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Abstract: This paper presents a state-of-the-art review of different approaches for Neural Architecture
Search targeting resource-constrained devices such as microcontrollers, as well as the implementations
of on-device learning techniques for them. Approaches such as MCUNet have been able to drive
the design of tiny neural architectures with low memory and computational requirements which
can be deployed effectively on microcontrollers. Regarding on-device learning, there are various
solutions that have addressed concept drift and have coped with the accuracy drop in real-time data
depending on the task targeted, and these rely on a variety of learning methods. For computer vision,
MCUNetV3 uses backpropagation and represents a state-of-the-art solution. The Restricted Coulomb
Energy Neural Network is a promising method for learning with an extremely low memory footprint
and computational complexity, which should be considered for future investigations.

Keywords: tiny devices; resource constraints; tiny machine learning; micro controllers; neural
architecture search; hyper parameter optimizations; on device learning

1. Introduction

Tiny Machine Learning (TinyML) [1] is an artificial intelligence (AI) field which focuses
on the technologies and applications for extremely low-complex devices. Since 2019, the
TinyML Foundation has created a vibrant community focused on the development and
knowledge sharing of algorithms, tools, hardware, software, and applications of tiny
machine learning for the analytics of data, aimed at being deployed on low-power (<1 mW)
resource-constrained devices such as micro controllers. In parallel, given the rising interest
in the field, the MLCommons Tiny working group developed open benchmarks [2] focused
on micro-controllers and tiny neural processing units. In such a rapidly evolving context,
the aim of this paper is to review the different approaches and technologies introduced
within the TinyML community and other research groups which help the deployment of
ML on low-profile edge devices. The limitations, constraints, and the challenges of these
approaches are discussed in detail, and the quantitative results are reported when available
from the corresponding papers. In Section 2, Automated Machine Learning and Neural
Architecture Search (NAS) are discussed to provide an overview of such technologies which
aim to help the productivity of the TinyML community. In Section 3, the available state-
of-the-art papers discuss how NAS helps in deriving architectures within technological
constraints. It also lists the approaches and the different hardware constraints imposed
on the search of such machine learning architectures. Section 4 discusses the on-device
learning of tiny models with respect to the real-time data and how it helps in preserving
memory in tiny devices. Based on the learning method used, different solutions for on-
device learning are also presented. The latter part of the section discusses the Restricted
Coulomb Energy Neural Network (RCE-NN) and how it could be helpful in some future
works to achieve an extremely low memory footprint and less computational power with
online learning capabilities. The initial results using this approach are also presented in
this paper.
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2. Automated Machine Learning

Automated Machine Learning (AutoML) [3] tools automatically design a machine
learning algorithm and simultaneously set its hyperparameters to optimize its empirical
performances on a given dataset that shapes an application problem.

AutoML sets a field which helps the ML and embedded C developer experts to achieve
higher design productivity. These people do not have years of pre-existing knowledge and
experience of applying ML to their problems; therefore, there is an increasing need to make
the process easier and more productive.

AutoML focuses on the automation of several problems associated with the extraction,
transformation, and loading of data and the training and deployment of the models which
need to be deployed on resource-unconstrained (non-tiny) processors. Optimization of the
hyperparameters (HPO) is one of the major focuses of AutoML.

When dealing with tiny devices, resource constraints are the major challenges to
address. In most known cases, the resource constraints are not factored in by AutoML tools
in their inner operations.

