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Abstract: The paper presents the results of experimental studies on the production of fine char powder
from sunflower seed husks by a novel method of thermomechanical treatment with pulsed shock
waves and supersonic jets of the mixture of ultra-superheated (above 2000 ◦C) steam and carbon
dioxide, as well as the results of examination of the produced char powder in terms of its chemical,
phase, and granulometric composition and structural, morphological, and texture characteristics.
The objective of the research is to explore the possibility of using the resulting char powder as a
sorption-active material for organic substances. It is shown that the obtained char particles and their
agglomerates have an average size of 20–30 nm and 12–24 µm, respectively, have the shape of disks
and ellipsoids, consist mainly of amorphous carbon (up to 56 wt%) and oxygen (up to 42 wt%), and
have a specific surface area of 1.1–1.7 m2/g. It is concluded that such a char powder can be used as
an absorbent for organic substances when dried and deagglomerated.

Keywords: pulsed detonation gun; ultra-superheated steam and carbon dioxide; agricultural waste;
waste recycling; sunflower seed husk; char powder; material composition; adsorbent

1. Introduction

Waste disposal is a complex scientific, technical, and socio-economic problem on a
global scale [1–3]. Emissions from industrial enterprises and landfills pollute the atmo-
spheric air, soil, and water bodies. Despite the great recent progress in waste management,
the problems of reducing the negative impact of waste on the environment still require
both scientific and practical solution. One of the existing problems is the utilization of
sunflower seed husks, a waste product of the oil and fat food industry. On the territory of
Russia there are more than 400 oil-producing enterprises with a capacity of 50 to 3000 ton
per day; the daily volume of supplied oilseeds is 1000–1500 ton and enterprises separate
100–120 ton of sunflower seed husks per day [4] together with other byproducts [5,6]. Thus,
a search for the optimal method of the utilization of sunflower seed husks that would meet
economic and environmental requirements is undoubtedly an important scientific and
practical problem.
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The most promising solution to the problem is the thermal treatment of waste, accom-
panied by the partial recovery of energy and material resources. The environmental impact
of the thermal treatment technologies is relatively small and is caused by gas and flying ash
emissions as well as the generation of liquid tar and solid residues. The available thermal
treatment technologies include direct combustion, pyrolysis, gasification, and their combi-
nations [7–11]. The solid residues (ash powders) generated during combustion, pyrolysis,
and gasification processes of sunflower seed husks are used as adsorbents for remediation
of water or industrial liquid effluents [12,13] in the ceramic industry [14], in the iron ore
sintering process [15], and as a filler for epoxy-based composites [16]. The smallest impact
on the environment is produced by high-temperature gasification technologies based on the
use of superheated water or superheated steam [17–19] and/or CO2 [20], especially when
the heat required for processing is obtained using environmentally friendly sources [21–23]
other than the direct combustion of feedstock. The use of H2O or CO2 as gasifying agents
has a number of advantages [24,25]. Steam and carbon dioxide consist only of H and O
atoms and C and O atoms, respectively, therefore, the syngas (a mixture of H2 and CO)
obtained during the gasification of organic waste is not diluted with other gases. Waste gasi-
fication with H2O and/or CO2 requires less gasifying agent due to their high enthalpy. The
use of a combined H2O/CO2 gasifying agent makes it possible to control the composition
of the syngas. The use of H2O as a gasifying agent increases the economic efficiency. Finally,
syngas obtained by gasification in the absence of free oxygen does not contain such toxic
compounds as dioxins and furans. The amount of H2 obtained during the steam-assisted
gasification of biomass is about three times greater than during its air-assisted gasification.
Carbon dioxide, for the gasification of organic waste, can be taken from the flue gases of
power plants, which will reduce greenhouse gas emissions and reduce the carbon footprint.
Particularly attractive is the high-temperature steam gasification of organic waste which is
carried out at temperatures above 1200 ◦C. In this case, the gasification products are the
high-quality syngas and slag and the syngas consists mainly of H2 and CO. The content of
hydrocarbons above C1–C2 is negligible and compounds containing alkali metals, chlorine,
and sulfur take on the simplest chemical structures.

In [26–28], a novel technology for the utilization of organic wastes by the high-
temperature gasification was proposed and implemented on the laboratory scale. It consists
in the conversion of a condensed organic matter into a gaseous state by applying the
gasifying agent represented by the mixture of ultra-superheated steam and carbon dioxide
generated by pulsed detonations of a fuel–oxygen mixture. This technology is referred to
as the pulsed detonation gun (PDG) technology. Using the PDG technology, it is possible to
produce not only high-quality syngas [29–31] but also other target products like ultrafine
char powders by controlling the flow rate and temperature of the gasifying agent.

