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Abstract: In this work, the structural, magnetic, thermal, and transport properties of the arc-melted
polycrystalline Heusler alloy Co2Ti1.5Sn0.5 are investigated. The alloy crystallizes in an L21 structure
with a space group of Fm-3m. The magnetic properties of the alloy depict its antiferromagnetic
nature and the alloy exhibits magnetic ordering around Neel Temperature TN = 8.5 K. The effective
magnetic moment value obtained from the Curie –Weiss law suggests that the cobalt atom in the
alloy is in the low-spin state. From the heat capacity studies, the Sommerfeld coefficient and
Debye temperature were determined. In addition, electrical resistivity shows a linear response with
increasing temperature, indicating the metallic nature of the alloy.

Keywords: Heusler alloy; antiferromagnet; itinerant electron system

1. Introduction

Heusler alloys have received a great deal of attention in recent decades due to their di-
verse applications, which include high-temperature ferri- and ferromagnets, shape memory
alloys, multi-ferroics, and topological insulators with significant potential for spintronic,
energy, and magnetocaloric applications. These alloys consist of intermetallic materials
containing ternary X2YZ or XYZ compositions comprising transition metals (X and Y)
and a p-block element (Z) that crystallizes in a structure belonging to space group Cb1 or
L21. In particular, cobalt-based Heusler alloys were considered to be good candidates for
research on itinerant electron ferromagnetism and spintronic applications [1,2]. In spin-
tronics devices such as magnetic tunnel junctions (MTJs) [3,4] and giant magnetoresistance
(GMR) devices [5], Heusler alloys based on Co2 can be employed as electrode devices.
Co2FeAl [6] is a potential MTJ, while Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 [7] is found to
have a GMR ratio of 34% at 290 K (80% at 14 K) [8]. Magnetic tunnel junctions, spin valves,
and magnetic random access memory are just a few examples of spintronic devices where
100% spin polarization is present due to the material’s metallicity in one spin channel and
semiconductor property in the other spin channel, which is very useful in half-metallic
ferromagnetic applications [9,10]. Studies on Co2TiX (X = Si, Ge, and Sn) alloys demonstrate
their half-metallic nature and thermoelectric properties [11]. Further research on these
materials reveals that their transition temperature and physical properties are significantly
dependent on the transition and p-block stoichiometry. For instance, in Co2TiAl1-xSix alloy,
the substitution of silicon for aluminum increases the Curie temperature [12]. Whereas, in
Co2Ti1-xMnxGa, transition temperature increases with an increase in “x” until x = 0.7 and
becomes independent of doping concentration for x > 0.7 [13]. In the case of CoTi1−xVxSb,
an increase in electrical resistivity is observed when vanadium is slightly substituted for tita-
nium [14]. Additionally, pseudo-binary alloys such as CoTi1-xAlx [15] and CoTi1-xGax [16],

Alloys 2022, 1, 254–262. https://doi.org/10.3390/alloys1030016 https://www.mdpi.com/journal/alloys

https://doi.org/10.3390/alloys1030016
https://doi.org/10.3390/alloys1030016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/alloys
https://www.mdpi.com
https://orcid.org/0000-0002-1704-0119
https://orcid.org/0000-0002-4047-2307
https://orcid.org/0000-0002-5263-3200
https://orcid.org/0000-0002-4374-1023
https://orcid.org/0000-0002-2342-8064
https://orcid.org/0000-0003-2199-7666
https://orcid.org/0000-0003-2147-9869
https://doi.org/10.3390/alloys1030016
https://www.mdpi.com/journal/alloys
https://www.mdpi.com/article/10.3390/alloys1030016?type=check_update&version=1


Alloys 2022, 1 255

and quaternary Heusler alloys such as Co2Ti1−xFexAs [17] and Co2Ti1-xFexSn[18] show
notable changes with doping.

