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Abstract: Current lifestyle and environmental factors contribute to obesity development, leading
to low-grade chronic inflammation (LGCI). Apart from obesity, LGCI is also related to rheumatic
diseases such as osteoporosis (OP) and osteoarthritis (OA). In these, an excessive accumulation
of adipose tissue has been linked to an excessive production of proinflammatory factors, such as
adipokines. This work’s aim is to stablish the effect of obesity-associated LGCI in major rheumatic
diseases and to determine optimal strategies to reduce it. Obesity is a risk factor for developing
OA, where a systemic LGCI state has been found. Concretely, obesity-associated LGCI has been
described as an OA instauration and progression promoter. To avoid this, several therapeutical
approaches (diet control, physical exercise, or nutraceuticals) have been tested. OP is another major
rheumatic disease where a basal LGCI has been described, being worsened by obesity. As in OA, diet
management and supplementation with vitamin D or probiotics have been proposed as approaches to
treat obesity-associated LGCI in this pathology. Currently, the increase in the prevalence of rheumatic
diseases is unstoppable. Nonetheless, obesity is a risk factor that can be controlled. Thus, the study of
new interventions to control the impact of obesity-associated LGCI is a challenge for the management
of patients with rheumatic diseases.
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1. Introduction

Lifestyle and environmental factors play a crucial role in health. It is well known
that the diet changes recently adopted in our society have had negative effects on our
wellbeing [1]. Among these changes, an excess of caloric intake, the poor quality of micro-
and macronutrients, such as an increase in saturated fatty acids, trans fats, and simple
sugars, as well as a decrease in calcium, magnesium, and B vitamin intake should be
highlighted [1]. These alterations contribute to chronic stress and low-grade chronic in-
flammation (LGCI) [1]. Obesity-related LGCI is also known as metainflammation [2].
Moreover, all these modifications of diet intake have also led to an increase in adiposity,
which is related to inflammatory status and contributes to LGCI [1]. LGCI is defined as
a persistent and unresolved inflammation, accompanied by a subclinical elevation (2- to
4-fold) of inflammatory cytokines or the presence of specific immune cells in peripheral
blood [1]. LGCI is related to many chronic diseases including obesity, osteoporosis (OP),
osteoarthritis (OA) [3], and sarcopenia [1]. An excessive local or systemic amount of proin-
flammatory cytokines, such as interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis
factor alpha (TNFα), alters bone remodeling by promoting osteoclastogenesis [4,5]. Indeed,
the deleterious effects of excessive inflammation on bone metabolism have been previously
described [6]. However, the inflammatory environment not only affects bone but also other
skeletal tissues including cartilage. In cartilage, proinflammatory cytokines condition the
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expression of cartilage degradation molecules, such as matrix metalloproteinases (MMPs)
or aggrecanases [7–10], among others.

1.1. Obesity and Obesity-Associated Low-Grade Chronic Inflammation

Obesity has been defined as an excessive accumulation of fat mass that implies a
risk to health [11]. It is commonly measured through the Body Mass Index (BMI) that
relates the height and the weight of patients, although currently, it has been displaced by
waist size, which is a more accurate metric [12]. It is considered that a BMI value higher
than 25 implies the patient is overweight, and a BMI value over 30 implies the patient
is obese [11]. Regarding waist size, obesity is defined as a waist perimeter greater than
94 cm for men and 80 cm for women [12]. This pathology is considered an uncontrolled
epidemic disease, since its numbers are continuously surpassing themselves both in adults
and children [11]. Indeed, as the World Health Organization states, nowadays obesity and
being overweight are deadlier than being underweight [11].

Obesity and its associated metabolic syndrome have been related to numerous rheumatic
diseases [13]. Part of this link has been underpinned by the fact that the adipose tissue acts
as an endocrine organ, secreting adipokines (lipocalin 2 (LCN2), adiponectin (ADIPOQ),
leptin, and visfatin among others) and proinflammatory cytokines, such as TNFα, IL6, or
IL1 [14,15]. Therefore, an excessive accumulation of adipose tissue has been linked to an
excessive production of multiple factors that can boost the inflammatory responses typically
found in multiple rheumatic diseases. Consistent with this overproduction of inflammatory
factors in obesity, the presence of the LGCI environment has also been found in obese
patients, which is characterized by increased TNFα levels [16]. Indeed, in this pathological
context a relationship between altered bone metabolism and chronic inflammation has
been observed [17]. Concretely, in obese mice, bone fractures had a worse evolution with
a lower plasma concentration of growth factors and a greater plasma concentration of
proinflammatory cytokines, such as TNFα [18].