There are two objectives of this work. The first objective is to explore the possibility
of obtaining a fine char powder from sunflower seed husks by the novel technology of
thermomechanical treatment with pulsed shock waves and jets of the mixture of ultra-
superheated (above 2000 ◦C) steam and carbon dioxide. This powder is intended as a
sorption-active material for organic substances. The second objective is to characterize the
produced char powder in terms of its composition as well as its structural, morphological,
and textural properties for assessing the possibility of its use as an adsorbent for organic
substances. To achieve this latter objective, the various analytical methods were used
in the work: energy dispersive analysis [32], scanning electron microscopy [33], X-ray
diffractometry [34], wet laser diffraction [35], sorption analysis [36], and scanning probe
microscopy (SPM) [37].

2. Materials and Methods
2.1. Feedstock

The sunflower seed husks correspond to the sunflower variety Belgorodsky 94 and
consist of approximately 48.4% cellulose, 34.6% hemicellulose, and 17% lignin [38]. The
moisture of the sunflower seed husks was 9.95–10.00 wt%. To determine the chemical
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composition of the husks, scanning electron microscopy was carried out in conjunction
with the energy dispersive analysis in the same zones of a sample.

Figure 1 shows the photograph of the feedstock (Figure 1a), the microphotographs of
the fibrous structure, and the relief of the original feedstock material in two chosen zones
1 and 2 (Figure 1b).
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Figure 1. Sunflower seed husks: (a) original feedstock and (b) material fibrous structure and relief.
Zones 1 and 2 are the locations where the chemical composition of the feedstock was determined.

Figure 2 shows the energy-dispersive spectrum of the feedstock. High responses
of oxygen and carbon are recorded with smaller responses of potassium and calcium.
Table 1 shows the chemical composition of sunflower seed husks. In addition to oxygen
(48–54 wt%), carbon (45–47 wt%), potassium (1.0–2.4 wt%), and calcium (0.3–0.9 wt%),
there is some magnesium (0.2–0.7 wt%), sulfur (0.1–0.7 wt%), phosphorus (0.05–0.07 wt%),
silicon (0.04wt%), and chlorine (0.04–0.05 wt%). Table 2 shows the compositions of natural
gas used as a fuel in the PDG. The purity of technical oxygen used as an oxidizer in the
PDG was 99.7%. The composition of the natural gas–oxygen mixture used in the PDG was
close to stoichiometric (fuel-to-oxygen equivalence ratio 1.1): it was chosen to avoid the
presence of free oxygen in the detonation products. Table 3 shows the composition of the
gasifying agent—the mixture of ultra-superheated steam and carbon dioxide—measured
in the experiments without a feedstock supply.
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Table 1. Chemical composition of sunflower seed husks.

Point 1 in Figure 1b Point 2 in Figure 1b
Element wt% Element wt%

O 53.50 O 48.18
C 44.75 C 46.93
K 0.99 K 2.43
Ca 0.31 Ca 0.86
Mg 0.21 Mg 0.73
S 0.11 S 0.69
P 0.05 P 0.07
Si 0.04 Si 0.04
Cl 0.04 Cl 0.05

Table 2. Compositions of natural gas.

Species vol%

CH4 96.1
C2H6 2.1
C3H8 0.6
C4H10 0.2

N2 1.0

Table 3. Composition of the gasifying agent.

Species vol%

H2O 65
CO2 32
CO 2
H2 1

Remark: measured by flow gas analyzer MRU VARIO SYNGAS PLUS (Germany), the measurement error of
volume fractions is estimated at 5%.

