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Abstract: Residual stress is caused by non–uniform deformation caused by non–uniform force,
heat and composition, which is of great significance in engineering applications. It is assumed
that the residual stress is always the upper limit of the elastic limit, so the reduction of the flow
stress will reduce the residual elastic stress. It is particularly important to control the flow stress
in metal materials. Compared with traditional methods, the use of electropulsing treatment (EPT)
technology stands out due to its energy–efficient, highly effective, straightforward and pollution–free
characteristics. However, there are different opinions about the mechanism of reducing flow stress
through EPT due to the conflation of the effects from pulsed currents. Herein, a clear correlation
is identified between induced stress levels and the application of pulsed electrical current. It was
found that the decrease in flow stress is positively correlated with the current density and the
duration of electrical contact and current action time. We first systematically and comprehensively
summarize the influence mechanisms of EPT on dislocations, phase, textures and recrystallization. An
analysis of Joule heating, electron wind effect, and thermal–induced stress within metal frameworks
under the influence of pulsed currents was conducted. And the distribution of electric, thermal and
stress fields under EPT are discussed in detail based on a finite element simulation (FES). Finally,
some new insights into the issues and challenges of flow stress drops caused by EPT are proposed,
which is critically important for advancing related mechanism research and the revision of theories
and models.
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1. Introduction

Residual stress represents the elastic tension maintained within a material, resulting
from uneven stress and temperature distributions, as well as irregular structural defor-
mation during manufacturing and processing stages. This phenomenon is a primary
factor in the occurrence of brittleness and corrosive cracking in metals [1–3]. Based on
the range of stresses, there are four types of flow stresses: (i) the first is the stress that
exists throughout the material, (ii) the second is the stress within the composition, which
is created by the tension and compression of the composition, (iii) the third kind of stress
is the non–uniform stress existing in each grain, which is equivalent to the action stress
between the actual grains and different phases in the structure, and (iv) the fourth is the
more microscopic stress caused by dislocations and various intracrystalline defects [4–9].
Seeger et al. [10] considered that the first kind of stress is a constant in the macroscopic
range, and the second kind of stress is also a constant in the microscopic domain, which
tends to change periodically in the macroscopic range as well as the third kind of stress in
the microscopic domain. Given the preparation and treatment of metallic materials, such as
drawing [11], extrusion [12], rolling [13], corroding [14], cutting [15], grinding [16], surface
rolling [17], shot peening [18], hammering [19], casting [20], quenching heat treatment [21],
welding [22], etc., these four types of residual stresses are inevitable.
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In the processing of metal materials, the generation of residual stress is unavoidable, and
concurrently, such stress can impair the operational efficiency of the material [23,24]. Therefore,
it is of utmost significance to manage the residual stress within metal materials [25]. The
origins of residual stress encompass three primary factors. (i) Residual stress arises from
disparate plastic deformation resulting from applied forces. (ii) Thermal effects produce
residual stress; non–uniform temperature changes cause non–uniform thermal expansion.
(iii) Residual stress is caused by chemical action; this residual stress is the stress generated by
the chemical change or physical change transmitted from the surface to the interior [26–31].
In summary, residual stress is caused by non–uniform deformation caused by non–uniform
force, heat and composition. It is assumed that the residual stress is always the upper limit
of the elastic limit, so a reduction in the flow stress will reduce the residual elastic stress.
Therefore, it is particularly important to control the flow stress in metal materials.

The reduction process of flow stress is essentially various inelastic deformations
that occur inside the material, and the initiation and development of the deformation
process requires energy consumption. Various existing methods of eliminating flow stress
have the characteristics of delivering energy to the material to induce the release of flow
stress. At present, the main methods for reducing the flow stress are natural aging [32],
thermal aging [33], vibration [34], the mechanical stretching method [35], the hammering
method [36], etc. Compared with traditional methods, the use of electropulsing treatment
(EPT) technology stands out due to its energy–efficient, highly effective, straightforward
and pollution–free characteristics.

In recent years, EPT has been a new metal material processing technology [37], which
mainly uses high–density energy input and a high–intensity electric field effect to promote
the microstructure evolution inside metal materials, thereby improving the performances of
the materials [38]. The use of pulsed current to process metal materials has achieved many
excellent results that are different from those of traditional processing methods, and it has
been widely researched and applied as a potential innovative technology that can break
through the bottleneck of traditional processing technology. The current mechanism of flow
stress drop under EPT has been accepted due to the fact that the pulse current facilitates
the movement of the dislocation, reduces the concentration of stress and reduces the flow
stress. In fact, the pulse current can reduce flow stress resulting from the movement of
dislocations, the distribution of phases and plastic deformation.

Here, we systematically summarized the mechanisms of flow stress drop under EPT
and explored the influences of thermal and non–thermal effects on dislocations, phases,
textures and recrystallization. We attempted to construct the mapping relationship between
pulse current and stress and used numerical analysis and FES to verify the consistent
relationship. Finally, we believe that analyzing the situation of multi–field coupling from a
multi–scale perspective is beneficial for promoting mechanism studies on flow stress drop
under EPT. This work has important implications for improving mechanical properties
under EPT.

2. The Mapping Relationship between Pulse Current and Stress

Numerous studies have established that EPT is capable of diminishing the flow stress of
metal materials [39]. The research group of Conrad diligently examined the decline in flow
stress experienced by metals such as Al, Cu, Ti, Ni, Fe, W and Nb when exposed to electrical
pulse stresses during linear tensile strain at a consistent rate [40–45]. Their findings indicate
a significant reduction in flow stress when metals are subjected to an electrical current
pulse with an amperage of 103–104 A/mm2 for 60 µs. Evidently, this induces a relaxation
in stress as the current traverses through the metallic framework [46–50]. Up to now, the
inherent ability of EPT to reduce flow stress has been reported from different aspects. The
flow stress drop mechanism of EPT in terms of the organizational structure and the field
variation in FES is illustrated in Figure 1.
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Figure 1. Schematic of reduction in flow stress from the perspectives of organizational evolution and
FES under EPT.

Figure 2A illustrates Li et al.’s [51] methodology, where a pulsed current is injected into
the prolonged stress relaxation of nanocrystalline nickel foils, enhancing the relaxation rate.
The findings demonstrate that this rate escalates with the introduction of pulsed currents.
Additionally, as the magnitude of the pulse current density escalates, so too does the
enhancement of the relaxation effect. Zhan et al. [52] devised a constitutive model inspired
by aged relaxation in light of pulse current effects during the creep aging deformation
process. It has been observed that as temperature elevates, the rate of stress relaxation
correspondingly increases, implying that the thermal activation of dislocations is a factor
during stress relaxation (refer to Figure 2B). Yang et al. [53]. integrated various effects
(magneto–plasticity, Joule heating, electron wind, etc.) to construct a crystal plasticity
model, decoupling the non–thermal effects and thermal effects on dislocation activity and
quantifying their influence on flow stress. As shown in Figure 2C(a), the difference in stress
between the control sample and the sample subjected to applied current at a strain of 0.26%
was observed. The stress drop induced by pulsed current is significantly higher than that
induced by Joule heating or continuous current, despite the overall temperature being the
same. The additional stress drop is attributed to the non–thermal effects induced by pulsed
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current. Figure 2C(b) demonstrates that, at lower root mean square current densities, the
reduction in stress due to Joule heating is smaller than the non–thermal effects of pulsed
current. As the root mean square current density increases, the temperature further rises,
and the non–thermal effects initially increase and then decrease. This implies the existence
of an optimal root mean square current, leading to the most significant stress drop under
density and steady–state temperature with prominent magneto–plastic effects.
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Figure 2. (A) Graph detailing the curvature radius of samples under varied current densities and
relaxation periods [51]. (B) Diagram depicting stress relaxation trends at different temperatures
post EPT [52]. (C) (a) The total stress drop; (b) the relationship between the stress drop caused by
non–thermal effects and the root mean square current density of steady-state temperature, pulsed
current and continuous current. The stress drop during Joule heating is provided for comparison
(CC: continuous current) [53].