Neural Architecture Search

The associated tools require an extensive level of expertise in this area and strong
insights to find a more efficient hyperparameter choice and architecture. This demands
the training, validation, and testing of any feasible and deployable architecture over the
span of a few days to weeks. It might be difficult for end users and developers with little to
no background in neural networks and machine learning to comprehend and create such
an effective design. The Neural Architecture Search techniques are used to support efforts
in such circumstances. When an ML algorithm is an Artificial Neural Network (ANN),
AutoML specializes in Neural Architecture Search (NAS) [4]. It is therefore a focused subset
of AutoML to ANN. NAS aims to find the best architecture with a better performance
for a neural network. It takes the task carried out by human experts hand-crafting an
ANN (topology and associated hyper parameters) and automates this task to find out
more complex architectures, and it performs even better than manually shaped ones. It
comprises a set of tools and methods which explore a large hyper dimensional search space
to train, evaluate, and test using several optimization strategies, and it selects the resulting
ANN which performs accurately for the given target by maximizing an objective function.
Although NAS seems to be a relatively different field, the underlying problem is similar to
that of the hyperparameter optimization. Designing an optimal, accurate, and lightweight
ANN to fit the target devices with limited resources is a challenge which is addressed by
the research community. Many neural network architectures that were hand-crafted do not
take into consideration the hardware constraints that are faced by embedded and tiny edge
devices. These expertly designed architectures are usually meant for the deployment of
powerful GPUs, which have a lot of memory and computational assets available in their
chip and associated system embodiments. NAS can be made to design an accurate network
automatically by optimizing over a large search space of the given requirements. NAS can
optimize several metrics during the design process, such as memory requirements, FLOPs,
MACCs, latency, inference per second, etc. Starting with these considerations, this paper
reviews the state-of-the-art approaches and optimization methods for designing neural
architectures for tiny devices such as MCU which helps in deploying complex ANN into
off-the-shelf MCUs. Then, this paper reviews the different approaches addressed by the
research community to enable and improve on-device learning on the MCUs.

3. NAS Approaches for Tiny Devices

These solutions are mainly focused on memory-constrained embedded devices. The
space for the architecture search is optimized to find tiny ANNs.

Hard Constrained diffeRentiable Neural Architecture Search (HardCoReNAS) [5],
which targets resource-constrained NAS, works by formulating the exact requirements of
resources with a scalable search. This approach generates architectures that strictly adhere
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to the tight resource limitations without the need for any tuning. A continuous probability
distribution is induced over the search space of the proposed HardCoReNAS approach,
and this makes the search space continuous. This helps to create a sample sub-network
using the Gumbel SoftMax Trick [6]. The search space is divided into Micro and Macro
spaces, where the Micro space is used to control the internal structures of each building
block of the network. These blocks are the elastic versions of the MBInvRes block [7]. In
contrast, the Macro search space is used to control how these blocks relate to each other
and how these blocks are interconnected. This solution mainly focuses on the latency and
is performed on the ImageNet dataset with a top-1 accuracy of 75.7%, 77.3% and 77.9%
under latencies of 27 ms, 32 ms and 41 ms, respectively, using an Nvidia P100 GPU with
400 + GPU hours of search.

The structural wired Neural Architecture Search for the internet of things (MSNet) [8]
is a graph-based NAS that overcomes the difficulties with graph-based approaches dis-
covering high-quality models because of the search flexibility, accuracy density, and node
dependency restrictions. In contrast to other NAS works that focus on identifying the
best neural architecture, MSNAS looks for a variety of neural architectures that can meet
various resource budgets. This work focuses on reducing the size of the model to as low as
200 KiB of peak memory usage and 42 M MACCs (multiply and accumulate operations) on
a Visual Wake Words (VWW) dataset with an accuracy of 93.5%, which is 3.4% higher than
MobileNetV2, and with 250 KiB peak memory usage for ImageNet-1000 with an accuracy
of 59.1%, which is 0.9% higher than MobileNetV2. In addition, the structure level pruning
method is used to explore a compact architecture with a higher pruning level to lower
the MACCs, and the latency decreases with the increased level of pruning. By exploiting
the structure level pruning, MSNet was able to generate new ANN for new tasks without
further training, and on the MNIST task, it performed with an accuracy of 99.24%.

Co-Design NAS [9] is a framework which enables the joint exploration of the space
of neural architectures, hardware implementation, and quantization. It is a combination
of pure software NAS and hardware-aware NAS which is a joint exploration of neural
architecture and hardware spaces. Exploring both the spaces and finding a Pareto frontier
between hardware efficiency and accuracy is the proposal. The search process is compu-
tationally heavy considering the joint exploration on CIFAR10 with up to 300,000 LUTs.
From the experiments, the two best architectures were found by the NAS in 1000 episodes.
The strides from these two sampled designs were removed, which produced another two
designs. A quantization search of these four designs produced results with accuracies of
86.16%, 86.26%, 87.34% and 88.53%. This method is more flexible and robust compared to a
traditional design using fixed architecture.