2.2. Feedstock Gasifier

Figure 3 shows a schematic of a feedstock gasifier (FG). The FG consists of two coaxial
identical PDGs (PDG-1 and PDG-2) attached from opposite sides to the flow reactor. Solid
feedstock is loaded into the reactor in batches or fed continuously with a screw feeder
through an opening in the bottom of the reactor. The description of the design and operation
principle of the PDG, flow reactor, and FG, as a whole, is given below.
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The PDG is a water-cooled tube with a diameter of 50 mm and a length of 0.63 m
with one open and the other closed end. The open end of the tube communicates with
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the flow reactor. The closed end of the tube is equipped with a spark plug and ports
for supplying fuel (natural gas) and oxygen from manifolds with control valves. After
the mixture is ignited by a spark plug, the flame is accelerated until the deflagration-to-
detonation transition occurs and the resulting detonation wave propagates through the
mixture at a speed above ~2000 m/s. The detonation wave converts the initial mixture into
the detonation products, consisting mainly of H2O and CO2 (see Table 3) with very high
values of temperature (above 3400 ◦C) and pressure (above 20 bar). After the generated
shock wave enters the flow reactor, the detonation products expand into the flow reactor
in the form of a high-speed (above 1000 m/s, on average) jet. When the pressure in the
PDG drops to the atmospheric pressure, a new portion of fuel and oxygen is fed to the PDG
through the ports at the closed end. After the PDG is filled with the mixture, the spark plug
ignites the mixture and the next operation cycle begins, i.e., the PDG operates in a pulsed
mode with a pulse frequency mainly determined by the tube fill time.

The flow reactor with a volume of 40 dm3 has a compact geometric shape to avoid the
formation of long-lived gas-dynamic stagnation zones leading to feedstock accumulation
and slagging. Two PDGs are connected to the flow reactor coaxially opposite to each other
to create strong colliding incident shock waves and powerful vortex structures increasing
the residence time of feedstock particles inside the flow reactor. Pulsed shock waves
emanating from the PDGs possess a tremendous destructive power. On the one hand,
they effectively crush the feedstock. On the other hand, they prevent the agglomeration of
feedstock particles and their adhesion to the walls of the flow reactor during FG operation.
It is worth noting that feedstock particles can be subjected to multiple acts of fragmentation
by successive incident and reflected shock waves and can be repeatedly involved in the
powerful vortex structures of the high-temperature gasifying agent far from relatively cold
walls during their stay in the flow reactor. The flow reactor is also equipped with outlet
ports for the continuous outflow of syngas and the continuous or periodic removal of solid
residue. The average operation pressure in the flow reactor is slightly higher than the
atmospheric pressure in order to avoid the suction of atmospheric air.

The operation principle of the FG includes two transient stages before reaching the
nominal operation mode. After the first transient stage, the FG reaches a stationary op-
eration mode with a steady thermal state of all its elements and cooling water. At this
stage, the feedstock is not fed into the flow reactor. Thereafter, the second transient stage
begins with feeding the feedstock into the flow reactor. After some time, the nominal
operation mode of the FG is established with a new steady thermal state of all its elements
and cooling water, as well as with the steady composition of the produced syngas. The
parameters of the gasifying agent entering the flow reactor and the quality of the produced
syngas are controlled by the PDG fill and operation frequency as well as by the mass flow
rate of feedstock. The maximum operation frequency achieved with the full fill of the
PDGs was 3 Hz. Under such conditions, complete gasification of sunflower seed husks
was achieved without the formation of tar and char. With decreasing the PDG fill and the
operation frequency, the average temperature of the gasifying agent in the flow reactor
was decreasing and the efficiency of the gasification process was worsening. The efficiency
worsening means a decrease in the yields of H2 and CO and an increase in the yields of
CH4, higher hydrocarbons, and CO2 in the produced syngas as well as the detection of solid
residue (fine char). The latter is the subject of interest in this work. It is worth noting that
the gasification of feedstock in the FG proceeds at a local instantaneous temperature in the
flow reactor (which exceeds 2000 ◦C) rather than at the average temperature. Nevertheless,
the measured level of the average temperature in the flow reactor reflects the characteristic
time of the impact of the high-temperature gasifying agent on the feedstock: the lower
the average temperature, the shorter the characteristic time of gasification. It is also worth
noting that the char powder thus obtained can be subject to wetting and agglomeration
after the termination of thermomechanical treatment in the FG due to steam condensation.
The latter implies the possible need for additional drying and fragmentation operations for
the char powder.
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2.3. Energy Dispersive Analysis and Scanning Electron Spectroscopy

The elemental composition of the studied samples of char powder is determined
by the method of energy dispersive analysis, which is carried out in conjunction with
scanning electron microscopy. For this purpose, the Nova NanoSEM analytical system is
combined with a high-resolution scanning electron microscope Quanta FEG. The device is
equipped with an EDAX analytical energy-dispersive spectrometer, which is capable of
determining the elemental composition of substances in different areas of the sample and
revealing graphic dependences and maps of the distribution of elements over the surface
in the sample under study when placed in the magnetic field of an objective lens, which
makes it possible to reduce aberration and achieve sub nanometer resolution. This mode is
suitable for studying nonmagnetic samples. It is also worth noting that the Nova NanoSEM
analytical system is equipped with an intralens secondary electron detector that provides
high detail of the near-surface region of a sample. No special preparation of a sample
before analysis is required. The measurements were carried out in the Center for collective
use “Technologies and Materials of the National Research University” BSU.