Concisely, an upsurge in pulse current duration, alongside temperature and current
density within prescribed limits, correlates with a reduction in residual stress because of
flow stress drop [54]. Nonetheless, the precise dynamics and microstructural mechanisms
underpinning the pulse current’s impact on flow stress drop remain obscure, casting doubt
on its industrial viability. Next, we try to summarize the research results of pulse current
affecting flow stress in metal materials and discuss the influence law and mechanism of
pulse current on flow stress in metal materials from the perspectives of dislocations, phases
and grains.
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3. Effects of EPT on Dislocations

The composition of flow stress, identified as ∆σi is attributed to both thermal and
non–thermal influences induced by the pulse current [55,56]. The correlation between flow
stress σi and the density of dislocations ρ adheres to the Kock-Mecking framework [56,57]:

σi = σ0 + M αGb
√

ρ (1)

where σ0 represents the baseline stress constant, M represents the effective orientation factor
of Taylor, α is a defined constant, b denotes the Burgers vector, and G signifies the modulus
of shear elasticity. The magnitude of flow stress is linked to the dislocation’s magnitude
squared, and a decline in dislocation density within the crystal matrix contributes to flow
stress drop. The formulation for current–assisted dislocation ascension is delineated as
follows [58]:

ν = 4πac0DV
f Va

lK0T
(2)

where v is the dislocation climbing rate, a denotes the atomic transition interval, c0 is the
density of vacancy sites in an ideal crystal structure, DV is the coefficient of vacancy volume
diffusion, K0 is a constant, T denotes temperature, f /l is the climbing force, and Va is the
atomic volume. Joule heat can increase DV and T, and electronic wind can increase DV and
f /l, both of which can promote dislocation climbing and reduce dislocation density.

XRD peak widening as a result of strain serves as a method used to gauge dislocation
density [59]. For homogeneous materials, the Williamson–Hall [60] formula is used to infer
dislocation density based on X-ray peak expansion:

∆K ≈ αs

D
+ N
√

ρK (3)

where ∆K is the peak width, N stands for a constant, αs stands for the shape factor, D is for
the crystallite dimension, and K is for the diffraction vector’s intensity. Considering the
effect of strain anisotropy, an improved Williamson-Hall formula [61,62] was developed
as follows:

∆K ≈ αs

D
+ bM

√
π

2
ρ
(

KC1/2
)

(4)

In this model, the dislocation contrast factor C relates to the Miller indices, M remains
a non–dimensional constant, and b denotes the Burgers vector. In conclusion, one can
ascertain dislocation density empirically from the XRD data of the sample (Figure 3A) [63].
Generally speaking, the dislocation density of metal tends to decrease after EPT, and its
dislocation evolution is shown in Figure 3B [64].
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Figure 3. (A) (a) XRD patterns of AA2195 alloy under creep aging test (CCA) and electric–assisted
creep aging (ECA) conditions; (b) impact of electrical pulsing on dislocation density within AA2195
alloy [63]. (B) Depiction of the dislocation development mechanism in ECA–treated samples (green
lines, dislocations, green spheres, electrons; orange panels, T1 precursor; I, II, III and IV all represent
dislocation lines during evolution) [64].

3.1. Joule Heat Effect

The process of pulse current input will produce flow around effects in various high–
stress areas such as grain boundaries, dislocations, second–phase particles, vacancies,
cracks, etc., providing Joule heat to the defect area due to higher resistivity [65]. Joule heat
accelerates the movements of dislocations and their climbing and annihilation on grain
boundaries, which is beneficial to the homogenization of the organization, thereby resulting
in a decrease in flow stress [66].

Contemporary findings indicate that the Joule heating phenomenon can lower the
barrier to dislocation motion and enhance the process of dislocation cancellation, conse-
quently decreasing dislocation concentration [67–70]. Typically, the grid resistance, known
as the Peierls–Nabarro force due to the periodically distributed Peierls energy of activation,
is the barrier that must be overcome for the dislocation to slip [71–73]. Influenced by the
kink–pair mechanism, the rate of a moving dislocation over distance L is given by

Vg = νD
bL
x2

c
exp

(
−

Ug(τ)

kT

)
(5)

where Ug(τ) symbolizes the stress-dependent activation energy, b denotes the Burgers
vector, νDb/xc defines the oscillation frequency of the dislocation over wavelength xc, k
denotes the Boltzmann constant, and T stands for temperature. The equation suggests
that within the domains of stress and temperature, the kink-pair mechanism benefits
from thermal activation, indicating an advantage of increased temperatures for dislocation
movement [74].

Zhang and his team [75] uncovered a stress–softening occurrence through their in-
vestigation on the influence of electric–assisted deformation on nickel–based superalloys’
a-phase, as depicted in Figure 4A. Their conclusion was that the localized Joule heat effect
was responsible for this, as it encouraged both dislocation slip and dislocation recovery.
Moreover, the quick rate of dislocation recovery resulted in the swift alleviation of dis-
locations surrounding the δ phase, which they identified as the primary cause for the
formation of dislocation–free loops around said δ phase (Figure 4A(c,d)). In a separate
study, Zhang and colleagues [76] theorized that dislocations running perpendicular to the
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current direction could hinder electron movement due to the dislocation region’s high
scattering coefficient. The localized Joule heat effect caused temperatures in these areas to
rise, and the resulting local high temperature prompted dislocation annihilation (Figure 4B).
In Figure 4C, the highest strains can be seen at the top and bottom of the dislocation core,
with less strain on the left and right sides. If the electron motion is not aligned with the
dislocation, electrons move to either side of the dislocation core and are heavily scattered
by the core, as the red curve illustrates. The electron detour results in a high concentration
of electrons on either side of the dislocation, causing a significant electron imbalance. How-
ever, when electron motion aligns with the dislocation, scattering caused by the strain field
is minimal, as demonstrated by the black curve [77]. Zhang et al. [78] suggested that the
softening impact of Joule heating lessens the dislocation density (Figure 4D). Briefly, Joule
heating promotes the motion of dislocations, causing them to annihilate, thereby reducing
dislocation density and flow stress.

Alloys 2024, 3, FOR PEER REVIEW 7 
 

 

where 𝑈 𝜏  symbolizes the stress-dependent activation energy, b denotes the Burgers 
vector, 𝜈 𝑏/𝑥  defines the oscillation frequency of the dislocation over wavelength 𝑥 , k 
denotes the Boltzmann constant, and T stands for temperature. The equation suggests that 
within the domains of stress and temperature, the kink-pair mechanism benefits from 
thermal activation, indicating an advantage of increased temperatures for dislocation 
movement [74].  