The authors of [9] presented a lightweight design with an accuracy of 82.98% and
1293 images/second throughput, where even the conventional approaches are unable to
produce a valid solution.

E-DNAS [10] is a differentiable architecture search method for a designed lightweight
ANN. This method finds networks with low latency and a more accurate ANN which can be
deployed on memory-constrained devices. The three main ideas behind this approach are
a depth-aware convolution to compute high-resolution feature maps, a parallel architecture
search pipeline on the feature maps, and to learn the optimal size and parameters of the
convolution kernels. This optimization process is driven by a multi-objective differentiable
loss function of accuracy and latency. Lastly, to increase the architecture search speed, a
novel block is used which connects the learned meta kernels during training. The results
were achieved with an ImageNet top-1 accuracy of 76.9% with 5.9 M parameters and
a latency of 38 ms on ARM Cortex-A15-based hardware TDA2 which was running at
1.5 GHz, a dual-core DSP C66x processor capable of running deep learning inference, and
an embedded vision engine subsystem (EVE). Unfortunately, this method has not been
tested on MCU-level memory constraints.
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Approaches for Microcontrollers

SVM-CBORF [11] proposes a framework, based on Bayesian Optimization (BO), to opti-
mize the hyperparameters of a Convolutional Neural Network (CNN) by dealing with black
box deployable constraints (e.g., memory occupation) extracted from the STM32Cube.AI
tool; in short, this tool automatically profiles a pre-trained ANN and reports several com-
plexity metrics. It is composed of two different phases. In the first phase, a non-linear SVM
classifier is used to approximate the feasible region of the search space associated with the
hyperparameter values most likely to lead to ANN models deployable on MCU. In the
second phase, BO is focused on the estimated feasible region with the aim of optimizing
the loss function. Moreover, a probabilistic regression model, specifically a Random Forest,
is used to approximate the objective function by using the Lower Confidence Bound. The
experiments were performed on an STM32L4 series MCU and an ARM Cortex M4 MCU
running at 80 MHz, embodying1MByte ROM and 128 KiByte RAM. An STM32Cube.AI
tool was used to output the optimized ANSI C code which can be compiled and run on
MCU for any ANN topology. The C code can be deployed on STM32 series MCU devices.
The results of the human activity recognition task show that the optimal CNN models
identified by SVM-CBORF performed with an accuracy of 92.93 +/− 0.55%, which is 0.86%
higher than the baseline model, by using peak RAM of 23.48 KiByte.

MCUNet [12] Tiny Deep Learning on IoT Devices is a framework of system-algorithm
co-design that jointly optimizes the neural architecture with TinyNAS and the scheduling of
the inference with TinyEngine in the same loop. TinyEngine offloads redundant operations
from the runtime to compile time and only generates the code that will be executed by the
TinyNAS which helps in reducing the memory requirements of the inference and allows
more memory for the model size. TinyNAS takes advantage of the reduction in memory
by TinyEngine and finds a high-accuracy model compared to existing frameworks. It is a
combination of one-shot NAS giving a super network with all subnetworks. This optimized
space of subnetworks undergoes an evolution search to find the best architecture. MCUNet
achieved a record large-scale ImageNet accuracy of 70.7% on off-the-shelf STM32H743
MCU with a peak SRAM usage of ~490 KiB and Flash usage of 1.9 MB. Other experiments
include VWW and object detection on different series of STM32 MCUs (F412, F746, F765,
H743). MCUNet produced solutions which accelerated the inference of VWW applications
by 2.4–3.4 times. Page No. 8 Figure 9 of [12] plots the Accuracy vs. Latency/SRAM memory
trade-off on VWW and Speech Commands datasets. Large datasets such as ImageNet
can be used by this method. This supports different constraints such as RAM, Flash, and
inference time.