2.4. X-ray Diffractometry

Chemical analysis helps to reveal the phase composition of the sample under study.
The phase composition of char powder obtained from sunflower seed husks is determined
using a SmartLab X-ray diffractometer (Rigaku, Tokyo, Japan). The diffractometer is
equipped with a high-speed D/tex Ultra Hi Pix detector. In this analysis, the pseudo-
parallel beam is focused following the Bragg-Brentano procedure. The interpretation of
X-ray powder diffraction patterns allows the identification of the phase composition of the
analyzed material.

2.5. Particle Size Distribution

The particle size distribution in char powder is studied by a laser diffraction wet
dispersion method on an Analysette 22 device (Fritch, Idar-Oberstein, Germany) in the
presence of surfactants during ultrasonic treatment (50 W) and particle analysis using
a scanning probe microscopy (SPM). For the laser diffraction wet dispersion method,
specimens are prepared by rubbing with a spatula in a bottle with the addition of a
surfactant. The operation of an atomic force microscope is based on the force interaction
between the probe and the surface of the sample, which leads to a registered deformation
of the probe–cantilever. The possibilities of AFM allow investigating the structure of almost
any solid surface in vacuum, in a liquid, and “in air conditions” [39–44]. A review of
modern achievements in the field of AFM can be found, e.g., in [45]. The use of SPM is
explained by the unique resolution of this method, which makes it possible to conduct
research at the atomic level. Unlike other types of electron microscopes, SPM does not
require a high vacuum to operate. It can work in air and liquid media. The use of SPM
makes it possible to reveal the features of the crystal structure of the surface and its
roughness, to observe the patterns of nucleation during film growth, and to study viruses,
DNA molecules, etc.

2.6. Specific Surface Area

The specific surface area of char powder was determined by the method of low-
temperature nitrogen sorption at 77 K. The measurements were carried out on a NOVA
1200e gas sorption analyzer (Quantachrome Instruments, Boynton Beach, FL, USA). Highly
purified nitrogen gas was used as the adsorbate. Before measurements, the sample was
degassed in a vacuum at 200 ◦C for 2 h.

3. Results and Discussion

Using the new PDG technology of thermomechanical treatment of organic feedstock
with pulsed shock waves and jets of the mixture of ultra-superheated (above 2000 ◦C) H2O
and CO2, three samples of char powder are obtained from sunflower seed husks in three
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experiments under approximately the same experimental conditions (average temperature
of the walls of the flow reactor of 400–450 ◦C; atmospheric pressure; a feedstock batch of
2 kg). These samples are taken from the flow reactor after the termination of FG operation
and when it is cooling down and are further studied by the various analytical methods at
the FRC and BSU. For the sake of brevity, we describe the results obtained for only one of
the samples (Figure 4) below.
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Figure 5 and Table 4 show the energy-dispersive spectrum and proximate analysis of
char powder obtained by the thermomechanical treatment of sunflower seed husks.
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of sunflower seed husks: (a) energy dispersive spectrum and (b) electron microphotograph with a
zone (“Full Area 1”) where the energy dispersive analysis was made.
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Table 4. Proximate analysis of char powder.

Element wt%

C 51.76
O 38.63

Mg 1.15
Al 0.10
Si 0.19
P 0.22
S 0.35
Cl 0.20
K 4.18
Ca 2.58
Fe 0.65

As seen from Table 4, the content of carbon increased from 45–47 wt% in the original
feedstock to about 52 wt% in the char, whereas the content of bound oxygen decreased from
48–54 wt% in the original feedstock to about 39 wt% in the char. As compared to the original
feedstock, the content of potassium, calcium and magnesium increased considerably and
attained 4.2, 2.6, and 1.2 wt%, respectively. The presence of iron in the char is most probably
caused by the abrasive processes on the reactor walls during feedstock gasification.

