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Abstract: In this article, a literature study has been conducted including 398 radar circuit elements
from 311 recent publications (mostly between 2010 and 2022) that have been reported mainly in the
F-, D- and G-Band (80–200 GHz). This study is intended to give a state-of-the-art comparison on
the performance of the different technologies—RFCMOS, SiGe/BiCMOS and III–V semiconductor
composites—regarding the most crucial circuit parameters of Voltage-Controlled Oscillators (VCO),
Power Amplifiers (PA), Phase Shifters (PS), Low-Noise Amplifiers (LNA) and Mixers. The most
common topologies of each circuit element as well as the differences between the technolgies will
futher be laid out while reasoning their benefits. Since not all devices were derived solely from single
device publications, necessary steps to yield as fairly a comparison as possible were taken. Results
include the area and power efficiency in RFCMOS, superior noise and power performance in III–V
semiconductors and a continuous compromise between efficiency and performance in SiGe. The
most rarely published devices, being Mixers and PSs, in the given frequency range have also been
identified to give incentive for further developments.

Keywords: III–V semiconductor; D-Band; F-Band; G-Band; Low-Noise Amplifier; Mixer; Phase
Shifter; Power Amplifier; radar circuits; RFCMOS; SiGe

1. Introduction

A lot of scientific interest has been invested in the D-Band in the last few years due to
its relatively low atmospheric attenuation [1] at high frequencies. This is exploited by novel
D-Band systems in the unregulated ISM-Band (122–123 GHz) [2], the potential automotive-
band (134–141 GHz) [3] and various, recently FCC, Ofcom as well as CEPT/ETSI-approved
industrial frequency bands above 100 GHz [4]. Especially radar systems have grown in
significance, as they have been used in different applications such as imaging, near-field
communications, wireless personal area networks or distance/velocity measurements [5–8].
This increased demand facilitated not only continuous scaling of technologies such as
RFCMOS, SiGe HBT or III–V semiconductor composites (e.g., InP or GaAs) but also led to
higher transit (ct. Figure 1) and oscillation frequencies.

Furthermore, these technologies are supported by new advances in packaging such
as Wafer-Level Packaging (WLP) [9], allowing for more reliability whilst increasing the
performance not only for single- but also multi-technology systems compared to wire-
bond techniques.

To oversee new progress in the multitude of different devices published each year,
surveys such as [10,11] have been conducted. They, however, only focus on single device
publications for a specific circuit element, leaving out its performance in radar systems.
As a result, this overview is meant to present the current state-of-the-art performance of all
devices that are crucial for a radar system in the mentioned technologies around 140 GHz.
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Figure 1. Development of fT from the investigated publications over time. The frequency range of
the devices totals: 13.895–208.55 GHz.

2. Radar Circuit Elements

Universally, radar systems are composed of a signal source and at least one transmit
(Tx) and one receive path (Rx). A Voltage-Controlled Oscillator (VCO) generally locked in
a Phase-Locked Loop (PLL) constitutes the signal source. The frequency-stabilized signal
has either a static frequency as is the case for Continuous Wave (CW) or will be modulated
for Frequency-Modulated Continuous Wave (FMCW) applications. Depending on the
frequency of the VCO and the amount of Tx/Rx channels, frequency multiplication and
distribution networks are required. Both have been omitted from this study, because their
shortcomings can be compensated by buffer stages and the data can be adjusted theoreti-
cally.

A Tx primarily focuses on delivering as much power as possible to antennas in order
to increase the Link Budget (LB) of the sytem as stated by the radar equation [12]:

LB =
PRx(r)

Si
,

PRx(r) =
PTxGTxGRxλ2σAntenna

(4π)3r4 . (1)

For this reason, a Power Amplifier (PA), divided into different stages, and/or multiple
PAs combined in parallel (power combining) are used. The succeeding antennas might
have to be driven with different phases in Multiple Input Multiple Output (MIMO) radars
to enlarge the virtual array size or achieve beamsteering capabilities. This can be completed
by applying phase shifters (PSs).

Owing to a typically low signal level caused by the free space loss (Equation (1)), the re-
ceived signal ought to be amplified. A Low-Noise Amplifier (LNA) is usually employed for
this purpose to retain a high Signal to Noise Ratio, which is the result of the LNA’s low noise
contribution and the reduced noise impact of all following elements. Lastly, the frequency
of the amplified signal is downconverted to a lower-frequency range for digital signal
processing typically by utilizing the VCO signal at a Mixers Local Oscillator input.