Obesity has also been associated with significant changes in adipokine levels. Among
the most well-known changes in adipokine levels associated with obesity are the increase
in the circulating leptin concentration [16] and the decrease in ADIPOQ concentration
levels [19]. Leptin is the most studied adipokine, and it controls appetite through the
promotion of anorexia [20]. This molecule also exerts an outstanding modulation of the
immune system. Its activities include the control of the expression and production of
proinflammatory cytokines, such as IL6 and TNFα, by monocytes [21]. Accordingly, this
activity has been suggested as a common link between this adipokine and inflammatory
pathologies. In contrast to leptin, ADIPOQ levels have been found to be diminished in
the blood of obese patients [19]. Nonetheless, they are increased in certain inflamma-
tory pathologies [22] due to their implication in innate immune responses [23]. As with
leptin, LCN2 expression and its production is increased under injury or inflammatory
conditions [24], and simultaneously, LCN2 has been described to induce the expression
of several proinflammatory cytokines [25]. Moreover, it has been pointed out that LCN2
influences the inflammation related to obesity and its comorbidities (type 2 diabetes mel-
litus, non-alcoholic fatty liver disease, and cardiovascular disorders) [26,27]. Another
adipokine dysregulated in obese patients is visfatin, also known as NAMPT (Nicotinamide
phosphoribosyltransferase). This adipokine is produced by fat and immune cells, such as
β-lymphocyte precursors, among others. Thus, its augmented expression in obesity has not
only been linked to the increased amount of adipose tissue in obesity but also to a greater
production by immune cells [28–31]. Indeed, visfatin has been related to the inflammatory
state in rheumatic diseases [32].

Aiming for the control of LGCI resulting from obesity, different therapeutical ap-
proaches have been studied, including nonpharmacological dietetic manipulation, caloric
restriction as a weight loss measure, antioxidant foods, and physical exercise (PE). As a
result, given the relevance of the inflammatory state in obese patients, this work’s objective
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is to establish the effect of obesity-associated LGCI in major rheumatic diseases, as well as
to determine the optimal strategies to reduce LGCI.

1.2. Obesity-Associated Low-Grade Chronic Inflammation in Osteoarthritis

Currently, osteoarthritis is the most prevalent rheumatic disease, being the main cause
of pain and disability. The main characteristic of this pathology is the intra-articular space
narrowing, as a consequence of cartilage degradation in this area [33]. In this pathology,
systemic LGCI is observed. The inflammatory component of this pathology has been
widely described, and cytokines, such as IL1β, are determinant in its ethology [3,34].
These molecules affect the functional unit formed by articular cartilage and subchondral
bone [3,35] causing changes in the relationship between both tissues [3]. IL1β expression
is downstream from the biochemical and mechanical loading alterations occurring in the
osteoarthritic joint. These modifications not only affect the expression of proinflammatory
mediators but also induce the expression of catabolic factors [36,37].

Osteoarthritis is a key factor for an increase in body weight, since the pain and dis-
ability caused by the disease cause a sedentary lifestyle, an obesity risk factor [38,39].
Interestingly, the relationship between both pathologies is circular since the increase in
body weight and the associated metabolic syndrome contribute to an increase in the me-
chanical loading and osteoarthritic biochemical alterations [40]. In mice, it has been widely
demonstrated how high fat diet (HFD)-induced obesity causes OA, increasing proinflamma-
tory cytokine secretion, cartilage degradation, subchondral bone loss, etc., [41–44]. Obesity
not only affects the OA establishment but also influences OA severity by increasing knee
degeneration and proinflammatory cytokine (IL6) production by joint tissues [45]. Addi-
tionally, it has been demonstrated that the effects of obesity go beyond individuals, being
also heritable. When breeding HFD-induced obese mice, the predisposition to weight gain
was increased for up to two generations. Associated with this fact, the female mice in
two generations of offspring were more prone to OA evidenced in several tissues [46].