Figure 6 shows the phase composition of char powder obtained by X-ray phase analysis
indicating the presence an amorphous phase (soot), as well as graphite and magnetite. The
amorphous phase is presumably composed of carbon. The appearance of the graphite
phase is due to the harsh thermal conditions of the experiment. The magnetite phase could
be formed during the oxidation of the material. The phases of orthoclase and microcline
are also revealed. Their presence can be explained by the high content of potassium in the
test sample, as shown by chemical analysis.
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Figure 7 shows microphotographs of char powder obtained by the thermomechanical
treatment of sunflower seed husks. Figure 7a shows white particles of various shapes and
sizes ranging from 10 to 165 µm. On large particles of 25 and 120 µm, cellular pores 10 µm
in size were found. Figure 7b shows white particles ranging in size from 8 to 84 µm and
white tubular particles 170 µm long and 25 µm in diameter.
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Figure 7. Electron microphotographs of char powder obtained by thermomechanical treatment of
sunflower seed husks. Fragments (a,b) correspond to different parts of the sample.

Figures 8–10 show the results of char studies with the SPM. The char was deposited
on the mica surface. Two groups of particles can be distinguished: “large” and “small”.
The diameter of “large” particles was 100–150 nm at a thickness of 10–60 nm. Such
particles can be either almost flat (“discs”) or have the shape of an ellipsoid. There are
also “small” particles with a diameter of 20–50 nm and thickness of 1–4 nm. In their shape,
particles of such sizes resemble pucks flattened to the edges. Particles of the average size
range 20–30 nm make up the majority of the char particles in the sample.
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Figure 8. “Large” and “small” particles. Results of examining a char sample with a scanning probe
microscope: (a) image of the surface and (b) particle profile along the blue line.
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Figure 10. “Small” particles. Results of examining a char sample with a scanning probe microscope:
(a) image of the surface and (b) particle profile along the blue line.

To obtain the particle size distribution of char particles by laser diffraction wet disper-
sion method, three specimens are taken from different places of the sample. The results are
presented in Figure 11 and in Table 5 (average of three measurements for each specimen).
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Table 5. Distribution of char particles by size (average of three measurements for each specimen).

Specimen D10, µm D50, µm D90, µm

1 5.9 17.9 69.7
2 5.3 17.4 72.6
3 5.3 17.0 59.1

The study of particle size distribution allows the average particle size to be determined
in each specimen: 19.35 µm in specimen 1, 19.73 µm in specimen 2, and 24.40 µm in
specimen 3. Thus, the char powder under study is composed of both single particles with
sizes ranging from tens to hundreds of nanometers and their agglomerates with sizes
ranging from tens to hundreds of micrometers.

Table 6 summarizes the data for particle size distribution for three samples of char
powder obtained by thermomechanical treatment of sunflower seed husks (average values
for each sample). The particle size distributions in the three samples are seen to differ
essentially. Since these differences can be caused by the differences in the experimental
conditions in terms of the reactor wall temperature (400–450 K), we do not provide the
average values over the samples here.
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Table 6. Particle size distributions for three samples of char powder obtained by the thermomechani-
cal treatment of sunflower seed husks.

Sample D10, µm D50, µm D90, µm

1 6.9 23.1 63.0
2 5.5 17.4 67.1
3 4.7 14.6 113.4

For determining the specific surface area of the three samples under study, the method
of low-temperature sorption of gaseous nitrogen N2 at 77 K is used [46]. To exclude
the release of toxic and contaminating substances during degassing, the samples are
preliminarily dried in an oven for 2 h at a temperature of 150 ◦C. Then, the samples
are degassed in a vacuum at a temperature of 200 ◦C for 2 h. Next, the specific surface
area is measured. Figure 12 shows N2 adsorption and desorption isotherms at 77 K for
Samples #1 and #2. The isotherms can be classified as type II according to the IUPAC
classification [47,48], which is characteristic of nonporous or macroporous samples. The
adsorption isotherm of Sample #1 shows a sharper increase in the region of high P/P0
values compared to the adsorption isotherm of Sample #2. This is due to the filling of
macropores formed by large particles in Sample #1. Indeed, the microphotographs of
Samples #1 and #2 show a more uniform pattern of smaller particles in Sample #2 than in
Sample #1. This is also confirmed by the SPM data, which shows the presence of a greater
number of “large” particles in Sample #1.
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at 77 K for samples #1 and #2 of char powder.