All previously mentioned circuit elements will be separately investigated in the fol-
lowing sections.

2.1. Voltage-Controlled Oscillator (VCO)

A VCO is a circuit element that changes its output frequency depending on the applied
tuning voltage. Unlike the other circuit elements in this overview, it is not necessarily
employed at D-Band frequencies but rather at lower frequencies to decrease the VCOs
complexity and ensure correct operation with improved performance. The subsequent
lower frequency signal is then upconverted by frequency multipliers such as doubler or
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tripler architectures. A radar operating frequencies therefore depends on the frequency
multiplied carrier frequency fc and the Frequency Tuning Range (FTR) [12]:

FTR =
fmax − fmin

fc
· 100% (2)

of the VCO. As FTR stays constant regardless of the operating frequency, it can be used
to compare the tunability of VCOs in the D-Band. Figure 2 displays the FTR for all
gathered VCOs where each unique shape represents a different topology according to given
legend. Exemplary VCOs were collected outside the F-, D- or G-Band to give an estimation
of VCOs at lower frequencies. A decreasing trend of FTR with fc can be determined.
Additionally, the technologies are primarily distributed in specific frequency bands such as
the K-/E-Band for RFCMOS, the U-/W-Band for III–V semiconductors or the Ka-/D-Band
for SiGe. Based on the lack of SiGe in the W-Band, this is likely a statistical artifact emerging
from publications not being sought out excessively below the F-Band.

Figure 2. VCO: Frequency Tuning Range as function of the Center Frequency in the frequency range
of 13.895–208.55 GHz.

The most dominant characteristic to assess a VCO on is the Phase Noise (PN). It
describes the intensity of undesired frequency components in relation to fc and is therefore
measured in dbc/Hz [12]. These undesired frequency components might be downcon-
verted or emitted, worsening the detectability of radar targets. Due to the exponential drop
in PN starting from the fc, it is imperative to use equal Offset Frequencies and Measurement
Bandwidths when comparing VCOs. Offset Frequencies of 1 MHz and Measurement Band-
widths of 1 Hz were collected whenever possible. When the PN of all collected VCOs in
Figure 3 is inspected, a distinct frequency dependency is visible. The higher the frequency,
the more PN is generally introduced into the system. As a result, one might assume that
frequency multiplied low frequency oscillations perform better than higher frequency
signals. That assumption, however, does not take the added phase noise due to frequency
multiplication into account. If a Frequency Multiplication Factor N were to be defined as:

N =
ftarget

fc
, (3)

the according PN addition to reach the desired frequency ftarget can be derived to be [13]:

∆L(Nω0) = ∆L(ω0) + 20 · Log10(N). (4)
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Figure 3. VCO: Phase Noise as a function of the Center Frequency. Dashed lines mark the ±2σ

interval in accorance with Leeson’s equation.

To put it into perspective, 6 dBc/Hz of PN is added per doubler and 9.5 dBc/Hz is
added per tripler stage. It should be pointed out here that SiGe and RFCMOS publications
readily make use of push–push doublers to achieve higher operating frequencies while
attenuating the fundamental fc/2 as well as odd harmonics (2n + 1) · fc/2, ∀n = N. Since
the doublers’ non-ideal contribution cannot be removed, nor the losses estimated, they will
not be accounted for rather but seen as a part of a higher frequency VCO. A more compre-
hensible illustration of the corrected PN alongside the mean PN of the specific technologies
is given in Figure 4 for a ftarget of 140 GHz. From it, an increase in Phase Noise of about
3 dB is present on average between SiGe (−89.46 dBc/Hz), RFCMOS (−86.56 dBc/Hz) and
III–V semiconductor composites (−83.32 dBc/Hz). By examining the value spread, one
can determine the consistency of the PN performance. SiGe has a larger span, whereas
RFCMOS and III–V semiconductors display more reliable values.

Figure 4. VCO: Phase Noise adjusted by the required multiplication stages to reach 140 GHz.
Horizontal lines represent mean values.