Obesity’s prejudicial effects on OA are not only due to the excessive weight. In a
study with human C-reactive protein (CRP) transgenic mice, body weight and OA severity
showed no correlation; however, the latter was related to CRP induction [47]. Interestingly,
the association between obesity and OA has been also described in nonbearing joints.
Concretely, an increase in adipokines, such as adiponectin, resistin, and visfatin have been
described with OA [34,48]. Therefore, the influence of obesity on OA could be potentially
caused by the maintenance of the LGCI induced by the obesity-altered levels of adipokines
and cytokines. Interestingly, the infrapatellar fat pad has arisen as a major adipokine and
proinflammatory cytokine producer when compared to subcutaneous fat deposits [49]. This
tissue has a more direct effect on the joint than the rest of the adipose tissue and visceral
and subcutaneous fat deposits. In obese individuals and HFD-fed mice, the infrapatellar
fat pad showed more proinflammatory molecules and adipokine secretion [49]. Moreover,
the infrapatellar fat pad release of TNF was elevated in OA patients as compared to healthy
patients [49]. However, it is not only fat tissue that is responsible for obesity’s influence
on OA. It was determined in rats that high carbohydrate–fat diet-induced obesity caused
synovitis prior to degradation of the cartilage, as well as an increase in the macrophage
infiltration and proinflammatory profile, evidencing again, the proinflammatory effects of
obesity on OA [41]. Moreover, in synovial fluid, obesity’s local effects (high fat and high
sucrose diet-induced) caused an increase in the inflammatory molecules’ concentration,
thus causing the induction of OA in the joint [50].

Certain studies have related the LGCI observed in obesity with dysregulation in
the gut microbiota, and a role in OA development for this situation has been proposed
through the increase in proinflammatory molecules that could activate innate immune
responses [34].

Regulation of obesity-associated LGCI in osteoarthritis is important. Obesity is a
chronic disease, but it is also a preventable one. Considering how obesity promotes OA
through both a contribution to the LGCI and the increase in joint loading, several ap-
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proaches have been studied, with the most relevant being diet, PE, and the combination
of both (Figure 1). Exercise as wheel running retarded HFD-induced OA progression in
mice with obesity [44]. In addition, this exercise also impaired proinflammatory cytokine
production, which has been associated with an improvement in glucose tolerance [44]. In a
clinical study with obese and overweight African Americans, McLeod et al. observed how
the combination of PE and diet ameliorated insulin sensitivity and fat accumulation [51].
Interestingly, PE itself was equally successful as diet+PE when referring to changes in
inflammation parameters [51]. Diet itself has also been proposed as a non-pharmacological
approach to treat obesity-associated OA. In another study with OA patients, the disease
index (Western Ontario and McMaster Universities Osteoarthritis Index) correlated posi-
tively with BMI and IL6 concentrations and also correlated between them [52]. As expected,
adhesion to a healthy diet was inversely related to the BMI and the body fat percentage.
Additionally, this high-quality diet was also negatively correlated with the IL6 concentra-
tion [52]. The serum concentration of the markers of collagen I, II, and III MMP-mediated
degradation were measured following an intervention with diet, PE, and diet+PE during
18 months in obese osteoarthritic patients. The data showed how diet and the combination
of diet+PE diminished weight and markers of cartilage degradation, thus affecting both
obesity and OA [53]. Messier et al. also determined the beneficial effects of the combination
of diet and PE on both obesity and OA [54]. The results obtained were similar to those
from Loeser et al. [53], with diet and diet+PE as the most effective approaches to reduce
inflammatory mediators, such as the IL6 concentration [54]. These results suggest that PE,
ideally combined with diet, improves the LGCI associated with obesity and thus the OA
markers and symptoms.
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Figure 1. Relation between obesity-associated low-grade chronic inflammation and osteoarthritis.
The proinflammatory molecules secreted systemically and locally by adipose tissue promote os-
teoarthritis instauration and progression. This effect could be modulated by pharmacological and
non-pharmacological approaches.

In addition to the non-pharmacological approaches as diet and PE, some pharma-
cological treatments have been tested to reduce obesity-induced OA LGCI. Asiatic acid
(AA) impeded the NFκB route in human chondrocytes, impairing the induced inflamma-
tion and degradation of the extracellular matrix [55]. In vivo, AA administration reduced
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proinflammatory and adipokine levels in obese mice, and it also averted the instauration
of obesity-associated OA, inhibiting the TLR4-mediated innate immune responses [55].
Other drugs were tested, such as follistatin (FST), which diminished the joint synovial fluid
concentration of obesity-induced proinflammatory cytokines and adipokines in mice [56].
In addition, FST also exerted a protective effect against post-traumatic OA [56]. Resveratrol
was also proposed as a treatment for obesity-induced OA. Despite not affecting weight,
resveratrol controlled proinflammatory cytokine and adipokine levels classically associated
with obesity-induced OA, such as IL1β, and leptin in obese mice treated with two different
doses [57]. Similar to AA, resveratrol’s mechanism of action was described to involve
the blockade of TLR4-mediated innate immune responses [57]. Among the natural ex-
tracts tested, grape seed proanthocyanidin extract (GSPE) showed interesting results. In
diet-induced obesity (DIO) mice, this extract administration blocked obesity development,
improving the associated fat and inflammatory profiles [58]. It also slowed arthritis pro-
gression in obese collagen-induced arthritis mice, through the regulation of immune cell
responses and local inflammatory mediators’ concentrations [58].