µNAS [13] is the combination of a highly granular search space which takes into
consideration almost every aspect of a network such as a layer’s kernel size, stride, channels,
pooling size, fully connected layer’s output dimension, connection between each layer,
etc. Next, the accurate resource use of computation is considered where the peak memory
usage, model size, and latency are the different aspects driving the loss function. Aging
evolution and BO were the two search algorithms compared. The former tends to perform
better than the latter. In addition to that model, compressing and pruning were performed
to reduce the memory requirements of the MCU. The experimental results showed an
accuracy of 77.49% on CIFAR-10 with a model size of 685 KiB, RAM usage of 909 Bytes, and
41.2 K MACs. This performance is better compared to the previous solutions in a highly
constrained device such as an MCU. It is still time-consuming to search for architectures.
Improvements can be made to reduce the search time by employing weight sharing to
reduce the cost of training each candidate network and by not using the same search space
throughout the entire search process by using a parameterized space granularity which can
vary throughout the search space.

When it comes to ANNs whose computation graph contains branches, such as ResNet
or Inception, there are different possible orders of evaluation of the layers. Starting from
the observation that certain orders of evaluation require more peak memory usage with
respect to others, ref. [14] proposes a method that finds the memory-optimal execution
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schedule for an arbitrary network. This method was able to save up to 50 KiB of peak
memory usage for SwiftNet Cell and 186 KiB reduction in MobileNet v1 with an increased
execution time and decreased power consumption.

In a CNN architecture, the memory bottleneck is due to an imbalanced activation
memory distribution across the layers. The activation maps of the first layers, in fact, have
an order of magnitude larger memory than the later layers, thus representing the peak
memory usage of the network. This leaves room for improvement, prompting researchers
to find solutions to the problem. MCUNetV2 [15] proposes patch-by-patch inference
scheduling for the first memory-intensive stages of the CNN. The technique consists of
operating on one small spatial region of the feature map at a time, reducing the peak
memory usage of existing networks by 4-8x. However, it also leads to overlapping patches
and computation overhead, which is alleviated by redistributing the size of the receptive
field to later stages of the network. With the joint design of network architecture and
inference scheduling, MCUNetV2 achieves a 71.8% ImageNet record accuracy on MCU and
>90% accuracy on the visual wake words dataset under only 32 KiB SRAM. It also unblocks
object detection for tiny devices, achieving 16.9% higher mAP on Pascal VOC with respect
to state-of-the-art results. A naive solution to the high peak memory usage of the initial
layers of a CNN would be to aggressively down sample images via pooling or strided
convolution, leading to deteriorated accuracy. RNNPool [16] introduces a novel pooling
operator based on a Recurrent Neural Network (RNN), capable of aggregating features over
large patches of an image and rapidly down sampling activation maps. It effectively reduces
computational complexity and peak memory usage while retaining accuracy. RNNPool
was applied on the S3FD architecture to construct a face detection method that achieves
state-of-the-art MAP under 256 KiB. Table 1 shows the overview of all the above-mentioned
approaches for both MCUs and other edge devices and their performances.

Table 1. Overview of different resource-constrained NAS approaches and their performances.

Solution Approach Target Device Constraint Dataset Best Acc.% GPU Hours Tested
Application

HardCoRe-NAS [5]
Differentiable
search space +

one shot
Edge-GPU/CPU Latency ImageNet 77.9 400 Image

classification

MSNet [8] Evolution Search
100–320 K

SRAM, (256
KiB-1 MB) Flash

Peak memory
usage CIFAR-10 89.09 8

Image
classification,

VWW

Co-Design NAS [9]
RL (architecture
and quantization

space)

(0.5–3.5 MB)
Flash

AIoT/Mobile
embedded

Peak memory
usage and

throughput
CIFAR-10 88.53 NA Image

classification

E-DNAS [10] Gradient
SoC

(ARM
cortex-A15)

Low Latency,
Memory ImageNet 76.9 70 Image

classification

SVM-CBORF [11] Bayesian
Optimization MCU Memory

User
Identification
from Walking

Activity

92.93 200 Human activity
recognition

MCUNet [12] One shot +
Evolution Search MCU

Memory (model
size + peak

memory usage),
Latency

ImageNet 70.7 300

Image
classification,

object detection,
VWW

uNAS [13] Aging Evolution MCU Model size,
RAM usage MNIST 99.19 30 Image

classification

MCUNetV2 [15]