Zhang and his team [75] uncovered a stress–softening occurrence through their in-
vestigation on the influence of electric–assisted deformation on nickel–based superalloys’ 
a-phase, as depicted in Figure 4A. Their conclusion was that the localized Joule heat effect 
was responsible for this, as it encouraged both dislocation slip and dislocation recovery. 
Moreover, the quick rate of dislocation recovery resulted in the swift alleviation of dislo-
cations surrounding the δ phase, which they identified as the primary cause for the for-
mation of dislocation–free loops around said δ phase (Figure 4A(c,d)). In a separate study, 
Zhang and colleagues [76] theorized that dislocations running perpendicular to the cur-
rent direction could hinder electron movement due to the dislocation region’s high scat-
tering coefficient. The localized Joule heat effect caused temperatures in these areas to rise, 
and the resulting local high temperature prompted dislocation annihilation (Figure 4B). 
In Figure 4C, the highest strains can be seen at the top and bottom of the dislocation core, 
with less strain on the left and right sides. If the electron motion is not aligned with the 
dislocation, electrons move to either side of the dislocation core and are heavily scattered 
by the core, as the red curve illustrates. The electron detour results in a high concentration 
of electrons on either side of the dislocation, causing a significant electron imbalance. 
However, when electron motion aligns with the dislocation, scattering caused by the 
strain field is minimal, as demonstrated by the black curve [77]. Zhang et al. [78] suggested 
that the softening impact of Joule heating lessens the dislocation density (Figure 4D). 
Briefly, Joule heating promotes the motion of dislocations, causing them to annihilate, 
thereby reducing dislocation density and flow stress. 

 
Figure 4. (A) Illustration depicting how dislocation varies due to local Joule heat effects near the δ

phase throughout the EPT [75]. (B) Local Joule heat effect map of dislocations in different directions
(A represents a dislocation in the current direction, and B and C represent a dislocation in the vertical
current direction) [76]. (C) Schematic of electrons orbiting edge dislocations in various orientations,
in which the colored parabolic areas represent the strain fields surrounding these dislocations (The
red curve indicates that when the direction of electron movement is not parallel to the dislocation,
the electron will move to the left or right of the dislocation core, and then be strongly scattered
by the dislocation core. The black curve indicates that when the electrons move parallel to the
dislocation, the electrons are hardly scattered by the strain field.) [77]. (D) Observations of dislocation
arrangements via TEM: (a,c) display the dislocation patterns for samples T1 and T2, respectively, in
the absence of electrical pulses, while (b,d) present the configurations for samples T1-EP, T2-EP and
T3, with EP indicating the application of electrical pulses [78].
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3.2. Electronic Wind Effect

During EPT, migratory electrons can produce an electronic wind that influences the dis-
locations, resulting in an acceleration of dislocation movement due to the electronic wind’s
momentum [79]. As the dislocations in the alloy are generally secured by the secondary–
phase particles, the unbound ends of the dislocations twist around the secondary–phase
particles due to the electric wind force until the dislocation lines align with the flow of
current; concurrently, the electronic wind force reaches its minimum impact [80,81]. This
phenomenon is a primary factor in the alignment and flattening of dislocations within the
alloy’s grains when subjected to pulse current, reflecting the most evident non–thermal
consequence of the pulse current.

In 1963, Troitskii and Lichtman first revealed the electron wind effect in metal crystals,
that is, the interaction between moving electrons and dislocations [82]. For electronic wind,
three models are mainly assumed at present:

Kravchenko’s [83]:

fed
l

=

[
b
4

(
3n

2EF

)
∆2

vF

]
(νe − νd) =

3b
8

∆2

eEFvF
J (6)

Klimov et al.’s [84,85]:

fed
l

=
1
3

nm∗bvF(νe − νd) =
m∗bvF

3
J (7)

Roschupkin et al.’s [86]:

fed
l

=
2h
π

n(νe − νd) =
2h
π

nJ (8)

where fed
l stands for the force of drift electrons acting on dislocations per unit length, νe

stands for the electron directional drift rate, νd stands for the dislocation rate, b denotes
the Burgers vector mode, e stands for the electron charge, n stands for the electron density,
m∗ stands for the effective electron mass, EF stands for the Fermi energy, vF stands for the
Fermi rate, h stands for Planck’s constant, J stands for current density, and ∆ stands for
the energy gap. According to the above model, it is clear that the electronic wind force is
proportional to the current density, that is to say, the greater the current density, the more
obvious the electronic wind effect. Therefore, the expression for the electronic wind force
can be mainly assumed as follows [87]:

fed
l

= Ked J (9)

In this formula, Ked is called the electronic wind coefficient. However, according to
Formulas (6)–(8), the calculated Ked values are 10−17, 10−16 and 10−15 Nm/A, respectively.
According to the experimental results, Ked is in the order of 10−12 Nm/A.

Furthermore, the current progress of the electronic wind model still relies on a series
of publications by Conrad and his colleagues, providing a systematic framework for
simulating the electronic wind effect with different models under various assumptions.
For instance, in assuming electrostatic equilibrium, under an externally applied current,
electrons move continuously without reaching equilibrium. The stress reduction caused by
the electronic wind force can be represented by the following equation [88]:

σep =
Bvd

b
(10)

In this formula, σep represents the decreasing stress, vd denotes the average dislocation ve-
locity, B stands for the resistance coefficient, and b denotes the Burgers vector. Furthermore,
models describing the decrease in flow stress often involve the combined expression of
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multiple effect mechanisms [53,89], with the individual electron wind effect still exhibiting
the aforementioned issues.

Extensive research indicates that migratory electrons assume a distinctive function
in electrical pulse treatment as an ancillary force that advances dislocations [90]. These
dislocations ultimately accumulate at the grain boundaries and establish linear configura-
tions [91,92]. As illustrated in Figure 5, the activities of vacancies and dislocations receive
an upsurge through the influence of migratory electrons, which promotes the rapid resolu-
tion of dislocations. Additionally, with the effect of electronic wind, the Frank–Read [93]
source is unable to generate a significant number of dislocations, effectively diminishing
the frequency of dislocation propagation. In the end, there are reductions in dislocation
concentration and the realignment of dislocation structures in accordance with the trajec-
tory of the migrating electrons. It is noteworthy that this decrease in dislocation density
significantly reduces the extent of the flow stress drop [94].
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Figure 5. The green and orange arrows represent the direction of drift electron motion and dis-
location structure, respectively. (a–f) The stress before and after EPT at the current densities of
(a,e,f) 4482 A/mm2 and (b–d) 5184 A/mm2, respectively. (a) 355 MPa and 270 MPa; (b) 345 MPa
and 172 MPa, respectively; (c,d) 396 MPa and 197 MPa, respectively; (e,f) 456 MPa and 197 MPa,
respectively (A and B represent the two ends of the dislocation line respectively; The red arrow
indicates the direction parallel to the dislocation the direction of the electron wind force; c,d,e with
circle indicate where the actual dislocation structure is located) [94].

As shown in Figure 6, Zhou et al. [95] designed the non–isothermal creep–age forming
(NICF) samples as controls at the same temperature to identify the non–thermal effect of
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pulsed current. The main climbing force of Fc is the vacancy concentration gradient, which
will generate the thermodynamic driving force Fosm. The Fc can drive the edge component
to climb along the direction from the normal line to Burgers vectors b, resulting in the
gradual expansion of the spiral turn in Figure 6a. The synergistic effect of the electronic
wind force Few and the climbing force Fc cause the spiral dislocation to evolve into a
conical spiral dislocation and finally into a straight line in assisted creep–age forming (ECF)
samples (Figure 6b). A schematic of the dislocation configuration during NICF and ECF
sample evolution is shown in Figure 6c.
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Figure 6. Illustration of the dynamics of helical dislocations in NICF and ECF specimens, depicted in
parts (a,b), respectively, with the climbing plane PN oriented perpendicular to vector b. (c) presents a
visual representation of the dislocation arrangements observed during the progression of the NICF
and ECF specimens [95].

