medical software
systems. J. Softw. Evol. Process. 2018, 30, e1943. https://doi.org/10.1002/smr.1943.

203. Mashkoor, A.; Kossak, F.; Egyed, A. Evaluating the suitability of state-based formal methods for industrial deployment. Softw.
Pract. Exp. 2018, 48, 2350–2379. https://doi.org/10.1002/spe.2634.

204. Rajabli, N.; Flammini, F.; Nardone, R.; Vittorini, V. Software Verification and Validation of Safe Autonomous Cars: A Systematic
Literature Review. IEEE Access 2021, 9, 4797–4819. https://doi.org/10.1109/ACCESS.2020.3048047.



Software 2022, 1 416

205. Zhumagambetov, R. Teaching Formal Methods in Academia: A Systematic Literature Review. In Proceedings of the 1st
International Workshop on Formal Methods – Fun for Everybody (FMFun’19), Bergen, Norway, 2–3 December 2019; Cerone, A.,
Roggenbach, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1301, pp. 218–226. https://doi.org/10.1007/978-3-
030-71374-4_12.

206. Kitchenham, B. Procedures for Performing Systematic Reviews; Technical Report TR/SE-0401; Keele University: Keele, UK, 2004.
207. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. In Proceedings of

the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE’08), Bari, Italy, 26–27 June
2008; Visaggio, G., Baldassarre, M.T., Linkman, S.G., Turner, M., Eds.; BCS: Swindon, UK, 2008; Workshops in Computing.
https://doi.org/10.14236/ewic/EASE2008.8.

208. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An
update. Inf. Softw. Technol. 2015, 64, 1–18. https://doi.org/10.1016/j.infsof.2015.03.007.

209. Zhang, H.; Babar, M.A.; Tell, P. Identifying relevant studies in software engineering. Inf. Softw. Technol. 2011, 53, 625–637.
https://doi.org/10.1016/j.infsof.2010.12.010.

210. Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings
of the 18th ACM International Conference on Evaluation and Assessment in Software Engineering (EASE’14), London, UK, 13–14
May 2014; Shepperd, M.J., Hall, T., Myrtveit, I., Eds.; 2014; pp. 38:1–38:10. https://doi.org/10.1145/2601248.2601268.

211. Ampatzoglou, A.; Bibi, S.; Avgeriou, P.; Verbeek, M.; Chatzigeorgiou, A. Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies. Inf. Softw. Technol. 2019, 106, 201–230. https://doi.org/10.1016/j.infsof.2018.10.006.

212. Wohlin, C.; Mendes, E.; Felizardo, K.R.; Kalinowski, M. Guidelines for the search strategy to update systematic literature reviews
in software engineering. Inf. Softw. Technol. 2020, 127, 106366. https://doi.org/10.1016/j.infsof.2020.106366.

213. Dąbrowski, J.; Letier, E.; Perini, A.; Susi, A. Analysing app reviews for software engineering: A systematic literature review.
Empir. Softw. Eng. 2022, 27, pp. 43:1–43:63 https://doi.org/10.1007/s10664-021-10065-7.

214. Bano, M.; Zowghi, D. A systematic review on the relationship between user involvement and system success. Inf. Softw. Technol.
2015, 58, 148–169. https://doi.org/10.1016/j.infsof.2014.06.011.

215. Martínez-Fernández, S.; Bogner, J.; Franch, X.; Oriol, M.; Siebert, J.; Trendowicz, A.; Vollmer, A.M.; Wagner, S. Software Engineer-
ing for AI-Based Systems: A Survey. ACM Trans. Softw. Eng. Methodol. 2022, 31, 37e:1-37e:59. https://doi.org/10.1145/3487043.

216. Horkoff, J.; Aydemir, F.B.; Cardoso, E.; Li, T.; Maté, A.; Paja, E.; Salnitri, M.; Piras, L.; Mylopoulos, J.; Giorgini, P. Goal-oriented re-
quirements engineering: An extended systematic mapping study. Requir. Eng. 2019, 24, 133–160. https://doi.org/10.1007/s00766-
017-0280-z.

217. Garousi, V.; Felderer, M.; Hacaloğlu, T. Software test maturity assessment and test process improvement: A multivocal literature
review. Inf. Softw. Technol. 2017, 85, 16–42. https://doi.org/10.1016/j.infsof.2017.01.001.

218. Scheuner, J.; Leitner, P. Function-as-a-Service performance evaluation: A multivocal literature review. J. Syst. Softw. 2020, 170,
110708. https://doi.org/10.1016/j.jss.2020.110708.


	Introduction
	Fundamental Ingredients
	Laboratory Experiments with Software Subjects
	Laboratory Experiments with Human Subjects
	Usability Testing
	Surveys
	Qualitative Studies
	Judgement Studies
	Case Studies, Action Research, and Design Science
	Systematic Literature Reviews and Mapping Studies
	Discussion and Conclusions
	References