Another important trait of VCOs is the Output Power POut that is shown alongside
the DC-Power Consumption PDC in Figure 5. High POut allows for less/no buffer stages
to be used to compensate potential losses. These buffer stages would also generate noise,
which can be largely disregarded as it is Amplitude Noise and not Phase Noise [14]. It has
to be noted that the presence of buffer stages, that could not be de-embedded, might result
in the data instead reflecting on the performance of those buffers. Nonetheless, a linear
relation between POut and PDC is apparent. Higher POut thus necessitates a higher PDC.
Moreover, the technologies evidently differ in DC-Power. The lower spectrum of Figure 5
is almost entirely made up of RFCMOS devices, whereas higher PDC are seen first in SiGe
and then in III–V semiconductors.
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Figure 5. VCO: Output Power as a function of the DC-Power Consumption in the frequency range of
13.895–208.55 GHz. Dashed lines mark the ±2σ interval.

A consideration of the topology leads to a vastly dissimilar circuit structure between
VCOs from different technologies. Whereas RFCMOS heavily favors a cross-coupled
structure as a result of an easy start-up with lower power consumption (cf. Figure 5), SiGe
uses its higher transconductance gm to drive colpitts/hartley VCOs that usually have better
noise and power performance (Figures 3–5) [15,16]. Considering that a decent number of
III–V semiconductor VCOs could only be gathered prior to 2010 (see Figure 1), a lot of
miscellaneous (Misc) circuit concepts were found alongside the prevalent cross-coupled and
colpitts structure. Of additional note in this case are Resonate Tunneling Diode (RTD)-based
VCOs that allow for extremely low-power oscillations (ct. Figure 5) when a low voltage is
applied [17]. Another interesting detail is exposed when the varactor of the technologies is
inspected. While the respective transistor type is used in RFCMOS (MOS-varactor) and
III–V semiconductors (HBT/HEMT-varactor), SiGe HBT VCOs are commonly seen using
MOS-varactors. This is mainly due to MOS-varactors having a comparable Q-factor as well
as no imminent danger to forward bias pn-junctions at low Tuning Voltages [18].

2.2. Power Amplifier (PA)

PAs are typically driven in saturation, if no amplitude modulation is required, to generate
a constant high Output Power Psat. Psat is generated by an average of 3.07/3.46/3.65 PA stages
in SiGe/RFCMOS/III–V semiconductors, which are divided into multiple buffer/gain stages
and an output stage. Generally, both stage types are of a similar kind of topology, which is
why buffer/gain stages will not be touched on further.

A commonly used circuit modification to increase the Output Power is to connect
multiple PAs in parallel (power combining). Power combining takes the form of either
transmission line- or transformer-based combining, depending on the technology that
is used. Resulting from the relatively low Q-factor of passive structures in RFCMOS,
transformers are not only used to connect the different PA stages but also to link parallel
PAs. This has the added benefit of a spacially low power increase. Two different transformer
combining variants can be distinguished, being voltage- and current combining. Voltage
combining uses one coil to enclose both load coils of the parallel PAs, whereas current
combining employs a coil for each load coil with one terminal shorted to ground. The low
output impedance provided by voltage combining is favored at lower frequencies in
contrast to the lower parasitic influence of current combining at higher frequencies [19].
Moreover, different turn ratios allow for offsetting the restrictions of current combining,
resulting in no voltage combiner being used in the whole dataset. For the other technologies,
transmission-line based combining such as Wilkinson dividers/combiners were almost
exclusively used. This has likely to do with the high area consumption of transformers.

In terms of the added Output Power, power combining does not reflect on the em-
ployed technology, instead adding 3 dB · Log2(N) assuming N lossless, parallel and satu-
rated stages. Its ideal contribution has consequently been removed in Figure 6, which also
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displays the mean Psat of each technology (Psat,SiGe = 11.82 dBm, Psat,RFCMOS = 8.67 dBm,
Psat,III−V = 15.16 dBm). III–V semiconductor components deliver a higher output power
than its two competitors. Its data points are also moderately grouped up, ensuring usually
high Psat in these devices. Likely by virtue of parity issues in III–V semiconductors, single-
ended structures make up the majority its publications. Benefits of differential techniques
such as the increased Common-Mode-Rejection Ratio (CMRR) are therefore not present
in III–V semiconductor PAs. A low variation and thus reliable values are also seen in
RFCMOS alongside modest Psat. This comparatively low Psat can largely be attributed to
low breakdown voltages, which necessitate lower gain and deep-well processes for cascode
structures [20–23]. Thus, the Miller effect is canceled, and the stability is increased through
neutralization capacitance in common source/emitter (CS) circuits instead [24]. In contrast,
mainly cascode stages to suppress the Miller effect and leverage the high gm of SiGe let it
compete with both technologies as a result of larger deviations from its mean [25–28].