One shot +
Evolution Search

+ Patch-based
inference to

reduce memory

MCU Same as
MCUNet

ImageNet
Visual Wake

Words
Pascal VOC

71.8
>90

64.6–68.3 mAP
NA

Image
classification,

object detection,
VWW

Neuro-symbolic artificial intelligence is a novel field of AI which combines the in-
tegrity of symbolic rule-based techniques with the robustness of machine learning models.
They have demonstrated that they can outperform SOTA learning models in domains
such as image and video reasoning and can obtain high accuracy with significantly less
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training data [17]. TinyNS [18] is the first platform-aware neurosymbolic architecture
search framework for the joint optimization of symbolic and neural operators. It uses a
fast, gradient-free, black-box BO over discontinuous, conditional, numeric, and categorical
search spaces to find the best combination of symbolic codes and neural networks within
the MCU’s resources. It has been demonstrated that TinyNS outperforms purely neural or
purely symbolic approaches, while ensuring execution on constrained hardware.

4. On-Device Learning

This is an increasingly important topic for the evolution of the TinyML community
since it tries to match the capability to learn with the available MCU constrained mem-
ory and computational power. In 2022, an ad hoc working group was created by the
TinyML Community with the goal of making edge devices “smarter” and more efficient
by observing changes in the data collected and self-adjusting/reconfiguring the device’s
operating model. Optionally, the “knowledge” gained by the device is shared with other
deployed devices.

Indeed, the environment in which the inference ANN model is deployed is assumed to
be constantly changing. Since the models were trained with past knowledge, the processing
of the real and time data causes an accuracy drop by the ML inferences. This phenomenon
is known as concept drift. Therefore, there is a need for constant updates of the inference
model by learning from current data. On-device learning (ODL) helps shift the process from
offline ML model training to automatically update it using real-time data. By ingesting
new samples at run-time, the device simultaneously learns and deploys the model with
constant adaptation. The accuracy needs to be kept at higher levels, and the learning
process shall also reduce its memory footprint to fit MCU hardware assets. Learning on
the MCU helps since it allows for their deployment scale, offers better personalization,
increases privacy, and also enables federated learning (FL) [19]. In the current scenario
of Industry 4.0, ref. [20] has introduced intelligent Cyber-Physical Systems (CPSs), which
can predict faults with autonomous behavior and self-adaptation using ODL. This method
helps to increase energy efficiency, reduce the bandwidth, and achieve device autonomy.
When it comes to training a model on-device, the main hindrance with respect to sole
inference resides in backpropagation (the most widely used algorithm to train ANNs) and
the amount of memory it needs to run the learning task.

It is computationally expensive and memory intensive, as it performs an additional
backward pass to backpropagate the gradient and stores the activations of all layers to
update the weights. Starting from this premise, in the next section, this paper reviews and
discusses, following the historical and consequential order of the publications, the different
approaches for on-device learning in the MCUs.

4.1. Extreme Learning Machines

ELM [21], extreme learning machines, are feedforward neural networks for classifi-
cation, regression, etc., where the parameters of hidden nodes need not be tuned. These
hidden nodes can be randomly assigned and never updated or can be inherited from their
ancestors without being changed. In most cases, the output weights of hidden nodes are
usually learned in a single step, which essentially amounts to learning a linear model.
ELM can learn thousands of times faster than networks trained using backpropagation
and can drastically reduce peak memory usage and computations by not performing the
backward pass.

The authors of [22] proposed an online sequential ELM (OS-ELM) which can adjust
the parameters over new samples sequentially. This avoids the retraining over old samples.
FOS-ELM [23] proposes a forgetting mechanism in addition to the OS-ELM which improves
the performance on sequential data with time validity. FOS-ELM was tested with data of
CHINA TEX. MCH. The average RMSE on testing data for a 4 sec period was 2.2335× 10−3

which was less compared to 4.0175 × 10−3 for OS-ELM. The authors of [24] proposed a
modified ELM with local connections (ELM-LC) which is designed for sparsifying the input-
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hidden weights. The input and hidden nodes are made into groups, and a group of input
nodes is connected to only one group of hidden node groups, and hidden-output weights
are calculated by a least square learning method. This performs better than a traditional
ELM. These methods are suitable candidates for the implementation of ELM in MCUs. A UCI
dataset was tested with this method and achieved a mean test error of 4.04 × 10−2 compared
to a traditional ELM with 7.86× 10−2 and a reduction in the number of input-hidden weights
from 3922 to 434 by ELM-LC.