Co2TiSn is one of the technologically advantageous materials in this Heusler family
as it demonstrates a half-metallic property [19,20]. It undergoes a semiconductor–metal
transition around room temperature (Tc = 350 K), which is associated with a paramagnetic
to ferromagnetic transition. The near room temperature ferromagnetic property of Co2TiSn
makes this material a strong candidate for magnetic applications. Our prior work on
Co2Ti0.5Sn1.5 and Co2Ti0.75Sn1.25 [21] also produced promising results. These alloys had
high-temperature ferromagnetic characteristics, and the transition temperature of these
alloys shifted upward with increasing Sn concentration. The attractive behavior of this
alloy with the change in stoichiometry makes this series interesting for further studies. In
this work, to obtain further insight into this series, we synthesized a Co2Ti1.5Sn0.5 alloy,
and its magnetic, thermal, and transport properties were thoroughly examined.

2. Materials and Methods

Co2Ti1.5Sn0.5 alloy was prepared by arc-melting of pure Co (99.95%), Ti (99.98%), and
Sn (99.999%) under an inert argon atmosphere. The ingot was remelted several times to
improve homogeneity. To enhance crystallinity, the resultant alloy was sealed in an evacuated
quartz tube and annealed at 1273 K for 8 days. A Panalytical XPert PRO diffractometer with
Cu-Kα radiation was used to confirm phase purity from the X-ray powder diffraction data.
Using the FULLPROF program [22], diffraction data were refined to understand the crystal
structure. The sample composition was examined using backscattered electron analysis (BSE)
and Energy Dispersive X-ray Electron Spectroscopy (EDAX). We added error values to the
EDAX measurements to make it more quantitative. Study of the magnetization, heat capacity,
and electrical resistivity of the prepared samples was carried out using a Vibrating Sample
Magnetometer (VSM) and Physical Property Measurement System (PPMS) in a DYNACOOL
device from Quantum Design in the temperature range of 2–400 K and in an applied magnetic
field of 0–9 T. Both zero-field cooling (ZFC) and field cooling (FC) magnetization investigations
were carried out for the samples.

3. Results and Discussion

The room-temperature XRD pattern of the Co2Ti1.5Sn0.5 alloy was analyzed using the
FULLPROF program [14], which is displayed in Figure 1a. It confirms that the sample
crystallizes in a Cu2MnAl-type ordered L21 structure with a space group of Fm-3m. The
lattice parameter a, determined from Rietveld refinement, is 5.95 Å, which is less than the
lattice parameter of Co2TiSn alloy (6.07 Å) and could be due to the addition of titanium,
which has a smaller atomic radius than tin [20].

The refinement’s quality of fit parameter is χ2 = 1.72. Further, the stoichiometric
formation of the phase is verified through BSE and EDAX analysis of the sample. The analysis
of sample surfaces with BSE imaging, along with EDAX, confirms the single-phase nature;
the stoichiometry of the composition is found to be 2:1.5:0.5 as per the result listed in Table 1.

The temperature dependence of magnetic susceptibilities (M/B(T)) in ZFC and FC
at various magnetic fields measured in the temperature range of 2–300 K is shown in
Figure 2. In an applied magnetic field of B = 0.01 T, magnetic susceptibility displays
an antiferromagnetic transition at TN = 8.5 K (see Figure 2a). This antiferromagnetic
transition is further confirmed by a shift toward the low-temperature range in the first-
order derivative of ZFC magnetization, as shown in Figure 2b. A drastic change in magnetic
behavior and transition temperature for Co2Ti1.5Sn0.5 is observed when comparing it to
the Co2TiSn parent alloy. This change from high-temperature (350 K) ferromagnetism to
low-temperature (8.5 K) antiferromagnetism could be attributed to a reduction in the lattice
parameter and the corresponding change in magnetic interactions. Additionally, in M/B(T)
in applied magnetic fields of 0.01 T and 0.1 T, thermomagnetic irreversibility is visible (see
Figure 2a,c) and disappears as B approaches 1 T (Figure 2d). Hence, the bifurcation in the
ZFC and FC curves may be due to the domain wall pinning effect [23].
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Table 1. EDAX result for Co2Ti1.5Sn0.5 alloy.