The specific surface area SBET is determined by the Brunauer–Emmett–Teller (BET)
method [49] in the relative pressure range P/P0 = 0.05–0.30 (P0 is the pressure of saturated
vapors of the adsorbate at the experimental temperature). Unfortunately, we failed to obtain
an adsorption isotherm suitable for processing for Sample #3. Apparently, this is due to the
predominance of a large fraction of particles with an underdeveloped surface in Sample #3,
which determines its low sorption capacity. Therefore, the specific surface area SBET for
Sample #3 is determined by the one-point method at P/P0 = 0.30. The data obtained are
presented in Table 7. As can be seen, the specific surface of the studied samples is different
and low. The former can be caused by the differences in the experimental conditions
in terms of the reactor wall temperature (400–450 K). Therefore, we do not provide the
average values over the samples here. The latter indicates that the samples are dominated



Powders 2023, 2 635

by particles with an underdeveloped surface with no micro- and mesopores presumably
due to both high process temperatures [50] and the presence of condensed moisture after
the thermomechanical treatment. The SPM data and the data on particle size distribution
imply that the samples are mainly composed of agglomerates of fine char particles that
are 20–30 nm in average size. This means that further drying and fragmentation of the
obtained char powder could significantly increase the specific surface, thus contributing to
high sorption properties of the resultant char powder.

Table 7. Specific surface area of char powder particles of three samples obtained by the thermome-
chanical treatment of sunflower seed husks.

Sample SBET, m2/g

1 1.7
2 1.1
3 1.4

Due to high process temperatures, the amorphous carbon (soot) obtained by the
thermomechanical treatment of sunflower seed husks does not contain acidic oxygen-
containing groups that could sorb metal ions by the ion exchange mechanism. Therefore,
based on the results of this study, it can be concluded that the obtained char powder can be
used (after drying and deagglomeration) as a sorption-active material primarily in relation
to organic substances. It is also possible to improve the properties of the obtained sorbents:
the number of pores can be increased, e.g., by chemical activation of the resulting sorbents.

4. Conclusions

The paper describes the results of experimental studies on the production of fine char
powder from sunflower seed husks by a novel method of thermomechanical treatment,
namely, by pulsed shock waves and jets of the mixture of ultra-superheated (above 2000 ◦C)
steam and carbon dioxide, as well as the results of studying char chemical, phase, and
granulometric composition and its structural, morphological, and textural characteristics.
The original feedstock exhibited a fibrous microstructure with uneven relief and contained
mainly carbon (46 wt%) and oxygen (53 wt%) with minor concentrations of potassium,
calcium, and magnesium. The gasifying agent was obtained by pulsed detonations (1 Hz)
of near-stoichiometric natural gas–oxygen mixture and was composed of steam (62 vol%),
carbon dioxide (35 vol%), and trace amounts of H2 and CO.

Experiments showed that with a gradual decrease in the fill and operation frequency
of a pulsed detonation gun, the average temperature in the gasifier with a loaded portion
of sunflower seed husks gradually decreases leading to the appearance of a solid residue
in the form of fine char particles in the gasification products. Three experiments were
carried out on the gasification of sunflower seed husks with the production of char powder.
The experiments slightly differed in the average gasification temperature (at the level
of 400–450 K). Three samples of char powders were studied in terms of their material
composition (chemical, phase, and granulometric) as well as structural, morphological,
and textural characteristics. As compared to the original feedstock, the chars contained
somewhat more carbon (51 to 56 wt%) and less oxygen (33 to 42 wt%) as well as increased
concentrations of potassium (up to 5 wt%), calcium (up to 2.6 wt%), and magnesium
(up to 1 wt%). The char powder contained both single particles and their agglomerates
formed due to the agglomeration of particles in the course of steam condensation upon
the completion of experiments. Single char particles had an average size of 20–30 nm,
whereas their agglomerates had an average size of 12–24 µm. Due to the presence of
particle agglomerates, the specific surface area of char powders was relatively low and
equal to 1.1 to 1.7 m2/g. Nevertheless, when dried and deagglomerated, the obtained char
powder can be used as a sorption-active material in relation to organic substances.

Thus, we have achieved the objective of the study and obtained a very fine char
powder with particles of tens of nanometers in average size. Unfortunately, these particles
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were agglomerated after the thermomechanical treatment due to the presence of condensed
moisture. The future work will be aimed at fragmenting and drying the obtained char
powder agglomerates by pulsed shock waves and jets of incondensable gas, e.g., nitrogen.
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