Figure 6. PA: Psat per power combining stage in the frequency range of 90–190 GHz. Horizontal lines
represent mean values.

A high Psat in a PA can only be considered a merit if it is accompanied by a sufficiently
high enough amplification factor (Gain). It is mostly reported as the Small Signal Gain,
i.e., the Gain in the linear region. Although not specifically noted here, the Gain-Bandwidth
Product is also commonly used to express the Gain of a PA. Since the bandwidth could not
be estimated with enough certainty, it was left out of this study. Nevertheless, distributed
amplifiers can be highlighted as having the highest recorded bandwidths. When the Gain
is set into relation with the DC Power Consumption (Figure 7), it is customarily compiled
into a different criterion called the Power-Added Efficiency PAE [29]:

PAE =
Pin · (Gain− 1)

PDC
· 100 % =

Pout − Pin

PDC
· 100 % (5)

to estimate the efficiency of PAs. From Figure 8, RFCMOS devices can be deduced as
having the highest PAE in their respective Psat region. The next highest efficiency is
displayed in SiGe. Yet, to achieve the highest Psat, III–V semiconductor composites become
indispensable. From a closer inspection of Figure 8, common base/gate (CB) stages emerge
as one of the best topologies for high Psat. The reason behind this, as is explained in [30], is
that CB stages grow more efficient than common emitter stages as the Operating Frequency
approaches fT. fT conversely is strongly dependant on the current density jC and thus Psat
by prospect of the linear relation between Psat and PDC. The improved efficiency added to
a non-class A operation facilitates low power consumption, thus yielding high PAE.
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Figure 7. PA: Gain as a function of the DC Power Consumption in the frequency range of 90–190 GHz.

Figure 8. PA: PAE as a function of Psat in the frequency range of 90–190 GHz.

In cases where modulation (e.g., in communication systems) of the emitted signal
is relevant, linearity becomes one of the focal points of PAs. A heavily used criterion is
the First-Order Compression Point (P1dB), which can be further divided into an Output
Referred (OP1dB) or an Input Referred Compression Point (IP1dB). It references a 1 dB
variation between the course of the output power and the extrapolation of the linear
region. Albeit the OP1dB is typically of higher interest for PAs, both compression points
are given in Figure 9. An analysis of the technologies yields increased linearity in III–V
semiconductors compared to SiGe and SiGe compared to RFCMOS. In terms of topology,
the highest linearity is seen in single-ended devices.

Figure 9. PA: Linearity shown in OP1dB vs. IP1dB from 90–190 GHz.
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2.3. Phase Shifter (PS)

The phase of a signal can be adjusted by applying either a passive, reflective or vector
modulated (VM) PS. The different architectures mainly differ in terms of Resolution, Gain
and linearity. Active VM-PSs generally have a higher Resolution and Gain [31], whereas
the linearity in the passive architectures is higher [32]. Since the Resolution is intrinsically
linked to the utilized bitwidth of PSs, Figure 10 only shows the Gain of the reported PSs.

The bulk of the data, especially for RFCMOS, was accumulated in the lower F- and
higher W-Band on the account that only a few PS were reported in the D-Band. The scarcity
of the data allows for no conclusive performance statements. Only passive phase shifters,
divided into Reflection-Type Phase Shifters (RTPS) and switched passive elements, were
reported for III–V semiconductors, whereas a greater number of active devices are present
for the other technologies. These active components can largely be divided into two
subcategories: Switched-Quad (the sole VM-PS in RFCMOS) and Vector-Sum (exclusively
present in SiGe). They differ from each other simply by their polarity/phase selection.
While the digital select signals are directly applied at the Gate/Base of the switching Quads
(akin to setting VDD to a Gilber–Cell transistor quad), vector summing involves numerous
selections by SPDT-Switches and phase shifts by a multitude of couplers. Additionally,
multiple Vector-Gain Amplifiers (VGA) to sufficiently cover the coupler losses as well as
provide adequate resolutions are required. The Resolution and Gain of switching quads
depend on the number of quads or pre-amplifiers used, which will not be covered in this
study. As for the differences between RFCMOS and SiGe, a similar average Gain in the
examined frequency bands is exhibited. For the same frequency range, however, SiGe
outperforms RFCMOS.