Atomic % (Error %)

Spectrum 1
Co Ti Sn

49.3 (2.9) 38.7 (3.2) 12 (4.3)

Spectrum 2 50 (2.8) 38.4 (3.2) 11.7 (4.2)

Spectrum 3 46.7 (3.2) 39.3 (3.6) 14 (4.6)

Spectrum Mean 48.4 38.8 12.6

Composition Co2Ti1.55Sn0.48 ≈Co2Ti1.5Sn0.5
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Figure 2. (a) Variation in magnetic susceptibility (M/B(T)) with temperature in an applied magnetic
field of B = 0.01 T. The linear fit of Equation (1) is shown in the inset. (b) First-order derivative of ZFC
magnetization with temperature for the applied magnetic fields of B = 0.01 T, 0.1 T, and 1 T. ZFC and
FC M/B(T) in an applied magnetic field of B = 0.1 T (c) and 1 T (d).

The inset of Figure 2a depicts the Curie–Weiss behavior of the alloy in a temperature
range of 80–300 K at B = 1 T, obeying the Equation (1)

M
B

=
C

T − θP
(1)

where C is the Curie constant and θP denotes Curie–Weiss temperature. The obtained
Curie–Weiss temperature and Curie constants are θP = −22.8 K and 0.8335, respectively.
The negative Curie–Weiss temperature signifies an antiferromagnetic type of interaction in
the paramagnetic region. The effective magnetic moment of the cobalt atom, calculated
from the Curie constant, is measured as 1.8 (8) µB/Co, which is in close agreement with
the magnetic moment of a cobalt atom in the low-spin state.
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Variation in isothermal magnetization M(B) up to a magnetic field of B = 9 T in the
vicinity of the transition temperature of Co2Ti1.5Sn0.5 alloy is demonstrated in Figure 3a.
Isothermal magnetization curves follow the antiferromagnetic behavior detected in the mag-
netic susceptibility measurements. We did not observe a tendency toward the saturation of
magnetization at high magnetic fields.
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Figure 3. (a) Field-dependent isothermal magnetization M(B) of Co2Ti1.5Sn0.5 alloy at various tem-
peratures. (b) Arrott plot of Co2Ti1.5Sn0.5 alloy.

In order to understand the order of magnetic transition, an Arrott plot was constructed
around the transition temperature and is depicted in Figure 3b. According to the Banerjee
criterion [16], an Arrott plot with a positive slope indicates a phase transition that is second-
order in nature, whereas a negative slope or inflection point in an Arrott plot indicates
that the transition is of a first-order nature [17]. As shown in Figure 3b, the positive slope
of Arrott plot curves around transition temperature denotes that the antiferromagnetic
transition is second-order in nature at TN. Additionally, magnetic hysteresis studies of
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Co2Ti1.5Sn0.5 alloy support the suggestion that the magnetic transition is second-order in
nature as it is hysteresis free (see Figure 4); second-order transition materials will usually
display negligible or low magnetic hysteresis [24–26]. For practical applications, the absence
of magnetic hysteresis is more advantageous.
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Figure 4. Magnetic hysteresis at selected temperatures (T = 2 K, 5 K, 9 K, 100 K, and 300 K).

To gather a deeper insight into the system, heat capacity as a function of the tem-
perature C(T) of Co2Ti1.5Sn0.5 is presented without an applied magnetic field (B = 0 T) in
Figure 5. No clear anomaly around the antiferromagnetic transition temperature TN is
discernible for heat capacity.

The variation in heat capacity C/T(T) follows the relation

C/T = γ + βT2 (2)

where γ and β are the Sommerfeld coefficient and Debye coefficient, respectively. From the
C/T vs. T2 fit (seen in the inset of Figure 4), γ and β values were obtained as 59.57 mJ/mol K2

and 0.1937 mJ/mol K4, respectively. Further, Debye temperature (θD) was found to be 232 K
using the following equation:

θD =

(
12π4R

5β

)1/3

(3)

Electrical resistivity (ρ(T)) in the temperature range of 2–300 K for applied magnetic
fields of 0 T and 9 T is displayed in Figure 6. The temperature dependence has typical metallic
behavior. We determined the residual resistivity ratio, RRR = ρ (300 K)/ρ (2 K), to be 1.43.



Alloys 2022, 1 260

Alloys 2022, 2, FOR PEER REVIEW 6 
 

 

 

Figure 4. Magnetic hysteresis at selected temperatures (T = 2 K, 5 K, 9 K, 100 K, and 300 K). 