Zhang and colleagues [96] explored how electric pulse treatment (EPT) influences
the static recrystallization (SRX) texture in nickel–based superalloys subjected to cold
deformation. Their research revealed that the electron wind’s role in generating parallel
dislocation arrays can indirectly facilitate the SRX mechanism, as shown in Figure 7A(a–d).
Conversely, Zhao and their team [97] proposed that the alignment of dislocations in parallel
formations, driven by the electron wind under high–energy pulse currents, plays a pivotal
role in dislocation mobility, which is significantly influenced by the electron beam’s total
flux, as depicted in Figure 7A(e,f). In a different study, Han and colleagues [69] delved
into the impacts of electric currents on the mechanical properties and microstructure
transformation of Al–Mg–Li alloys through electric pulse–assisted uniaxial tensile (EAUT)
tests. They observed that, unlike the random and entangled dislocations seen in traditional
samples, dislocations within the EAUT–treated samples’ matrix exhibited a tendency for
near–parallel alignment due to the electron wind’s influence, as illustrated in Figure 7B.
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Figure 7. (A) (a–d) TEM images of EPT samples treated at different temperatures for 20 min [96]:
(a,b) at 700 ◦C; (c,d) at 800 ◦C; (e) compressed without electropulsing; (f) compressed with electropuls-
ing [97]. (B) TEM images showing <011>Al electron diffraction patterns and brightfield images of
samples under different test conditions: (a–c) EAUT; (d–f) conventional high–temperature tensile
test [69].

In fact, the electron wind also induces the regeneration of dislocations [98,99]. In
general, when the slip direction is [uvw], the shear stress τ and Burgers vector b are
as follows:

τ ∝ G·b = G·a/n
(

u2 + v2 + w2
)1/2

(11)

where G is indicative of the shear modulus, a symbolizes the lattice constant, and n refers to
the kind of dislocation (which can be full or partial dislocations, and for partial dislocations,
n exceeds that of full dislocations). In accordance with Equation (11), the shear stress τ has
an inverse relationship with n, implying that, when circumstances are the same, the critically
resolved shear stress of partial dislocations falls below that of complete dislocations. Hence,
when conditions are equivalent, partial dislocations have a higher propensity to regenerate
under the effect of electron force [100].

As shown in Figure 8A, Zhang and colleagues [101] documented the elimination and
reformation of dislocations in superalloys under the influence of electron force, utilizing
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electro-in situ transmission electron microscopy. It has been demonstrated that different
slip systems experience different electronic forces, dislocation regeneration will be driven
by the action of continuous current, the electron force will not disappear, the continuous
multiplication of dislocations occurs in region 2, and the phenomenon of dislocations are
first annihilated and then regenerated in region 1. In Figure 8B, Xia et al. [102] proposed
that the electronic wind facilitates the conversion of forest dislocations into active ones,
activating more slip systems and shortening the pinning duration of movable dislocations.
As shown in Figure 8C, Daudi et al. [103] argued that in samples subjected to high electron
wind, defects like micro/nano cracks and micropores evolve into dislocation gatherings,
loops and clusters. Moreover, the electron wind propels movable dislocations from near
defects toward the free surface, where some dislocations are extinguished, thus reducing the
flow stress. Importantly, while the electronic wind encourages dislocation multiplication,
it leads to a more even strain distribution. A uniform plastic deformation of the sample
correlates with a reduction in flow stress [104].
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Figure 8. (A) (a) illustrates the interaction between the electron flow direction and various crystal
planes; (b) demonstrates the Schmid factor for each slip system when subjected to this specific
direction of electron force; (c) depicts the behavior of dislocations on the (110) plane over time [101].
(B) offers a graphical representation of how electron wind influences a screw dislocation, considering
different Burgers vectors [102]. (C) (a) displays a Ti–6Al–4V alloy before the application of electrical
current and (b) shows the same alloy after being subjected to a current density of 5 × 105 A/cm2,
with arrows and ellipses highlighting areas of dislocation build–up, clustering and elimination, and
arrows and ellipses showing dislocation accumulation, aggregation and annihilation [103].

A conceptual model was introduced that describes how high–energy pulsed currents
impact the relaxation and duration of elastic forces. This model is rooted in the theory that
the plastic flow of materials is primarily governed by the thermally driven movement of
dislocations [105]:

S =
ep

e0
=

Gep

τ0
=

[
1− exp

(
−

Gτp

µ

)]
·
[(

1− τs

τ0

)
+

(
αI2

τ0

)]
(12)

where S is the flow stress drop rate, ep signifies the extent of plastic deformation, e0 denotes
the initial elastic strain, G stands for the shear modulus, τ0 symbolizes the initial shear stress,
τp refers to the time span of the electric pulse, µ denotes the lattice viscosity coefficient, τs is
lattice resistance, α is a parameter related to lattice vibration energy, and I is current. It is
evident that the alleviation of stress is attributed to the synergistic effects of Joule heating
and the electron wind phenomenon.
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In summary, Joule heat and electron wind can promote the migration of dislocations
and carry out the rearrangement of dislocations. The stress can be eliminated from two
aspects: (1) Joule heat reduces dislocation density and (2) electron wind induces dislocation
increment to promote the uniform deformation of the samples.

4. Effects of EPT on Phase and Void

The existing literature suggests that EPT–elicited solid–phase transitions are key in the
development of ultrafine grain (UFG) structures and potential nanostructures [106,107]. EPT,
as a process away from equilibrium, allows the unstable solid phase in high–temperature
samples to be maintained after quickly cooling to room temperature (RT) [107,108]. The elec-
trical pulse not only facilitates the progression from the metastable state to the equilibrium
state, but also strengthens the stability of the metastable state [109].

4.1. Joule Heating and Electron Wind Effects

The influence of pulse current on atomic mobility can be represented by this equation:

Vie =
D0Z∗ jeρ

KT
|e|·exp

(
− Q

KT

)
(13)

where Vie is the atomic mobility, D0 signifies the self–diffusion coefficient, Z∗ represents
the effective charge, je indicates the current density, ρ indicates the density, e stands for the
electron charge, K stands for the Boltzmann constant, T stands for temperature, and Q is
the activation energy. In Joule heating theory, for a given electrical parameter, the electrical
energy is simply calculated as follows:

EJoule = J2ρV∆t (14)

∆T =
J2

mc
ρV∆t (15)

ρ =
2m∗v
ne f e2

1
l
=

2m∗v
ne f e2 µ (16)

where in Equation (14), J signifies the current density, ρ denotes the resistivity, V stands
for the volume of the conductive portion, and ∆t stands for the current action time. In
Equation (15), m stands for the mass of the conductive portion, and c stands for the specific
heat capacity. In Equation (16), m∗ stands for the effective mass of the electron, ne f stands
for the number of free electrons per unit volume, e is the electron charge, v stands for
mean velocity of motion, l stands for the free path of the electron, and µ stands for the
scattering coefficient. Studies have shown that the resistivity of defects is approximately six
to eight times greater than that of defect–free lattices [110,111]. As current passes through
the metal, the localized Joule heat effect generates a temporary localized high temperature
at the crystal defect, leading to an increase in the diffusion coefficient [112]. Furthermore,
the intense scattering of drift electrons can supply extra energy to decrease the activation
energy of atomic diffusion.

