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Abstract: Ascorbic acid (AsA) is mainly known as an antioxidant. However, if the peculiar features
of the AsA system in the different stages of seed development and germinationare taken into consid-
eration, it can be concluded that the function of AsA goes far beyond its antioxidant properties. The
possible involvement of AsA in the regulation of hormone synthesis and in the epigenetic control of
gene expression opens new directions to further research. In recent years, seed priming with AsA has
been successfully used as a strategy to improve germination and plant productivity. Beneficial effects
of seed AsA priming could be observed in several crop species, but the underlying molecular mecha-
nism(s) are still unclear. The available evidence suggests that AsA priming induces a wide range of
coordinated responses allowing primed seeds to overcome adverse environmental conditions.
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1. Introduction

The capability of producing seeds is one of the most successful features that appeared
during plant evolution [1]. Seed-producing plants (spermatophytes) significantly improved
the chances for their progeny to thrive even under adverse environmental conditions.
Besides providing mechanical protection to the embryo and storing reserves that will
be used for embryo development, seeds ensure embryo survival due to their capability
of withstanding desiccation and reducing metabolic activity until suitable conditions for
germination occur [2]. The implementation of the developmental program leading to
seedling establishment requires extensive epigenetic and hormonal reprogramming [3,4].
Moreover, the transition from quiescence to active development is full of hidden perils and
could lead to severe damaging of the embryo itself unless proper protection is prepared
before seed dehydration or activated in parallel with the “awakening” of the germinating
seed [5]. An increasing number of studies points at ascorbic acid (AsA) as a key player
involved in all those processes. The dynamic regulation of the AsA system (including AsA
production, utilization, and recycling of its oxidized forms) along the different stages of
seed development, desiccation, after-ripening and germination supports the view that AsA
availability varies as a function of the specific needs of each stage. Recent reports also
show that seed priming using AsA treatment improves germination and plant performance,
especially under stress conditions. The aim of the present contribution is providing a novel
viewpoint on the different aspects of AsA function in seeds.

2. The AsA System
2.1. AsA Biosynthesis

All plants synthesize AsA following a biosynthetic route known as the D-mannose L-
galactose (Smirnoff–Wheeler) pathway [6]. Additional entry points for AsA production may
occur under specific conditions using the myo-inositol [7] and the galacturonate [8] path-
ways. The biosynthesis appears strictly controlled [9], with an AsA-dependent feedback
mechanism inhibiting the expression of at least three key genes in the Smirnoff–Wheeler
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pathway, including the GDP-L-galactose phosphorylase (GGP) gene (known as VTC2 in
Arabidopsis) [10]. AsA biosynthesis is also regulated by different cues, including light and
hormones [11]. Notably, AsA biosynthesis occurs in the cytosol, excepting for the terminal
step, which takes place at the mitochondrial inner membrane and is catalyzed by the
enzyme L-galactono-1,4-lactone dehydrogenase (L-GalLDH) using oxidized cytochrome c
as the electron acceptor [12]. The acquisition of this mitochondrial step is a major difference
between the way in which animals [13] and plants synthesize AsA and is likely to be an
adaptation to a photoautotrophic lifestyle [14].

2.2. AsA Transport and Intracellular Distribution

Once synthesized in the mitochondria, AsA must be transported to all other organelles
and cell compartments, where it is unevenly distributed. Immunocytochemical detection
in Arabidopsis leaves shows higher AsA content in peroxisomes and the cytosol, a bit less in
the nuclei, plastids and mitochondria, with vacuoles presenting the lowest AsA content [15].
There is also indication of a relatively small but significant apoplastic AsA pool possibly
involved in redox sensing of extracellular cues [16]. The mechanism of AsA transport from the
site of synthesis is not fully understood. It is known that AsA can cross lipid bilayers by means
of passive diffusion [17], but it is generally assumed that the oxidized form dehydroascorbic
acid (DHA, see below) diffuses more efficiently [16]. AsA transporters GLUT and SVTC
have been detected and characterized in animal cells [18]. Much less is known about plant
transporters. A mitochondrial ascorbic acid (MAT) transporter, apparently different from
GLUT and SVTC ones, from rat liver and potato tuber has been partially characterized [19].
In addition, the Arabidopsis PHT4;4 protein, a member of the phosphate transporter 4 family,
is responsible for chloride-dependent AsA transport into chloroplasts [20]. Additional
transporters are likely to regulate AsA intracellular distribution.