4.2. Reservoir Computing

Reservoir computing (RC) extends the advantages of ELM to RNNs by replacing
the hidden nodes with an untrained recurrent non-linear block, referred to as a reservoir.
Extensive research has been conducted in the application of RC to ODL on MCUs.

The authors of [25] proposed a novel solution for online learning and real-time
anomaly detection of pathological conditions using a low-power MCU from ECG signals.
The proposed system, shown in Figure 1, is based on RC followed by Principal Component
Analysis (PCA) and One-Class Support Vector Machine (OC-SVM). This eliminates the
need for storing ECG signals for longer periods of time and avoids the time-consuming
off-line search of anomalies. Echo State Networks (ESNs) are a well-studied reservoir com-
puting paradigm, where the reservoir consists of a large, sparsely and randomly connected,
non-linear layer. The authors of [26] proposed a Block-based Binary Shallow Echo State
Network (BBS-ESN) which is a deeply quantized anomaly detector of oil leaks that happen
in the wind turbines with fixed and minimal computational complexity. This network can
be deployed on an off-the-shelf MCU, and the power consumption is greatly reduced. This
is achieved via the binarization of images and one bit quantization of the network’s weights
and activations. The authors of [27] proposed a novel Field-Oriented Control algorithm by
means of extreme learning to modify the behavior and performance of electromechanical
systems which are highly nonlinear at high speed. The proposed Semi Binary Deep Echo
State Network (SB-DESN) achieves good control accuracy. Moreover, it proposes a novel
complexity optimization which reduces the memory footprint, such that it can be deployed
even on MCUs. Interesting results were obtained on STM32H7 with an inference time of
20 µs. The authors of [28] proposed a highly accurate, less complex online learning anomaly
detection Deep Echo State Network for water distribution systems which adapts to the
time varying data distribution and can be deployed on an MCU. In this approach, online
learning can be carried out in two different ways: single iteration and batch decomposition
to save memory.
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4.3. Other Backpropagation-Free Solutions

ODL solutions that avoid using backpropagation, while still not using ELMs or RC,
exist. TinyML with online learning on MCUs (TinyOL) [29] is implemented in C++ and
can be attached to an arbitrary existing network as an additional layer in MCUs. The last
additional layer learns from the new data and updates its weights. As the network learns



Chips 2023, 2 137

incrementally, there is no need to store the historical data for training, thus reducing the
memory requirements. New classes can be added by the last layer and can be trained upon
user request. This method is like transfer learning in which fine tuning happens in the
last few layers. Only one data pair of the real-time stream is stored in the memory, thus
reducing the memory footprint. It is flexible enough to modify the layer structure on the
fly. It has been proven to be robust against concept drift. Yet, this approach is limited as
the models are trained offline and do not have support for training with 8-bit MCUs. The
experimental results on fine tuning a network as well as on classification performed better
with the stream of data on a device with less than 256 KiB SRAM. The other solution, Tiny
Machine Learning for Concept Drift (TML-CD) [30], is mainly focused on overcoming the
accuracy drop due to concept drift even under high memory constraints. This approach is
composed of a feature extractor, Dimensionality Reduction operator, k-Nearest Neighbor
(kNN) classifier, and an adaptation module. The adaptation module adapts the training
dataset for a kNN classifier with the new data. The adaptation mechanism is carried out in
three different ways: active, passive, and hybrid, among which the latter has been proved
to perform better than the other two. The hybrid adaptation is a combination of both
passive and active methods. It continuously adapts over time, and it discards obsolete
knowledge when a change is detected in the data due to concept drift and also sets a cap
on the memory footprint. This approach has been tested with MCUs with RAM as low as
96 KiB to 512 KiB and the memory footprint is kept almost constant. It performs a faster
recovery when a change is detected. The experimental results showed that the hybrid
approach outperforms all the other adaptation mechanisms and recovers faster when there
is concept drift. This approach can be further improved by implying learning mechanisms
for the feature extractor block and by exploring sparse and quantized solutions for the
TinyML algorithms.