4.2. Thermal Compressive Stress Effect

The rate at which the sample’s temperature increases is extremely rapid when it is
subjected to a high–density pulse current [40,113]. During this procedure, the expansion
of the sample does not occur in sync with its temperature increase, indicating that the
expansion trails behind the warming. As a result, even in the absence of external constraints,
thermal compressive stress develops within the sample. The thermal compressive stress
produced through thermal expansion hysteresis and temperature rise is given by the
formula below [114]:

σ(t) = Eα∆Tmax[Θ(t)] − l(t) (17)
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where Θ(t) is the dimensionless temperature rise at any moment (Θ(t) = ∆T
∆Tmax

), ∆T is
the instantaneous temperature change, ∆Tmax is the maximum temperature change, l(t)
is the dimensionless expansion length (l(t) = ∆L

∆ Lmax)
, where the ∆L is the instantaneous

length change, ∆Lmax is the maximum length change, E stands for the elastic modulus;
and α stands for the expansion coefficient. The maximum thermal compressive stress
might be σmax = Eα∆Tmax, as the current density becomes higher, the ∆Tmax and thermal
compressive stress becomes larger. Hence, it can be simply inferred that the thermal
compressive stress is in direct proportion to the current density. Thermal compressive
stress along with Joule heat can speed up the atomic migration, which is capable of crack
repair, thereby reducing flow stress.

As depicted in Figure 9A, Bao and colleagues [115] hypothesized that during Electro–
Assisted Micro–Compression (EAMC), the current initiates the α→β→α′ phase transition
in Ti–6Al–4V alloys, where the “hot spot” effect of localized Joule heating serves as the
primary driver for the nucleation of new β–phase. Zhu et al. [116] suggested that when
vacancies migrate and accumulate in areas such as dislocations and grain boundaries, they
turn into nucleation sites for precipitates. The kinetic energy exchange between drifting
electrons and solute atoms (Ni and Si) enhances the diffusivity of the solute atoms and
lowers the energy barrier that the solute atoms have to overcome during the precipitation
process, thereby speeding up the formation of precipitates (Figure 9B). The application
of an electrical pulse speeds up the diffusion of atoms and the movement of dislocations
toward the crack, assisting in its healing. This healing phenomenon can be attributed to
Joule heating and the thermal compressive stress caused by the pulsed current bypassing
the crack tip (Figure 9C) [117]. In Figure 9D, the micropore collapse is caused by the
local softening of the micropore edges due to Joule heating and thermocompression stress.
Furthermore, EPT promotes the migration of atoms to locally recrystallize near the healing
zone [118]. As shown in Figure 9E(c1,d1), Guo et al. [119] lattice distortion near the interface
might be a result of atomic migration under pulse current. In Figure 9E(e1,f1), an increased
presence of atomic vacancies and lattice distortions near the interface might be linked to
the precipitation of the α phase in β grains and the atomic migration at the α tip during the
phase transition.
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(C) Conceptual visualization of the mechanism for crack healing, the stages of crack healing are shown
in (a–c) [117]. (D) (a) The generation of micropores due to plastic deformation; (b) the rerouting
effect of the current in the defect zone; (c) Joule heating and thermal compressive stress surrounding
the micropores; (d) the collapse and recrystallization of the micropores [118]. (E) High–resolution
TEM (HRTEM) images of the α/β interface in EST3: (a,b) chosen areas of the α and β interfaces;
(c,c1) the coherent α/β interface of the three–point grain boundary; (d,d1) distorted α/β interface
and imperfections; (e,e1) imperfections at the edge and inside of the interface; (f,f1) distortion of
three–point grain boundaries and imperfections along the interface [119].

To sum up, throughout the EPT procedure, the generation of Joule heating and the
movement of electrons contribute to the acceleration of atom and vacancy diffusion because
of increased resistivity [120,121], thereby realizing the phase transition (development to
equilibrium). Furthermore, the hot–compression stress can further promote the migration
of atoms around the pores and achieve the healing of the pores.

5. Effects of EPT on Texture and Recrystallization

The dissipation of residual stress through flow stress drop via pulsed current is
crucial as it allows for the release of elastic forces within the material through either
macroscopic or microscopic plastic deformation, driven by dislocation movement [122].
The interaction between the electroplastic effect and both thermal and non–thermal effects
leads to a reduction in the material’s flow stress; this means that dislocations will reorganize,
creating high–density, low–angle boundaries to mitigate stress concentrations [123–125].
Additionally, as the frequency of the electric pulse increases, the extent of recrystallization
also rises [126], leading to the formation of a recrystallized microstructure characterized
by fine, equiaxed grains, which contributes to a reduction in the strength of the material’s
texture [127,128].

5.1. Electroplastic Effect

Upon the application of pulse current to the deformed alloy, there is a notable decrease
in the alloy’s resistance to deformation, and its plasticity is greatly enhanced [68]. As
Conrad and colleagues [44,83] have suggested, the plastic deformation, which is governed
by the thermally activated movement of dislocations, along with the plastic strain

.
εp

experienced during the pulse, is

.
εp =

.
ε1

{
− ∆H(σ∗)

kT

}
(18)

where
.
ε1 is the coefficient closely associated with the density of moveable dislocations, the

vibration frequency of individual dislocations, the extent of area influenced by thermal
oscillations and the activation entropy. ∆H denotes the energy of activation for enthalpy,
σ∗ is the effective stress applied, k represents the Boltzmann constant, and T stands for
the temperature. Conrad [45] believes that the effects produced by the pulse current,
both thermal and non–thermal, primarily influence the pre–exponential factor and the
activation enthalpy associated with dislocation motion. When the current passing through
the conductor does not alter the thermal activation properties of dislocation movement, the
rate of plastic deformation

.
ε under the influence of the current is [129]

.
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ε1exp

(
−U0

kT

[
1−

(
kTm
U0

)
ln
(

σ∗Gb
lc

)])
(19)

where U0 represents the activation energy, Gb
lc

indicates the threshold stress for the dislocation
to surpass the barrier, and m is an exponent not reliant on the effective stress, lc is the barrier
spacing. Force effects (electron wind, thermal compressive stress, magnetic force, etc.) can
have an effect on the lc, which may promote dislocations from local pinning and thus affect
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the plastic behavior of materials [130]. Ma et al. [131] deduced the creep model under the
coupled action of force, electricity and heat:

.
εec =

.
ε1exp

(
−Q− ∆Qe

kT

)[
sinh

(
ξ

σ

s

)]1/m′
(20)

where
.
εec denotes the rate of inelastic strain, Q represents the energy required for activation,

ξ stands for the stress multiplier, σ stands for the stress, s stands for the internal variable
of the average isotropic resistance to plastic flow, m′ stands for the strain rate sensitivity,
and ∆Qe = βj2 is activation energy change caused by the current. It is observed that
(i) the thermal component of the electroplastic can lessen the resistance against dislocation
motion due to lattice friction and boost the frequency of dislocation oscillations, thereby
reducing the energy barrier for dislocation slip; and (ii) the non–thermal dimension of the
electroplastic effect is capable of modifying the local energy landscape of the dislocation
core, altering how dislocations navigate obstacles and decreasing the thermal activation
barriers they encounter. The synergistic influence of these elements facilitates the material’s
plastic deformation, essential for flow stress drop within the sample.

5.2. Thermal and Non–Thermal Effects on Grain Boundary Migration

Annealing recrystallization nucleation can be characterized by the migration of low–
angle boundaries (LABM) and the motion of high–angle boundaries (HABM) [132]. The
noticeable increases in the migration rates of both low– and high–angle boundaries are
due to the enhanced exchange of vacancies and individual atoms during the EPT process.
Typically, the speeds at which these boundaries move (v) are described through the equation
below [133,134]:

v = MP, M = M0exp
(
− Q

RT

)
(21)

where P denotes driving pressure, M indicates the mobility of the boundary, M0 stands
for a material constant, T stands for the absolute temperature, Q represents the energy
required for boundary migration, and R stands for the gas constant. In EPT, the total
driving pressure is [135]

P = PV + PR + Pth + Path (22)

where PV signifies the volume energy, PR stands for the energy associated with grain
boundaries, Pth is predominantly linked to the thermal compressive stress resulting from
Joule heat, and Path mainly refers to the electronic wind force. As the current density
and frequency increase, M, Pth and Path exhibit pronounced rises, leading to elevated
stored energy levels and accelerated boundary migration. Consequently, this phenomenon
promotes the initiation of twin recrystallization at comparatively reduced temperatures.