In order to assess the phase and amplitude imbalances in each PS state, Root Mean
Square (RMS) errors are most commonly used. Both the RMS Gain as well as the RMS
Phase Errors are depicted in Figure 11. Disproportionally higher Phase Errors in RFCMOS
and Gain errors in SiGe were reported when comparing the technologies. These devices
almost exclusively belong to the vector-sum/switched-quad PSs for SiGe/RFCMOS. Thus,
it can be estimated that the complexity in those devices is at fault for their poor RMS errors.
The other devices and especially the passive devices in III–V composite devices, with its
only poor performing device being an outlier, accomplished low RMS errors.

Figure 10. PS: Gain as a function of the frequency.
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Figure 11. PS: RMS Gain and Phase Error in the frequency range of 75.4–180 GHz.

2.4. Low-Noise Amplifier (LNA)

As the first active element in the receiver chain, the LNA’s noise contribution F1 has
the strongest impact on a system’s Noise Figure (NF) in accordance with Friis’ formula [12]:

NFreceiver = 10 · Log10

(
F1 +

n

∑
i=2

Fi − 1
i−1
∏
j=1

Gainj

)
. (6)

This noise contribution differs noticeably between III–V semiconductors and both
SiGe and RFCMOS as is evident from Figure 12. On average, the lowest Noise Figure can be
achieved in III–V semiconductors (NFIII−V = 3.67 dB). In contrast to the other two technolo-
gies, only single-ended amplifiers were used because they exhibit better noise performance
than differential ones. RFCMOS and SiGe devices in comparison show an almost equal
NF with the former having a higher discrepancy and thus yielding slightly worse average
values (NFRFCMOS = 7.77 dB) compared to latter (NFSiGe = 7.48 dB). Another important
NF contributor is the interconnects in each technology. While low loss/noise Grounded-
Coplanar Wave Guides (GCPW) are commonly used in III–V semiconductors, transformer
and transmission line losses in RFCMOS and SiGe, respectively, may increase their NF.

While F1 does not become reduced by any other circuit element, an LNA decreases
the noise contribution Fi of all following elements by its Conversion Gain (CG) as stated
in Equation (6). Usually, a compromise between the LNAs NF and the Gain, as Figure 13
illustrated, has to be carried out. This compromise also appears in the choice of topology
wherein the increased Gain of a cascode stage worsens the NF due to the contribution of the
common base/gate stage when contrasted with common source/emitter (CS) stages [33–
35]. To offset the Gain difference, more stages are usually employed in CS LNAs [36]. This
leads to the least amount of Gain stages (1–4 stages) being used in SiGe devices with 2.74
stages on average, even though among the highest Gains were demonstrated. In stark
contrast, RFCMOS has the largest span with 1–8 stages and a mean stage amount of 3.96,
while the overall lowest CG was repeatedly reported. Lastly, III–V semiconductors can be
highlighted as having the best mean Gain whilst averaging 3.71 stages within a range of
2–4 stages.
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Figure 12. LNA: Noise Figure in the frequency range of 78.5–195 GHz. Horizontal lines represent
mean values.

Figure 13. LNA: Conversion Gain over DC power consumption in the frequency range of 78.5–
200 GHz.

Linearity is also of prime concern for LNAs because the systems dynamic range may be
restricted as a result of intermodulation distortion (e.g., blocking or cross-modulation) [13].
Nevertheless, a lack of available data is apparent from Figure 14. This scarcity might be
explained by low signal levels emerging from the free space loss (ct. Equation (1)) and
the corresponding rarely arising need to measure it. EM-crosstalk resulting from a PA in
close proximity, however, could occur, increasing the input power past the IP1dB. From the
limited data, III–V semiconductors seem to be the least affected by those effects. Whether
SiGe or RFCMOS devices possess better linearity, however, is not decisive due to the data
shortage. Another statistical uncertainty is the higher linearity in differential devices in
contrast to their single-ended equivalents.