2.3. AsA Utilization

Plant-specific AsA peroxidases (APX, EC 1.11.1.11) have been detected in the cy-
tosol [21], mitochondria [22], peroxisomes [23], and chloroplasts, where two distinct APX
forms (stromal and thylakoidal, respectively) occur [24]. The enzyme catalyzes hydrogen
peroxide conversion to water and O2, specifically using AsA as the electron donor. Rather
than scavengers, APXs are responsible for the fine-tuning of hydrogen peroxide content [24],
which is essential for signaling purposes [25]. Recent studies have also suggested that, at
least in some plant species (including Oryza sativa, Glycine max, Zea mays, and species of
the orchid genus Oncidium), cytosolic APX can also use glutathione (GSH) as an electron
donor [26].

The blue-copper enyzme AsA oxidase (AO, EC 1.10.3.3) is another AsA-dependent
enzyme whose physiological function has not been fully understood, although it is pos-
sibly involved in cell elongation [27] and in the establishment of root symbioses with
arbuscular mycorrhizal fungi and rhizobacteria [28]. A search in the TAIR database
(www.arabidopsis.org, accessed on 26 October 2023) retrieves four genes encoding putative
AOs in the Arabidopsis genome: AAO1 (At4g39830), AAO2 (At5g21100), AAO3 (At5g21105),
and recently added SRG1 (At1g17020).

Several members of the large class of 2-oxoglutarate-dependent dioxygenases
(2-ODDs) utilize AsA in a complex reaction mechanism requiring, besides AsA and
2-oxoglutarate, also molecular oxygen and Fe2+ [29,30]. Different 2-ODDs catalyze a
variety of reactions, including hydroxylation, epoxidation, and desaturation of specific
substrates involved in the biosynthesis or the catabolism of plant hormones/regulators
(ethylene, abscisic acid, gibberellins, auxin, salicylic acid) and a number of secondary
metabolites. A very special subsection of 2-ODDs has been identified, involved in epi-
genetic mechanisms. These include TET hydroxylases, catalyzing the demethylation of
methyl cytosine, and the Jumonji group of histone demethylases. TET hydroxylases have
been fully characterized in animal cells, but indirect evidence suggests that plants also have
them [31]. Histone demethylation activity catalyzed by specific 2-ODDs occurs during plant
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developmental processes and in response to stress conditions [32,33]. The actual amount of
AsA consumed by each 2-ODD activity is hardly measurable. An indirect estimate has been
obtained by measuring AsA content in Arabidopsis insertion lines in which different putative
2-ODDs had been inactivated. At least in some of those lines, AsA content was more than
doubled [34], suggesting that some 2-ODDs could be responsible for a significant, if not
massive, use of AsA.

Besides catalyzed utilization, AsA is known to react non-enzymically with reactive
oxygen species (ROS) and with metal ions. According to available experimental evidence,
AsA reacts preferentially with copper (II) and iron (III), rather than ROS [35]. On the other
hand, it is unlikely that highly reactive radicals just freely travel around the cells, also
considering the low permeability of polar molecules across biological membranes [36].
Therefore, AsA’s direct interaction with ROS should not always be taken for granted.

2.4. Recycling of AsA Oxidized Forms

One-electron AsA oxidation produces monodehydroascorbate (MDHA, also known
as ascorbate free radical). This free radical is short-lived and disproportionates to AsA and
dehydroascorbic acid (DHA) [37]. Alternatively, MDHA can be reduced enzymatically
by the NADH-dependent enzyme MDHA reductase (MDHAR, EC 1.6.5.4) located in
the cytosol, mitochondria, chloroplasts, and peroxisomes [38]. Fully oxidized DHA, in
turn, can be re-reduced to AsA by DHA reductase (DHAR, EC 1.8.5.1), using reduced
glutathione (GSH) as the electron donor [39]. MDHAR and DHAR are considered “recycling
enzymes”, reconverting oxidized AsA forms back to AsA. However, recycling alone, in
the absence of new biosynthesis, is apparently unable to keep up with the pace of AsA
consumption [39,40]. This is also confirmed by the observation that seeds of the Arabidopsis
vtc2/vtc5 double mutant, which is not capable of de novo AsA synthesis, can start the
germination process due to the recycling activity, but the seedlings are not viable in the
absence of AsA supplementation [41]. It should also be considered that DHA reductase
activity is performed by several proteins characterized by the C-X-X-C motif, including
protein disulfide isomerase and glutaredoxins [42].