During plastic deformation, alterations in the shape and alignment of grains lead
to a non–uniform grain orientation. Recrystallization initiates at points where different
twinning systems intersect or through the reorganization of lattice dislocations within
the twinned regions, which can produce small, recrystallized grains inducing random
misorientation and another deviation along the rolling direction (RD) [136]. The Kernel
Average Misorientation (KAM) serves as an indicator of the homogeneity of plastic de-
formation. Gao and co–authors [137] demonstrated a relationship between the density
of geometrically necessary dislocations (GNDs) and the KAM value, as indicated by the
subsequent equation:

ρGND =
2θ

µb
(23)

where θ, µ, and b correspond to the average KAM measured in radians, the scanning
step size and the Burgers vector, respectively. Typically, the extent of plastic deformation
increases as the value of KAM increases, and the value of KAM increases as the texture
strength becomes lower.
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5.3. Effects on Texture

According to Troitskii’s [138,139] study, when electrons move perpendicularly to
the slip system, that is, when their path is orthogonal to dislocations on the slip plane,
the plasticity of the crystal is substantially diminished. This effect is akin to the way
precipitates can pin dislocations when the direction of electron flow is perpendicular to
the plane defined by the dislocation and its Burgers vector, thereby impeding dislocation
movement [140,141].

Figure 10A shows that the maximum texture strength of the cold–rolled samples after
EPT decreased from 4.500 to 3.586, and the increase in the KAM value eliminated part
of the stress [142]. In Figure 10B, the texture that developed post–compression at RT is
solely a deformation texture due to crystal slip, with a texture strength of 7.255. This
figure is significantly higher than that resulting from pulse current deformation (4.449
and 4.345). During the Electrically Assisted Microforming (EAM) compression process,
the recrystallization texture prompted by the pulsed current and the deformation texture
caused by crystal slip counteract each other. This interaction leads to a decrease in overall
texture strength and an increase in the orientation dispersion within the grains [143].
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(b) compressed at 0 A/mm2; (c) compressed at 57.16 A/mm2; (d) compressed at 70.23 A/mm2 [143].
(C): KAM distributions of (a) A0 sample; (b) A4 sample; and (c) A6 sample and (d) KAM numer-
ical statistics [144]. (D) Inverse pole figures (IPFs) of the αˆ′–Fe phase in the samples: (a) initial;
(b) CQ + CT, (c1) EQ + ET, (c2) IPFs of γ–Fe phase in EQ + ET sample; note: ND denotes the normal
direction [145]. (E) Characteristics of the external load and electron wind stress and the rotation law
of the crystal grains under the coupled stress field: (a) stress state in different regions during simple
compression; (b) relationship between the stress state and grain rotation at A3 in sample A during
simple compression; (c) relationship between the stress state and grain rotation at A2 in sample A
during simple compression; (d) stress state and grain rotation angle at A3 in sample A during simple
compression; (e) stress state and grain rotation angle at A2 in sample A during simple compres-
sion; (f) coupled stress field and grain rotation at B3 in sample B during electroplastic compression;
(g) coupled stress field and grain rotation at B2 in sample B during electroplastic compression [146].

In Figure 10C, Ang et al. [144] believed that dislocations annihilate, grains rotate,
and subgrain boundaries increase under the action of induced current. In Figure 11B(a),
a pronounced <111> texture of α’–Fe appeared in TD, whereas it was weakened after
tempering and conventional quenching (CT + CQ), as shown in Figure 10D(b). Nonetheless,
this <111> texture nearly vanishes after tempering and electropulse quenching (ET + EQ),
with the emergence of a new <110> texture (α’–Fe) aligned with the direction of the current,
as depicted in Figure 10D(c1). In addition, the <111> orientation in the majority of the
γ–Fe phase in the ET + EQ specimen is also aligned parallel to the current direction
(Figure 10D(c2)). This underscores the critical influence of the current on the evolution of
texture, while also facilitating the rapid release of micro–residual stress without a marked
decrease in dislocation density [145]. Ultimately, the texture of the slip system is enhanced
through the promotion of dislocation slip, and the electric current assists in achieving a
more uniform texture across the sample (Figure 10E) [146].

5.4. Effects on Recrystallization

When subjected to pulse current, the material’s structure evolves toward a state of
reduced free energy, meaning the current lowers the material’s resistivity and consequently
decreases its electrical energy’s free energy [147–150]. Furthermore, Qin et al. [151–154]
proposed that the decrease in electrical free energy serves as the catalyst for the material’s
structural transformation. Qin et al. [155,156] studied the mechanism of recrystallization of
wrought metals under electric pulses and showed that the Gibbs free energy changes in
wrought metals during pulse–treated recrystallization can be expressed as follows:

∆G = ∆Gd + ∆Go + ∆Ga (24)

where ∆G denotes the total alteration in Gibbs free energy, ∆Gd represents the stored
energy inside the deformed metal, and ∆Go and ∆Ga represent the additional free energy
introduced by the non–thermal and thermal influences of the pulse current, respectively.
In line with established nucleation theory, the rate at which recrystallization nuclei form,
denoted by Ie, in the context of electric pulse treatment, can be articulated as follows:

Ie = I0·
(

D
λ2

)
·exp

(
−∆Gd + ∆Go + ∆Ga

RT

)
(25)

where I0 is a constant, λ represents the transition distance of the atom, T represents the
absolute temperature, R represents the Boltzmann constant, and D represents the diffusion
coefficient. With the application of pulsed current, the expansion rate of the recrystallized
core is described as follows:

G =
G0

E0

√
E2

0 − Cλb2 J[KewΩ(dt − d0)] + wNbρeZ∗b ln(dt/d0) (26)
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where E0 is the initial storage energy, G0 stands for the initial rate of crystal nucleus growth,
λ indicates the grain boundary diffusion coefficient, Kew is the electron wind correlation
coefficient, C represents the positive coefficient, J is current density, Ω indicates the atomic
volume, Nb is the atomic density at the grain boundary, w is the width of the grain boundary,
ρ is the ideal crystal resistance, eZ∗b is the effective charge of the metal ion at the grain
boundary, and dt and d0 are the grown grain diameter and the original grain diameter,
respectively. It can be seen that in the process of EPT, the non–thermal and thermal effects
of pulsed current can increase the nucleation rate of recrystallization, but the grain growth
is inhibited. The non–thermal and thermal effects can be simply understood as the Joule
heat effect and electronic wind effect.