To gather a deeper insight into the system, heat capacity as a function of the temper-

ature C(T) of Co2Ti1.5Sn0.5 is presented without an applied magnetic field (B = 0 T) in Figure 

5. No clear anomaly around the antiferromagnetic transition temperature TN is discernible 

for heat capacity. 

 

Figure 5. Variation in heat capacity C(T) in the absence of an applied magnetic field. Inset shows the 

least square linear fit of C/T vs. T2. 
Figure 5. Variation in heat capacity C(T) in the absence of an applied magnetic field. Inset shows the
least square linear fit of C/T vs. T2.

Alloys 2022, 2, FOR PEER REVIEW 7 
 

 

The variation in heat capacity C/T(T) follows the relation  

𝑪/𝑻 = 𝜸 + 𝜷𝑻𝟐 (2) 

where γ and β are the Sommerfeld coefficient and Debye coefficient, respectively. From 

the C/T vs. T2 fit (seen in the inset of Figure 4), γ and β values were obtained as 59.57 

mJ/mol K2 and 0.1937 mJ/mol K4, respectively. Further, Debye temperature (𝜽𝑫) was 

found to be 232 K using the following equation: 

𝜽𝑫 = (
𝟏𝟐𝝅𝟒𝑹

𝟓𝜷
)𝟏/𝟑 (3) 

Electrical resistivity (ρ(T)) in the temperature range of 2–300 K for applied magnetic 

fields of 0 T and 9 T is displayed in Figure 6. The temperature dependence has typical 

metallic behavior. We determined the residual resistivity ratio, RRR = ρ (300 K)/ρ (2 K), to 

be 1.43. 

 

Figure 6. Temperature dependence of resistivity for Co2Ti1.5Sn0.5 in B = 0 T and B = 9 T. 

4. Conclusions 

The structural, magnetic, thermodynamic, and transport properties of polycrystalline 

Co2Ti1.5Sn0.5 have been systematically investigated. Crystallographic studies confirm that 

the alloy crystallizes in an L21 structure with a space group of Fm-3m, and the lattice pa-

rameter was found to be 5.950 Å . Compositional analysis asserts that the Heusler alloy 

exhibits a homogenous single-phase with 2:1.5:0.5 stoichiometry. Variation in magnetic 

susceptibility with temperature indicates the antiferromagnetic transition has a transition 

temperature of TN = 8.5 K. Thermomagnetic irreversibility in temperature-dependent 

magnetic susceptibility at the lower applied fields indicates a significant domain wall pin-

ning effect in the alloy. The effective magnetic moment of cobalt obtained experimentally 

from the Curie–Weiss fit is comparable to the low-spin state magnetic moment of the co-

balt atom. Further, from temperature-dependent heat capacity studies, the value of Som-

merfeld coefficient, Debye coefficient, and Debye temperature were determined as 59.57 

Figure 6. Temperature dependence of resistivity for Co2Ti1.5Sn0.5 in B = 0 T and B = 9 T.



Alloys 2022, 1 261

4. Conclusions

The structural, magnetic, thermodynamic, and transport properties of polycrystalline
Co2Ti1.5Sn0.5 have been systematically investigated. Crystallographic studies confirm that
the alloy crystallizes in an L21 structure with a space group of Fm-3m, and the lattice
parameter was found to be 5.950 Å. Compositional analysis asserts that the Heusler alloy
exhibits a homogenous single-phase with 2:1.5:0.5 stoichiometry. Variation in magnetic
susceptibility with temperature indicates the antiferromagnetic transition has a transition
temperature of TN = 8.5 K. Thermomagnetic irreversibility in temperature-dependent
magnetic susceptibility at the lower applied fields indicates a significant domain wall
pinning effect in the alloy. The effective magnetic moment of cobalt obtained experimentally
from the Curie –Weiss fit is comparable to the low-spin state magnetic moment of the cobalt
atom. Further, from temperature-dependent heat capacity studies, the value of Sommerfeld
coefficient, Debye coefficient, and Debye temperature were determined as 59.57 mJ/mol K2,
0.1937 mJ/mol K4, and 232 K, respectively. The observed behavior of electrical resistivity
demonstrates the typical metallic behavior of the alloy.
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