2.5. Possible DHA Signaling and Further Catabolism

In comparison with the huge amount of literature dealing with AsA biosynthesis and
functions, relatively little attention has been given to the products of its degradation and
catabolism. As mentioned above, the product of AsA oxidation is DHA, which is usually,
but erroneously, represented as a three-carbonyl molecule, whereas it is preferentially in
the dimeric form [43]. There is indication that DHA, rather than just the end product of
AsA oxidation, should be considered a relevant signaling molecule [44–46], possibly in
connection with its capability of reacting with thiols to form disulfide bonds [47]. A low
AsA/DHA ratio in the apoplast is generally considered a proxy of stress [48].

If not recycled back to AsA (see above, Section 2.4), DHA undergoes irreversible
degradation following two possible routes: either by hydrolysis yielding diketogulonic
acid, or by oxidation, with the consequent production of oxalylthreonate, oxalate, and
threonate [49–52]. Remarkably, different oxidizing agents produce different AsA degrada-
tion products, suggesting the possibility that they act as molecular signals [53]. Enzyme
activities are involved in catabolism, but to our knowledge, the enzymes responsible have
not been characterized yet. Interestingly, the inactivation of Arabidopis AtFAHD1a, the gene
encoding a fumarylacetoacetate hydrolase (FAH) domain-containing protein 1a, highly
expressed in developing seeds, results in AsA, DHA, and threonic acid accumulation [54].
Recently, a new bacterial pathway of AsA degradation has been identified, involving novel
enzymes and a FAH family member catalyzing the conversion of 2-keto-3-deoxy-L-lyxonate
into 2-oxoglutarate (α-ketoglutarate) [55]. Hopefully, the full disclosure of the details of
AsA catabolism in plants is quite close. This will possibly also help in understanding
the physiological role of AsA degradation products, as in the case of the observed oxalyl-
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transferase activity responsible for the transfer of oxalate groups from oxalylthreonate to
carbohydrates [56].

3. Dynamic Regulation of the AsA System during Seed Development

During the different stages of their life, seeds apparently activate different items of
the wide toolkit forming the AsA system [5]. The scheme in Figure 1 summarizes the
main changes in the AsA system occurring during orthodox seed development, quiescence,
and early germination stages. AsA content increases during seed development, then
dramatically drops below detectability during dehydration. DHA content is very high
during the cell elongation stage of seed development, then markedly decreases, although
still remains detectable, in dry seeds [57,58]. No APX activity can be measured in dry seeds,
but some DHAR and MDHAR activity is still observed. AsA oxidase is undetectable at
all stages.

Seeds 2023, 2, FOR PEER REVIEW 4 
 

 

novel enzymes and a FAH family member catalyzing the conversion of 2-keto-3-deoxy-L-
lyxonate into 2-oxoglutarate (α-ketoglutarate) [55]. Hopefully, the full disclosure of the 
details of AsA catabolism in plants is quite close. This will possibly also help in under-
standing the physiological role of AsA degradation products, as in the case of the ob-
served oxalyltransferase activity responsible for the transfer of oxalate groups from ox-
alylthreonate to carbohydrates [56]. 

3. Dynamic Regulation of the AsA System during Seed Development 
During the different stages of their life, seeds apparently activate different items of 

the wide toolkit forming the AsA system [5]. The scheme in Figure 1 summarizes the main 
changes in the AsA system occurring during orthodox seed development, quiescence, and 
early germination stages. AsA content increases during seed development, then dramati-
cally drops below detectability during dehydration. DHA content is very high during the 
cell elongation stage of seed development, then markedly decreases, although still re-
mains detectable, in dry seeds [57,58]. No APX activity can be measured in dry seeds, but 
some DHAR and MDHAR activity is still observed. AsA oxidase is undetectable at all 
stages. 