As shown in Figure 11A, Wang et al. [157] illustrated that with the prolongation of
the high–density multiple pulse treatment (HMPT) time, the high–density dislocation cells
and some entanglements disappeared, and the subcrystals preferentially merged through
dislocation climbing in the localized regions with a high dislocation density. The majority
of equiaxed recrystallized structures exhibit a flattened grain boundary morphology, as
depicted in Figure 11A(e). New recrystallized nuclei are observed at the tri–angular inter-
section of grain boundaries at 120◦, suggesting simultaneous nucleation and grain growth
during the recrystallization process. Zhu et al. [158] confirmed that EPT has the capability
to lower the activation energy for recrystallization and enhance the nucleation rate, thus
facilitating the acceleration of recrystallization kinetics. Moreover, EPT facilitates the merg-
ing of subgrains and the generation of new strain–free equiaxed grains via recrystallization,
as illustrated in Figure 11B. The peak of the intragranular deflection angle decreases from
~1◦ to ~0.5◦ with increasing Joule temperature. It indicates that the subgrain merges or the
subgrain boundary migrates, forming a low–angle grain boundary (2~10◦).
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fractions of cold–rolled AZ31 magnesium alloy strip at 250 ◦C before and after electrical pulse and
annealing treatments at different times: (a) as received; (b) electrical–pulsed for 1800 s; (c) annealed for
19,200 s [158]. (C) (a–c) Images showing grain misorientation along selected lines (L1–L3) in samples
subjected to EHT at temperatures of 805, 855 and 905 ◦C for 5 min each; (d–f) local misorientation
maps in the black spots treated with different EHT temperature at 805, 855 and 905 ◦C for 5 min,
respectively [159]. (D) Diffusion and recrystallization mechanism of interface elements of TA1/304
composite plate under EPT [160].

The presence of a small orientation deviation peak of 1◦ within the black spot rep-
resents the characteristic microstructure of recrystallized grains. Consequently, the elec-
troplating effect accelerates the recrystallization process of abnormal beta grains when
compared to traditional furnace heating methods. In Figure 11C(a–c), electron wind and
localized Joule heating contribute to the formation of dislocation loops or low–angle bound-
aries, thereby expediting phase transformation and recrystallization within the abnormal
beta grain region. Notably, these defects, which induce lattice stress in the black dot region,
result from dislocation interactions as depicted in Figure 11C(d–f) [159]. Ren et al. [160]
proposed that, under the influence of EPT, a new undistorted grain core is generated in
highly distorted regions, subsequently absorbing the surrounding deformed matrix for
growth. The presence of dislocations and solute atoms at grain boundaries impedes the
growth of equiaxed grains, leading to their alignment in strips and forming monolayer
grains as shown in Figure 11D.

In conclusion, compared with the conventional treatment, the coupling of non–thermal
and thermal effects of pulse current leads to an increase in nucleation rate. Furthermore,
the increases in atomic diffusivity, dislocation arrangement and grain boundary migration
promote the formation of recrystallization and texture modification. Flow stress can be
reduced through plastic deformation caused by recrystallization and texture modification.

6. Finite Element Applications

The finite element model was constructed upon a set of governing equations, which
encompass the dynamic coupling of principles such as the conservation of charge, Fourier’s
law and equations of kinetic mechanics [161–163]. Pulsed current processing entails consid-
erations of electromagnetism, electrodynamics, plastic dynamics and heat transfer [164,165].
Within the EPT process, Finite Element Simulation (FES) is predominantly employed to
investigate the effects of different materials and control parameters on thermal, electrical
and stress distributions within the system [166–168].

In the EPT process, significant features include the (i) transient stress drop during
current density application, (ii) recovery of hardening behavior during current removal
and (iii) long–range thermal softening [169–171]. A robust model must accurately cap-
ture the respective features in either mode currently applied. With the understanding
of the electroplastic mechanism, the FES modeling has been realized from Joule heat to
Joule heat coupled with electron wind to Joule heat coupled with electron wind based on
dislocation density [172–175]. Table 1 presents the classification of constitutive models
for electroplasticity. Importantly, none of the current constitutive models can accurately
describe the specific process of flow stress drop using pulsed current, indicating the need
for further modification.

Figure 12A illustrates the matrix as a high–conductivity cube, with the untreated
sample’s dislocation entanglement reduced to three mutually perpendicular, connected
rods of low conductivity. Thermal compressive stress peaks at the entanglement’s pinning
point, leading to its gradual disappearance and leaving only dislocations parallel to the
current direction during EPT [176]. As shown in Figure 12B, Qin et al. [177] used MATLAB
and the finite difference method to solve the topologically close–pack (TCP) phase model.
The results reveal that the current density peaks at the tip of the TCP phase, with stronger
electron winds accelerating atomic diffusion. Additionally, a reduction in size correlates
with a decrease in electrical free energy. Figure 12C presents simulation and experimental
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results of three sets of tested recrystallized grains. Colored grains represent recrystallized
grains, while white grains represent the matrix. The standard errors for all three sets of
results are ±4.56%, suggesting that the recrystallization nucleation mechanism of the Al–
Zn–Mg–Cu alloy is dynamic recrystallization [178]. Figure 12D showcases the simulation
conducted by Tiwari et al. [169] on the changes in material mechanical behavior solely due
to Joule heating, employing finite elements within a coupled electro–thermal–mechanical
model. The results indicate that Joule heating can effectively reduce stress.

Alloys 2024, 3, FOR PEER REVIEW 22 
 

 

𝜎 = 𝐾 𝑇 𝜀   Magargee et al. [185] 𝜎 = 𝐾𝜀 𝜀 , 𝐾, 𝑛, 𝑚 = 𝑓 𝑇  Zheng et al. [186] 𝑇 ∝ 𝐽 , 𝑘 = 𝐶𝑓 𝑓 𝑔𝑏 𝜎 − 𝑓 𝑔 𝜎 , 𝑓 , 𝑓 𝑔, 𝑔𝑏 = 𝑓 𝑇   Wang et al. [111] 𝑅 = 𝐶𝑓 𝑇   Wang et al. [187] 

Viscoplastic equation–
based models 

𝜎 = 𝜎 𝜀, 𝜀, 𝑇 + 𝑀/𝑏𝐾 𝐽  Conrad [44] 𝜎 = ∆𝜎 + ∆𝜎 + ∆𝜎   Lee et al. [188] 𝜎 = ∆𝜎 + ∆𝜎   Hariharan et al. [189] 𝜎 𝜀, 𝜀, 𝑇, 𝐽 = 𝐶 𝜀, 𝜀, 𝑇 + 𝜎 𝐽   Wang et al. [190] 

Physically based–mod-
els 

𝜎 = ∆𝜎 + ∆𝜎 + ∆𝜎    Lahiri et al. [191] 𝐷 = 𝐾𝜎 1 + 𝑓 , 𝑓 = 𝐶 𝐽 − 𝐽 , 𝑓 = 𝐶 𝐽   Dimitrov et al. [192] 𝜎 = 𝐶 𝜌, 𝐶 = 𝑓 𝑇, 𝐽   Kim et al. [193] 𝜎 = 𝜎 + 𝜎 + 𝜎 + 𝑀𝛼𝐺𝑏 𝜌, 𝜎 , 𝛼 = 𝑓 𝑇, 𝐽 , 𝐶 = 𝑓 𝑇   Liu et al. [194] 𝜎 = 𝑀𝛼𝐺𝑏 𝜌 𝜀/𝜀 / , 𝛼 == 𝑓 𝑇, 𝐽   Hariharan et al. [172] 

 
Figure 12. (A) FEM simulation illustrating the impact of electropulsing on dislocation entanglement 
in the untreated AA6061 alloy: (a) model representation; (b) meshing configuration; (c–e) and (f–h) 
illustrations of current density and thermal distribution across the XY, ZY and ZX planes; (i) depic-
tion of thermal compressive stress affecting dislocations aligned with the electric current (along the 
Y–axis) [176]. (B) (a–e) Current distribution around needle TCP phases of different sizes ((a): a = 0.5 
µm, b = 0.5 µm; (b): a = 1.0 µm, b = 1.0 µm; (c): a = 1.0 µm, b = 2.0 µm; (d): a = 1.0 µm, b = 4.0 µm; (e): 
a = 1.0 µm, b = 6.0 µm); (f) graph illustrating the variation of electrical free energy corresponding to 
size diminution [177]. (C) Simulated outcomes for (a) Group A; (b) Group B; (c) Group C, alongside 
experimental findings for (d) Group A; (e) Group B; (f) Group C [178]. (D) (a) Dislocation density 
metrics; (b) room–temperature strain–hardening rate juxtaposed with constant–amplitude DC–en-
hanced (EA) deformation across true plastic strain; (c) FES data showcasing the Joule heating effect 
during electrically assisted compression testing, presented on true stress–true plastic strain graphs 
along with EA and RT deformation readings [169]. 