4.4. Backpropagation-Based Solutions

Previous solutions restrict training to only the last layer of the network, limiting
the capacity of the model. Complex tasks, such as Computer Vision, require a stronger
adaptability of the model to the changing data. Hence, training parameters relative to
earlier layers in NNs, to substantially modify the model, becomes a necessity. To do so,
backpropagation is required, and as a result, research interest has focused on reducing
complexity and memory requirements of such algorithms to fit MCU requirements. Tiny-
Transfer-Learning (TinyTL) [31] proposes freezing weights and learning the bias modules,
which eliminates the need for storing the intermediate activations. It claims to have
reduced the memory with little loss in accuracy compared to fine tuning the full network.
Compared to fine tuning only the last layer, TinyTL performs with better accuracy with
little memory overhead. The memory can be further saved by feature extraction adaptation
without losing accuracy. MCUNetV3 [32] introduced the novel techniques of Quantization-
Aware Scaling (QAS) and sparse layer/tensor update to cope with the challenges posed
by ODL. Quantized neural networks are characterized by low bit-precision and a lack of
normalization, which leads to an unstable gradient update. QAS effectively enables fully
quantized training by stabilizing the gradient via a scaling factor. Full backpropagation is
not possible within the limited hardware resources of MCUs. As a solution, the update of
the less important parameters is skipped to reduce the memory and computation cost, i.e.,
sparse layer/tensor update. The sparse update scheme is determined by a contribution
analysis, which maximizes, given the memory constraint, the improvements in accuracy
given by updating certain parameters. Such innovations were then implemented by a
specifically designed training system named “Tiny Training Engine”, which prunes the
backward computation graph to support sparse updates and performs operator reordering
and in-place updates, thus reducing the memory footprint. MCUNetV3 is the first solution
to enable the tiny on-device training of CNNs under 256 KiB SRAM and 1 MB Flash, while
matching the accuracy on visual wake words. Table 2 shows a quantitative summary of
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all the above-mentioned approaches, memory requirements, applications tested, target
devices, and their performances.

Table 2. Overview of different ODL approaches and their performances.

Solutions Approach Memory
Requirement Tested Applications Target Device Performance

ECG learning on
anomalies [25]

Reservoir computing +
principal component
analysis + one-class

support vector machine

60 KiB RAM ECG anomaly
detection

ARM Cortex M4
and M7

Memory reduction and
95.4% accuracy on MIT-BIH

BBS-ESN [26] Binarization + Echo
state network 2176 KiB RAM Oil leaks in wind

turbines ARM Cortex-M7
FPR = 4.1 and

FNR = 14.6 in worst noise
conditions

SB-DESN [27]

Field-oriented control +
Extreme Learning

Machine + Reservoir
computing

<192 KiB RAM Motor control system ARM Cortex M4
and M7

Reduction of 370% in
memory and 200%

complexity, good accuracy
in motor control

DeepESN [28]
Reservoir computing +
Leaky Integrator Echo

State Network
80 to 366 KiB RAM

Water distribution
systems anomaly

detection
ARM Cortex M7

70% memory usage
reduction with good

accuracy

TinyOL [29]
Additional Modifiable
layer at the end of the

Network
256 KiB SRAM

Fine Tuning Network
and Anomaly
Classification

ARM Cortex M4
Competitive performance

with the model learned
offline

TML-CD [30]

Hybrid Approach:
Active + Passive update
of KNN training set for

the classifier

96 KiB to 1024 KiB
SRAM

Speech command
identification and

image classification

ARM Cortex M4
and M7

Better accuracy and
reduced memory footprint

TinyTL [31]

Freezing the weights +
lite residual bias

module to refine the
feature extractor

37 MB Image classification Edge GPUs 81.4% CIFAR 100 accuracy

MCUNetV3 [32]