 
Figure 1. The ascorbic acid system in seeds. Relative ascorbate (AsA, green bars) and dehydroascor-
bate (DHA, red bars) content in seeds, and relative activity of the enzymes AsA peroxidase (APX, 
orange bars), DHA reductase (DHAR, cyan bars), and monodehydroascorbate reductase (MDHAR, 
brown bars) at different stages of seed life. AsA content and APX activity are not detectable (nd) in 
dry seeds. The question mark indicates the lack of detailed information on AsA dynamics during 
the after-ripening stage. The upward arrows at the stage of seed germination indicate a general 
increase of all the items considered. The scheme is based on the experimental data reported in [57,58]. 

Figure 1. The ascorbic acid system in seeds. Relative ascorbate (AsA, green bars) and dehydroascor-
bate (DHA, red bars) content in seeds, and relative activity of the enzymes AsA peroxidase (APX,
orange bars), DHA reductase (DHAR, cyan bars), and monodehydroascorbate reductase (MDHAR,
brown bars) at different stages of seed life. AsA content and APX activity are not detectable (nd) in
dry seeds. The question mark indicates the lack of detailed information on AsA dynamics during the
after-ripening stage. The upward arrows at the stage of seed germination indicate a general increase
of all the items considered. The scheme is based on the experimental data reported in [57,58].

It is worth noting that mature recalcitrant seeds, which undergo partial or no dehydra-
tion, retain AsA and APX activity [59]. Therefore, the absence of AsA and APX in orthodox
seeds, in parallel with a low DHA supply and limited activity of the recycling enzymes,
appears correlated with seed quiescence and longer viability.



Seeds 2023, 2 425

The analysis of available Arabidopsis RNA-sequencing data [60] allows us to further
characterize the changes occurring in seeds during the early stages of germination. By
comparing the expression of the genes involved in the main AsA biosynthetic (Smirnoff-
Wheeler) pathway (Figure 2), early activation of L-galactono-1,4-lactone dehydrogenase
(L-GalLDH) occurs, in accordance with the observation that seeds become capable of con-
verting L-GalL into AsA early during imbibition [5]. However, the expression of the main
regulator of AsA biosynthesis, the VTC2 gene encoding a GDP-L-galactose phosphorylase,
appears rather low at this stage, suggesting that full-rate AsA biosynthesis is likely to
occur only later in germination. Expression analysis of putative DHAR and MDAR genes
(Figure 3) confirms the observation that recycling activities provide the small but essential
AsA amount necessary to restart metabolic activity in germinating seeds, before de novo
AsA biosynthesis becomes fully operational. Among putative MDAR genes, MDAR1 and
MDAR4, both encoding peroxisomal isoforms of the MDHA reductase enzyme, show early
expression, paralleled by cytosolic DHAR2. It should, however, be considered that different
plant species, or even different cultivars apparently manage the recycling of oxidized AsA
forms in different ways. As an example, in germinating Pisum sativum cv. Alaska seeds,
DHAR activity could not be detected [61], whereas it was 30-fold lower than MDAR activity
in the cv. Lincoln [62].

Seeds 2023, 2, FOR PEER REVIEW 6 
 

 

 
Figure 2. Expression of selected genes in the ascorbic acid (AsA) biosynthetic pathway (Smirnoff–
Wheeler pathway). Data of RNA-sequencing experiments [60] retrieved from TAIR (The Arabidop-
sis Information Resource) website (www.arabidopsis.org, accessed on 30 October 2023). 

Figure 2. Expression of selected genes in the ascorbic acid (AsA) biosynthetic pathway (Smirnoff–
Wheeler pathway). Data of RNA-sequencing experiments [60] retrieved from TAIR (The Arabidopsis
Information Resource) website (www.arabidopsis.org, accessed on 26 October 2023).

www.arabidopsis.org


Seeds 2023, 2 426Seeds 2023, 2, FOR PEER REVIEW 7 
 

 

 
Figure 3. Expression of the Arabidopsis genes encoding putative monodehydroascorbate reductases 
(MDAR) and dehydroascorbate reductases (DHAR), respectively. At5g36270, previously considered 
a pseudogene because of the undetectability of the transcript, has been recently annotated as a 
DHAR. Data of RNA-sequencing experiments [60] retrieved from TAIR (The Arabidopsis Infor-
mation Resource) website (www.arabidopsis.org, accessed on 30 October 2023). 