Interestingly, some drugs associated with therapeutic weight loss have showed anti-
inflammatory and anticatabolic effects on OA [59,60]. Metformin decreased proinflam-
matory cytokine expression, such as IL4 and IL1β, in primary chondrocytes [61,62]. This
antidiabetic drug also showed chondroprotective effects through the increase in the main
components of the extracellular matrix [62–65] and the decrease in the expression of dis-
integrin and metalloproteinases (ADAMs) [61,64]. Liraglutide, a glucagon-like peptide
1 (GLP-1) receptor agonist, also evidenced anti-inflammatory effects by reducing the IL6
and NFκB pathway expression in chondrocytes [66–68]. It has been suggested as a poten-
tial drug to target OA due to its effects in decreasing the catabolic activity of MMPs and
aggrecanases [66–68].

1.3. Obesity-Associated Low-Grade Chronic Inflammation in Osteoporosis

OP is the most prevalent bone pathology. It is characterized by a loss of bone mineral
density and the bony architecture, caused primarily by bone remodeling alterations. This
mainly leads to bone fragility and fracture proneness. As with most rheumatic diseases, OP
is highly related to age and sex, with a higher prevalence in older women [69,70]. In primary
OP, caused either by menopause or aging, the regulation exerted by estrogens on IL1, TNFα,
and IL6 [71,72] is lost [73]. Thus, the increase in the concentration of proinflammatory
cytokines has been associated with osteoclastogenesis promotion [4]. These molecules
stimulate osteoblast receptor activator of nuclear kappa-B ligand (RANKL) secretion [4,5].
Specifically, it was reported that TNFα and IL1β worked synergically to promote bone
resorption through the promotion of osteoclastogenesis in a direct and indirect manner [4,5].
Indeed, in several OP animal models, deletion of key cytokines receptors, such as the IL1
receptor or the TNFα receptor, drastically diminished bone loss [6]. TNFα specifically
affects bone growth directly affecting the growth plate, with this effect being reverted by its
inhibitor [74]. Prolonged exposure to this cytokine in mice caused bone alterations similar
to those presented in rheumatoid arthritis (RA) [75].

It has been suggested that obesity is a protective factor towards OP [76–78]. This
mistaken interpretation is led by the fact that the mechanical loading increase, caused by the
increase in weight in these patients, promotes bone mineral density through the activation
of the Wnt-wingless (WNT) pathway, among other mechanisms [79–81]. However, it has
been described that the presence of obesity in childhood diminishes the bone mass peak
critical in this stage [82]. Moreover, in obese mice and humans the increased amount of fat
mass is related to a lower bone quality [83–86]. Thus, the LGCI present in obesity has been
suggested as a contributing factor to the reduction in bone mineral density and thus OP
development [4,87].

Due to the impact of diet and inflammation on bone health, studies have pointed to diet
management as a key factor in the prevention of bone-related diseases such as OP [88,89].
Thus, n-3 polyunsaturated fatty acids’ (PUFAs) consumption has been described as a bone
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health promoter due to their capacity to decrease LGCI [88,89]. In contrast, n-6 PUFAs
intake exhibited deleterious effects on bones, since its consumption contributed to LGCI
and an increase in reactive oxygen species. Moreover, these factors impacted mesenchymal
stem cells’ (MSC) differentiation towards adipogenesis [88,89]. Hence, the n-6/n-3 PUFAs
ratio has been suggested as an interesting tool to manage LGCI in the context of bone
health [88,89].

Other studies have proposed vitamin D supplementation during pregnancy as a
promoter of bone mineral content [90]. However, its impact on bone structure has not been
elucidated yet [90]. Finally, probiotics could be a potential tool to prevent OP due to their
capacity to increase calcium absorption and thus improve bone density [91]. Nonetheless,
the influence of these treatments in LGCI has not been described so far. Notwithstanding,
it is important to notice that a decrease in vitamin D levels has been described in obese
patients [92] and recently related to chronic inflammation [93]. Thus, it could be a potential
obesity-LGCI treatment in rheumatic diseases.

OP pharmacological tools are scarce. Among them, selective estrogen receptor modu-
lators (SERMs) have demonstrated a positive effect on decreasing body weight and thus
obesity [94]. Concretely, Raloxifene and its association with shock waves showed beneficial
effects controlling OP in ovariectomized rats by decreasing the obesity-associated LGCI [95].
Surprisingly, the bisphosphonate clodronate liposome also had an antiobesity effect by
limiting energy intake. Nonetheless, this process was associated with deleterious side
effects that impair its use in this disease [96,97].