7. Conclusion and Perspective 
Controlling flow stress in metal materials through pulse current has emerged as a 

rapidly advancing research field, garnering increasing attention and notable progress. Re-
ducing flow stress using EPT is a nascent area of research, fraught with numerous chal-
lenges and uncertainties, especially when compared to traditional methods like natural 

Figure 12. (A) FEM simulation illustrating the impact of electropulsing on dislocation entanglement
in the untreated AA6061 alloy: (a) model representation; (b) meshing configuration; (c–e) and (f–h)
illustrations of current density and thermal distribution across the XY, ZY and ZX planes; (i) depiction
of thermal compressive stress affecting dislocations aligned with the electric current (along the Y–
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density metrics; (b) room–temperature strain–hardening rate juxtaposed with constant–amplitude
DC–enhanced (EA) deformation across true plastic strain; (c) FES data showcasing the Joule heating
effect during electrically assisted compression testing, presented on true stress–true plastic strain
graphs along with EA and RT deformation readings [169].
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Table 1. The constitutive models of the mechanical behaviors of materials under the current application.

Models Constitutive Equation Authors

Empirical models σ = Kεn + A(1− exp(Bε)), A = f
(

J2) Roh et al. [179]
σ =

[
(A + Bεn) + 1− exp

(
D1εD

2
)
T1εT

2
]
, T1, T2 = f

(
J2) Kim et al. [180]

Joule heating–based models

σ = f (T) Kronenberger et al. [181]
.
εT =

.
εE +

.
εth +

.
εp,

.
εp = f (σ, ε, T) Gallo et al. [182]

σ = Aεn − B(ζVI), ζ = f (T) Salandro et al. [183]
σ = Kεnes, K, n, s = f (T) Jones [184]

σ = K(T)εn Magargee et al. [185]
σ = Kεn .

ε
m, K, n, m = f (T) Zheng et al. [186]

T ∝ J2, kEA = C fT
(

f J(gb)
)
σgb − f J(g)σg, fT , f J(g, gb) = f (T) Wang et al. [111]

R = C f (T) Wang et al. [187]

Viscoplastic equation–
based models

σ = σ
(
ε,

.
ε, T
)
+ M/bKew J Conrad [44]

σexp = ∆σT + ∆σVE + ∆σEP Lee et al. [188]
σexp = ∆σT + ∆σEP Hariharan et al. [189]

σEA
(
ε,

.
ε, T, J

)
= C

(
ε,

.
ε, T
)
+ σew(J) Wang et al. [190]

Physically based–models

σexp = ∆σT + ∆σmagneto + ∆σew Lahiri et al. [191]
Din = Kσ(1 + fEP), fEP = CEP(J − J0), fEP = CEP J2 Dimitrov et al. [192]

σ = C
√

ρ, C = f (T, J) Kim et al. [193]
σ = σf riction + σss + σGB + MαGb

√
ρ, σSR, α = f (T, J), C = f (T) Liu et al. [194]

σ = MαGb
√

ρ
( .
ε/

.
ε0
)1/m, α = f (T, J) Hariharan et al. [172]

7. Conclusion and Perspective

Controlling flow stress in metal materials through pulse current has emerged as a
rapidly advancing research field, garnering increasing attention and notable progress.
Reducing flow stress using EPT is a nascent area of research, fraught with numerous
challenges and uncertainties, especially when compared to traditional methods like natural
aging, thermal aging, vibration aging, explosion and hammering methods. This progress
report presents a comprehensive overview of recent advancements in understanding the
microscopic mechanisms of EPT for mitigating flow stress. Additionally, we offer an in–
depth analysis covering various scales, including dislocation behavior, atomic structure,
phase transitions, texture development and recrystallization processes. Through this
discourse, we enhance our comprehension of how EPT relieves flow stress by examining it
from the perspective of organizational structure evolution at the microscopic level. Then,
we tried to isolate the various effects caused by the pulse current, and systematically
illustrated each effect on the evolution of organizational structure.

Despite being in its infancy, research on flow stress drop through EPT remains highly
appealing. Presently, there is a lack of comprehensive theories and models applicable to
EPT, and the observation and mechanism description of the specific microscopic process of
reducing flow stress under pulsed current are still unclear. The research prospect of EPT is
broad, and the regular research results need to be further explored. It is important to note
that future investigations into flow stress drop under EPT will need to carefully address
several challenges and issues. From our perspective, the most significant of these issues are
summarized as follows:

1. As for the microscopic mechanism of flow stress drop under EPT, it is generally be-
lieved that the Joule thermal effect, electronic wind effect and electroplastic effect have
the main influence on the flow stress drop compared with skin effect, magnetostriction
effect and pinch effect. Although the electroplastic effect has been widely recognized,
the underlying mechanism related to the electric wind force has been controversial,
and most studies have difficulty in separating these effects.

2. Currently, several mechanisms have been proposed to explain the drop of flow stress
through EPT: (i) Joule heat and electron wind can promote the migration of dis-
locations and carry out the rearrangement of dislocations. During the climbing,
dislocation annihilation dominates, thereby reducing the dislocation density and flow
stress. (ii) The electroplastic and Joule thermal effects decrease the frictional resistance
within the dislocation lattice, thereby lowering the flow stress of the material. Once the
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flow stress drops below the initial residual stress level, the material undergoes plastic
deformation, leading to residual stress reduction. (iii) The coupling of non–thermal
and thermal effects induced by pulse current promotes atomic diffusion, dislocation
rearrangement and grain boundary migration, leading to plastic deformation and
flow stress drop.

3. The electronic wind coefficient Ked calculated according to Equations (6)–(8) yields
values on the order of 10−17, 10−16 and 10−15 Nm/A, respectively. In contrast, experi-
mental results yield Ked values on the order of 10−12 Nm/A [44,45,195]. This huge
discrepancy between theoretical and experimental results is something that electronic
wind models have failed to address for years. The model of electronic wind power
needs further revision.

4. We believe that multiscale computation is the future direction of the microscopic
mechanism of flow stress drop under EPT. First–principle calculations reveal that
charge imbalances near defects weaken atomic bonding under electric current [196].
Machine learning can further be used to calculate the macroscopic dislocation density.
Multi–scale calculation combined with numerical analysis and finite element simula-
tion can better describe the specific microscopic process of material flow stress drop
under electric current.

In summary, in this burgeoning field of research, the exemplary instances provided for
the various effects on the evolution of organizational structures in this progress report may
be constrained by their brevity. It is conceivable that the drop of flow stress under EPT needs
to be modified and improved in theory and model. In future work, we should consider how
to further clarify the relationship between the material structure, performance parameters
and the flow stress drop under EPT. Additionally, the influences of the pulse current
waveform, frequency and other parameters also need to be further explored and analyzed.
We posit that this progress report holds significant implications for the reduction of flow
stress through EPT and the enhancement of mechanical properties in metal materials.
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