4. AsA in Seed Dehydration, Dormancy, and Germination: To Be or Not To Be 
(There)? 

The dynamic regulation of the AsA system outlined above shows that AsA and DHA 
are relevant players during seed development, and especially at the cell elongation stage, 

Figure 3. Expression of the Arabidopsis genes encoding putative monodehydroascorbate reductases
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a pseudogene because of the undetectability of the transcript, has been recently annotated as a
DHAR. Data of RNA-sequencing experiments [60] retrieved from TAIR (The Arabidopsis Information
Resource) website (www.arabidopsis.org, accessed on 26 October 2023).

4. AsA in Seed Dehydration, Dormancy, and Germination: To Be or Not to Be (There)?

The dynamic regulation of the AsA system outlined above shows that AsA and DHA
are relevant players during seed development, and especially at the cell elongation stage,
where DHA takes the lead. It should be considered that the entire process of development is
controlled by the coordinated action of gibberellins and ABA [63]. AsA-dependent 2-ODDs
(see Section 2.2 above) are involved in the biosynthesis of both hormones [64,65] and increased
AsA content induces the expression of the ABA biosynthesis gene 9-cis-epoxycarotenoid dioxy-
genase NCED3 [66]. Due to its capability to oxidize protein thiols [47], DHA is also possibly
responsible of the redox shift occurring in storage proteins, which at seed maturity are mostly
in their oxidized (disulfide) state [67]. In the next stage (dehydrated seeds), AsA is totally
absent, and only little DHA remains, suggesting not only that AsA is not required at this
stage, but possibly that its presence could also negatively affect the dehydration step. Desic-
cation tolerance in living tissues is a complex process, not yet fully understood, but for sure
it requires the interaction of several different players [68]. For orthodox seeds, desiccation
precedes dormancy, which is the implementation of the safety mechanism(s) by which seeds
do not germinate under “deceptive” favorable conditions occurring episodically, as in a short
mild-weather period before full winter comes [2]. The establishment of dormancy is an
ABA-dependent process regulated by the activity of NCED dioxygenases [65], requiring the
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presence of the co-substrate AsA [69], but the subsequent maintenance of dormancy appar-
ently requires AsA removal. This possibility is strongly suggested by both old and recent
findings. Besides the well-known presence of AsA and APX in recalcitrant (non-dormant)
seeds [59], recent work by Gerna et al. [54] further supports this eventuality. As mentioned
above regarding AsA catabolism (Section 2.5), the Arabidopsis mutant Atfahd1a-1, lacking
fumarylacetoacetate hydrolase (FAH) activity, is apparently impaired in the AsA catabolic
pathway and accumulates AsA, DHA, and threonic acid. Interestingly, the mutant shows
shallower thermo-dormancy, together with increased seed longevity and a shift of the seed
redox poise towards a reduced state. In the wild type, the FAHD1a gene is highly expressed
in the embryo of fully mature and desiccated seeds. The total loss of AsA and the almost
complete disappearance of DHA in dry seeds could be explained with the high activity of
the FAHD1a enzyme (and possibly other uncharacterized AsA catabolic enzymes) at this
stage. Oxalate, another product of AsA catabolism, is often accumulated in dry seeds, possibly
regulating calcium uptake [70].