1.4. Obesity-Associated Low-Grade Chronic Inflammation in Other Rheumatic Diseases

A good example of inflammatory rheumatic disease is RA. Nonetheless, the inflam-
matory profile in this pathology significantly differs from the LGCI present in diseases
including obesity, OA, and OP. The levels of serum proinflammatory cytokine concentra-
tions are lower in OA patients than in RA patients, as well as in synovial fluid [98,99].
Moreover, the inflammatory environment and the mechanisms involved in it also vary [100].
Nonetheless, RA has also been related to obesity, with the activity of this pathology being
higher in obese patients [101]. CRP, a major rheumatic proinflammatory indicator, posi-
tively correlated with BMI, waist circumference, and pathology activity [101]. Differing
from OA, hygienic approaches, such as diet and PE, to control RA inflammatory levels were
not successful [102], probably due to the differences between LGCI and acute inflammation
in both pathologies.

Gout is another rheumatic pathology with an outstanding inflammatory component.
Similarly, it has also been related to obesity, since obesity is one of the major risk factors
for this pathology [103]. Surprisingly, in vivo administration of monosodium urate (MSU)
crystals to induce gout reduced IL6 and MCP1 macrophage basal and elevated production
in obese mice [104]. Nonetheless, in the same subjects, MSU treatment increased the IL1β
production similar to that in the control mice [104].

2. Methods

To analyze the impact of diet and its relationship with the inflammatory state, we
performed a search in Pubmed using the words “diet”, “inflammation”, “obesity”, and
“arthritis” or “osteoporosis” according to Mesh terminology (Tables 1 and 2).

Table 1. The inclusion and exclusion criteria used to limit the results to the study object.

Inclusion Criteria Exclusion Criteria

Access to full text available
Papers not focused on the topic
Access to full text unavailable

Language: English/Spanish Research letters, pilot studies
Different aim



Rheumato 2022, 2 120

Table 2. The searches performed, with the total results, the accepted results, and the dismissed articles.

Database Search Total Included Dismissed

Pubmed

((“Diet”[Mesh]) AND
“Inflammation”[Mesh] AND

“Obesity”[Mesh] AND
“Arthritis”[Mesh])

26 23 3

Pubmed

((“Diet”[Mesh]) AND
“Inflammation”[Mesh]

AND “Obesity”[Mesh] AND
“Osteoporosis”[Mesh])

5 5 0

TOTAL - 31 31 3

3. Conclusions

LGCI is a common denominator in numerous rheumatic diseases [1,2]. The sustained
and slightly increased level of proinflammatory cytokines in these conditions provoke
alterations along the musculoskeletal system, affecting cartilage integrity [6–9], bone re-
modeling and architecture [3,4], and synovia integrity [40]. However, LGCI is not only
present in rheumatic diseases. It is a characteristic of metabolic pathologies such as type 2
diabetes mellitus and obesity [25,26]. Obesity and being overweight are major risk factors
for rheumatic diseases [12]. Traditionally, their deleterious effects were attributed to the
increase in the mechanical loading due to the excess weight present in this pathology [39].
Nonetheless, the higher prevalence of pathologies as OA in nonbearing joints in obese
individuals versus healthy ones suggested another mechanism for the predisposition to
rheumatic diseases in obese patients [45]. LGCI has been understood as the alteration
through which obesity affects the musculoskeletal system, with the mechanism of this
damage being the excessive production of proinflammatory cytokines and adipokines
by adipose tissue [13–15,18,19]. In order to control obesity and the LGCI associated with
the most frequent rheumatic diseases, both hygienic and pharmacologic approaches were
tested. When comparing the reduction in weight obtained through diet control, PE, or the
combination of both, diet and diet+PE emerged as the most effective treatments for weight
and fat loss, as well as for the control of the excessive production of proinflammatory
cytokines and adipokines in OA patients [43,50–53] It has been also shown that in aiming
to reduce obesity-associated LGCI, weight loss is not crucial; yet, it is beneficial for the
patients’ health. Regarding pharmacological approaches, several extracts and fatty acids
showed effective results in reducing the LGCI secondary to obesity either in osteoarthritic
or in osteoporotic patients [54–57]. Further studies need to be conducted to evaluate these
drugs effect in vivo, even though the obtained results were promising.

As society is aging, all the age-related diseases are increasing in prevalence. Therefore,
the increase in rheumatic diseases is, for the moment, unstoppable. Nonetheless, obesity is
a risk factor that can be controlled. Thus, the study of new interventions and approaches to
control the impact of this disease and its associated LGCI is a challenge for the management
of patients with rheumatic diseases.
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