Quantization-Aware
Scaling + Sparse

layer\tensor update +
Operator reordering

<256 KiB SRAM Image classification ARM Cortex M7 81.9% VWW accuracy

4.5. Continual Learning

An important aspect of ODL is Continual Learning (CL), the process of adaptation of
the model to new data from the surrounding environment without forgetting the original
knowledge, i.e., catastrophic forgetting. One approach to ensure CL has been to preserve
previous samples for replaying. When it comes to the tight memory restrictions imposed by
tiny hardware, however, the memory overhead for the storage of previous samples becomes
unbearable. To address this problem, ref. [33] proposed the technique of Latent Replays,
where intermediate feature maps of a few old data samples, instead of large data inputs,
are stored for later replay, reducing up to 48×memory usage. Consequently, only layers
after the layer corresponding to the feature map stored are updated. The authors of [34]
developed a HW/SW platform for CL leveraging the quantization of frozen intermediate
activations for Latent Replays. Combining the HW optimization, the system can achieve
continual learning using less than 64 MB of memory.

4.6. Restricted Coulomb Energy Neural Network

The Restricted Coulomb Energy Neural Network (RCE-NN) is a hyper spherical
classifier [35,36]. It is like a nearest-neighbor classifier, but the hyper spherical classifiers
store the examples represented as points in a metric space such as Euclidean space or
hamming. These metrics are a measure of the distance between an unknown input pattern
of a known category or class. Every point in this space will have a finite radius associated
with them. This radius defines the region of influence of that point in the space. The
hypersphere’s interior is the decision region associated with the center point’s category.
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This region of influence makes the hyper spherical classifier more conservative in terms
of storage compared to the nearest-neighbor classifier. The RCE-NN, shown in Figure 2,
has three layers: input, hidden, and output. For each feature, a node is assigned in the
input layer, totaling the feature vector dimension. Every feature of an input vector is
fully interconnected to the hidden layer. The output layer consists of as many units as
the classes obtained from the network. The output of a hidden unit is projected to only
one output unit. The network assigns an input pattern to a category if the output cell of
that category is activated in response to the input. The network is unambiguous only if
one output unit is active when an input is given, otherwise the network is ambiguous.
When an input unit falls under the region of influence of a hidden unit, then the input
fires the output unit to which the hidden unit is forwarded. The overlap of regions of
different categories may happen. The network needs to be trained and adjusted to avoid
these overlaps. The RCE-NN has two phases: learning and classification. Feature space
partitioning is performed in the learning phase while updating the weights between the
input and hidden layer. The threshold values of the radius of the regions for the hidden
units are also adjusted in the learning phase.
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In the classification phase, the decisions are made for each input based on the regions
that the input falls in and the feature space created by RCE-NN. Multiple class affiliations
can happen in some regions. While training the network, the first step is to create hidden
units for every category of the output units, and the next is to adjust the radius, which
is the region of influence of those hidden units which overlaps with the other categories.
Initially, the network starts with no hidden units and the data is fed into the network. One
by one, the network creates a hidden unit for every input which activates an output unit.
This hidden unit is created with the input vector values, and a default radius is set for the
newly created hidden unit. When an input pattern activates more than one output unit,
then there is an overlap which is detected by the network, and it reduces the radius of the
activated hidden units associated with the output other than the ground truth. By iterating
through the given number of inputs, the network learns and tries to become more accurate.
RCE-NN classifies a region as an ambiguous region if there are no outputs or outputs from
multiple classes. Some major advantages of RCE-NN are the conservative storage, no local
minima problem, and the learning is faster.

There are very few works related to this topic; ref. [37] proposes a scheme based on
RCE-NN which can be used to classify human skin color. The RCE-NN is slightly altered
with an additional iteration strategy which improves the performance, and a reduction
in the number of repetitive calculations was also proposed. This can help reduce the
computational cost of the network. Compared with a hierarchical prototype learning
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(HPL) [38] framework, it has been proved to perform better with less training time than the
traditional RCE and HPL.

5. Conclusions

This paper discussed several approaches regarding (1) Neural Architecture Search for
severely resource-constrained devices and with the aim to automate the design and training
process of accurate ML architectures considering the technological constrains imposed by
the tiny devices since the very beginning; and (2) on-device learning to cope with the con-
cept drift and the accuracy drop in edge devices. It further discussed how these approaches
can be improved in the future to achieve better performances and robust solutions. Both of
these research fields are very important for TinyML, a worldwide community focused on
the machine learning ecosystem for mW (and below) power consumption envelope devices
and concerned with the deployment of machine learning on edge tiny devices.
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