The fact that AsA content progressively decreases during seed maturation, so that dry
seeds are devoid of AsA, is unlikely to be accidental. In a way, the absence of AsA in dry
seeds is counterintuitive, especially in the general pervasive view that antioxidants, and
AsA for one, always have a protective effect against any form of unfavorable environmental
conditions, and seeds obviously need to be protected to increase their chances of survival.
A possible explanation to this apparent contradiction could be the involvement of AsA in
epigenetic mechanisms, namely in methyl-cytosine demethylation, in analogy with the well-
characterized TET dioxygenases of animal cells [71]. The DNA methylation pattern markedly
increases in developing embryos, keeps steady in quiescent seeds, and is then dramatically
reversed with extensive demethylation at the very beginning of the germination process [72],
in parallel with the recovery of AsA regeneration and de novo biosynthesis. It is tempting
to hypothesize a causal relationship between these two events and a direct involvement of
AsA in widespread DNA demethylation also in the cells of plant embryos, similarly to what
is known to occur in human stem cells [73]. A second possibility to explain AsA absence
in dry seeds is the well-known involvement of ROS in dormancy release [74,75]. Although
known for years, only recently the mechanism of ROS-dependent dormancy alleviation has
been better characterized at the cellular and molecular levels [76,77]. If AsA was stored in
dry seeds, it could interfere with early ROS production that is key to starting germination, so
its antioxidant action would be a burden rather than an advantage. Exciting new findings
on dormancy and dormancy release have been reported in the last few years [78]. The
identification of DELAY OF GERMINATION-1 (DOG1) as a master regulator of dormancy
opened new and unexpected directions in ongoing research on seed biology. The DOG1
protein appears involved in a complex signaling system involving ABA and possibly more,
still uncharacterized, players [4,79]. Surprisingly, the DOG1 system is strictly connected to the
expression of genes previously characterized for their involvement in the control of flowering
time, including FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) [80], the latter
acting in two opposite configurations to regulate either flowering or dormancy release [81].
Histones associated with DOG1 and FLC undergo extensive changes in their methylation
patterns at the transition from dormancy to germination [82]. Indeed, both flowering and
germination processes share the necessity of avoiding “false starts” that would jeopardize
plant survival and life-cycle completion. It is worth mentioning that increased AsA content
delays flowering and the expression of the LEAFY gene, which is expressed downstream of
FT in the specification of floral organs [83].

Once germination starts, metabolic activity is fully recovered. Mitochondrial metabolism
has a pivotal role at this stage [75,77]. Early ROS accumulation occurs in the mitochondria
and is caused by the activation of the respiratory electron transport chain [84]. High
expression of the gene encoding L-GalLDH, the mitochondria-located enzyme catalyzing
the last step of AsA biosynthesis, occurs at this stage (Figure 2). As far as germination
proceeds, ROS are found in the nuclei, where they possibly operate in the mechanism of
chromatin decompaction, and later on in the peroxisomes [77]. It is conceivable that at
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this stage, AsA and APX become crucial to avoiding ROS overproduction. The expression
of the six Arabidopsis APX genes during germination and in the seedlings is reported in
Figure 4. APX3, encoding a peroxisomal APX, is expressed during germination. Early
expression of the gene coding for the APX of chloroplast stroma is also observed, in a stage
characterized by gibberellin-regulated rapid proplastid differentiation [85].
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The control of ROS production by AsA and APX becomes more relevant under stress
conditions. Inhibition of Arabidopsis seed germination in the presence of excess salt is
regulated by a ROS-mediated signaling module connecting the transcription factor ABI4
with the NADPH oxidase gene RbohD and the AsA biosynthesis gene VTC2 [86], confirming
the centrality of AsA in the germination process. However, it should be considered that
exogenous administration of AsA in excess inhibits rice seed germination, in a mechanism
involving ABA and GA [87]. This means that endogenous AsA content must be carefully
controlled to balance hormonal production and action.

5. Priming with AsA

Seed priming is an empirical practice known since antiquity [88] that proved to
be a powerful tool in improving seed germination and plant performance, especially
under adverse environmental conditions [89–91]. The term antioxidant priming is used to
indicate seed treatment with different molecules potentially reacting with ROS, including
AsA. Although a simple internet search using together the words “seed”, “priming”, and
“ascorbic” retrieves a large number of papers whose title and abstract suggest a clear-cut
positive effect of AsA priming on many different parameters of plant productivity, a closer
look into some of those articles reveals a lack of proper controls and other flaws in the
experimental design, thus making the data of those reports difficult to interpret. Even
not considering those flawed papers, a substantial amount of sound experimental data
confirm that priming seeds with AsA at different concentrations is beneficial to plant
growth, development, and productivity. A very short list of papers comparing the effects
of AsA priming on mean emergence time (MET) is presented in Table 1.

Table 1. Mean emergence time (MET) in seeds of crop species subjected to ascorbic acid (AsA)
priming. ns: not significant.

AsA Concentration MET (Days Ahead of Controls) Species Ref.