Figure 14. LNA: Linearity shown in OP1dB and IP1dB for a frequency range of 95–190 GHz.
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2.5. Mixer

Frequency conversion is a method to decrease (downconvert) or increase (upconvert)
the frequency of a signal by either transistor switching as is the case for gilbert cells
or by using the transconductance of a nonlinear element such as diodes or transistors.
Since only downconverters are conventionally employed in radar receive paths, they
have been exclusively analyzed in this study. In downconverters, the received signal is
applied to the RF-Port, the (frequency multiplied) VCO signal is connected to the LO-
Port and the generally baseband frequency output is generated at the IF-Port. Yet, in
the investigated publications, Mixers have been operated with varying IF-Frequencies,
spanning from 1 MHz to 31 GHz (IF = 3.71 GHz). This prevents a definitive comparison
from being conducted as a consequence of the differing intensity of frequency dependent
effects such as the 1/f-Noise. The results should thus be regarded with caution. As an
element in the receiver chain, one of the most important characteristics of a mixer is its NF.
The lowest average noise contribution, discerned from Figure 15, is NF = 10.43 dB in III–V
semiconductors. The different III–V semiconductor devices also achieve values in close
proximity to each other, exemplifying the feasibility of this NF. Having competitive values
with III–V semiconductors, SiGe has a high data spread that results in a worse mean NF
with a value of 13.6 dB. Further investigations are required to give a conclusive statement
about RFCMOS’s noise performance. Disregarding the outlier with the worst Noise Figure,
values similar to the other two technologies are attained. In this case, RFCMOS performs
the best on average out of the three investigated technologies. With the outliers, however,
the worst average NF is reported (14.91 dB).

Since the lack of data is also present in other categories such as the DC power con-
sumption, the CG of the gathered mixers is separately shown in Figure 16. A comparable
CG range is accomplished in all three technologies. The value distribution, however, distin-
guishes III–V semiconductors mixers as having the worst (CGIII−V = −6.12 dB) and SiGe as
having the best (CGSiGe = 7.46 dB) mean CG. RFCMOS, meanwhile, has a uniform dispersal
of CGs (CGRFCMOS = −3.4 dB). This distribution might be connected to the utilization of
buffer stages, in which case the CG would reflect on the performance of those buffer stages
instead of the mixers.

Figure 15. Mixer: Noise Figure in the frequency range of 90–200 GHz. Horizontal lines represent
mean values.
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Figure 16. Mixer: Conversion Gain in the frequency range of 90–200 GHz. Horizontal lines represent
mean values.

High LO-Powers typically facilitate an improved mixer operation. Depending on the
LO-RF Isolation of the mixer, a significant amount of this power might be forwarded to the
RF-Port, causing interference, disturbance or emission in the Rx. If an LNA is present, this
effect can largely be neglected due to the LNA’s high reverse isolation. However, without
an LNA, the LO-RF Isolation becomes an important, rarely reported mixer parameter that
can only be compared indecisively as Figure 17 demonstrates. The limited data show that
the isolation is consistently high in RFCMOS, lower with a higher spread in SiGe, and it
has a broad range with both low and high values in III–V semiconductors.

In regard to the mixer topologies, the most widespread architecture depends on
the respective technology. Because of the modest 1/f noise performance in RFCMOS
and III–V composites, the least amount of transistors should carry out the frequency
conversion. Hence, resistive mixers and single-device transconductance mixers have
become common. They additionally benefit from an increase in linearity, which is confirmed
in the gathered data, with no discernable effect on the NF. Contrastingly, Gilbert cells or
cascode transconductance mixers are usually seen in SiGe publications. While Gilbert
mixers are known to typically demonstrate the highest Gains (cf. Figure 16), no improved
Isolation in comparison to the other architectures could be verified [37,38].

Figure 17. Mixer: LO-RF Isolation in the frequency range of 90–180 GHz. Horizontal lines represent
mean values.

3. Conclusions

The three most commonly used technologies—RFCMOS, SiGe HBT and III–V semi-
conductor composites—have been investigated by means of a literature study. Insight was
given into the most crucial radar circuit parameters, and the technologies were compared
based upon them. Particularly, the low cost connected with the efficiency both in area and
power consumption (cf. Figures 18 and 19) alongside the ease of baseband interfacing are
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favorable traits in RFCMOS. Additionally, no substantial noise variation between RFCMOS
and SiGe was determined. Yet, its high-frequency struggle with rather poor output power
hampers its practicality. In stark contrast, III–V semiconductor devices excel at attaining the
highest possible performance in single devices, but they are held back by high production
costs, high area and power consumption as well as fewer fabrication facilities. Lastly, the us-
age of the widely established SiGe HBTs leads to a compromise between efficiency and
performance, which is why it is the most common technology for D-Band radar systems.

Figure 18. Average Area Consumption of all circuit elements.

Figure 19. Average DC Power Consumption of all circuit elements.
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