10 mg/L 0.36 (ns) Oryza sativa [92]

50 mg/L 2 Triticum aestivum [93]

50 mg/L 1.1 Triticum aestivum [94]

40 mg/L 0.68 Zea mays [95]

2 mM 0.92 Triticum aestivum [96]

Plant materials (cultivars) and treatment conditions vary in the different experiments
reported in Table 1, but a tendency of early seedling emergence in AsA-primed seeds is
generally observed. AsA priming also increases, although to a different extent, germination
percentage, germination uniformity, and vegetative and reproductive growth in a variety of
model and non-model plant species, or even improves nutrient profiles in seeds harvested
from plants originally subjected to AsA priming at the seed stage [97]. However, the most
convincing results are obtained when the germination of AsA-primed seeds takes place
under stress conditions. As an example, the germination percentage of wheat plants in the
presence of 200 mM of NaCl is 55 ± 6.5 in unprimed controls, but increases to 73 ± 6.6
when the seeds are primed with a 150 mg/L AsA solution [98]. Unfortunately, not many
attempts have been made to explain the molecular mechanisms underlying the beneficial
effects of AsA priming. Most studies simply advance the hypothesis that AsA priming
improves general antioxidant defenses [99–102]. Only a few studies tried to go deeper into
detail. An accurate analysis in artificially aged oat seeds has shown a repair effect of AsA
and GSH priming on damaged mitochondria [103]. An interesting study analyzing the
effect of AsA priming (0.5 mmol/L for 12 h) on wheat seed proteome, with or without NaCl
(250 mmol/L solution), has shown altered expression of 167 proteins, the majority of which
were under-regulated [104]. Most interestingly, AsA priming impacted negatively defense-
related proteins, including antioxidants superoxide dismutase and AsA peroxidases. Such
proteins were less represented in primed seeds (in both embryo and surrounding tissues)
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as compared to controls, and even less in primed seeds treated with NaCl. The presence of
the AsA biosynthetic enzyme GDP-mannose-3,5-epimerase was also lower in primed seeds.
This is in clear contrast with the claim that AsA priming is effective because it improves
antioxidant defenses. Proteome data suggest that AsA priming induces a complex response
that upregulates proteins involved in metabolism/energy and downregulates defense-
related proteins, a picture that cannot be explained with simplistic considerations and
unsupported assumptions based on AsA antioxidant properties. The effect of AsA priming
on the after-ripening stage remains to be investigated.

6. What’s Next?

Environmental stresses caused by climate change pose new constraints to plant growth
and productivity. Investigating the mechanisms regulating seed germination under stress
conditions will help in selecting tolerant genotypes of crop plants able to grow and repro-
duce in unfavorable environments. Several lines of reasoning point at a central role of AsA
as a multi-level regulator of seed developmental and germination processes, making this
peculiar molecule a promising target for further investigations. Unfortunately, AsA suffers
the prejudice of being essentially categorized as an antioxidant, which is probably only
a small part of its complex biochemical function. As discussed in the previous sections,
there are sufficient indications that AsA is required for hormone synthesis and epigenetic
regulation of gene expression (DNA and histone demethylation), although the details of
this functional AsA dependency are still little known. The positive effects of seed priming
with AsA, especially under unfavorable environmental conditions, offers an outstanding
opportunity to deepen our understanding of the mechanisms controlling seed dormancy
and germination. As discussed by Munns and Gilliham [105], plants growing in saline
soils (or other stressful situations) pay their dues in terms of energy costs, at the expenses
of their progeny (which, from an agricultural point of view, means at the expenses of
plant productivity). Studies in the animal field suggest that epigenetic mechanisms can
bring selective advantages, so that an organism endangered by environmental conditions
invests in the improvement of progeny fitness [106]. AsA priming apparently goes in
this direction, as suggested by the observation that corn plants derived from AsA-primed
seeds produce seeds with improved vigor and protein content in the next generation [97],
which is good both for the plants and for the heterotrophs consuming those seeds. It is
especially interesting that a surprising shift occurs in the proteome of AsA-primed wheat
seeds germinating in the presence of NaCl, with an increase of energy and metabolism-
related proteins and a decrease in defense-related proteins [104]. The idea of a trade-off
between energy and defense (immunity) is at the basis of ecological immunology, an area
of research investigating how individual defense responses are integrated in the framework
of environmental cues [107]. Ecological epigenetics is also a field in rapid expansion that
will possibly provide answers to many questions currently under debate [108]. For sure,
in order to untangle the complex interrelation of cues involved in the crucial process of
germination and understand the actual contribution of AsA within this process, we need
to think out of the box and explore new directions. This will be a challenge for the years
to come.
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