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Abstract: Cu–Al bronzes are interesting metallic materials, demonstrating higher hardness, higher
wear resistance, higher corrosion resistance and a lower friction coefficient as compared with unal-
loyed copper. The powder metallurgy approach to the fabrication of these alloys presents opportuni-
ties to tailor their phase composition and grain size. In the present work, the structural characteristics,
phase composition and properties of Cu-10 wt.% Al alloys obtained by spark plasma sintering (SPS)
of powder blends and a powder obtained by mechanical alloying (based on Cu(Al) solid solution)
are reported. Alloys with different interaction degrees between the metals were obtained by SPS. The
blends demonstrated better sinterability than the mechanically alloyed powder: a nearly fully dense
alloy was obtained by SPS of the blend at 480 ◦C, whereas a temperature of 800 ◦C was necessary
to consolidate the mechanically alloyed powder. The hardness and electrical conductivity of the
sintered alloys were comparatively analyzed. It was shown that the Cu-10 wt.% Al alloys obtained
without the mechanical alloying stage possess hardness and electrical conductivity comparable to
those of the alloys obtained from the mechanically milled powder.

Keywords: Cu–Al alloys; mechanical alloying; solid solution; spark plasma sintering; diffusion;
microstructure; hardness; electrical conductivity

1. Introduction

Copper is one of the first metals that mankind learned to process. It was first used
10,000 years ago and has not lost its relevance to the present day. The properties of copper
alloys depend on the nature of the alloying elements and the processing conditions. Cu–Al
bronzes are known for their mechanical strength, wear resistance and corrosion resistance,
which are higher than those of pure copper [1,2]. The Cu–Al alloys are usually produced
commercially in the cast and wrought forms. However, casting and deformation processing
are not the only technologies suitable for alloy development. Bronzes are also produced by
powder metallurgy [3,4]. The most common powder metallurgy bronzes are Cu–Sn alloys
(with different levels of porosity).

Recently, in laboratories, the powder metallurgy approach has been successfully
applied to the formation of Cu–Al alloys to explore the possibilities of producing materials
with fine grain sizes and different alloying levels [5–11]. Shaik and Golla [5] produced
Cu-15 wt.% Al alloys by mechanical milling and hot pressing. The consolidation was
conducted at 500 ◦C and a varying pressure (100–500 MPa). A high microhardness (6.2 GPa)
was achieved for the alloy after hot pressing at 500 MPa. The alloy consisted of a solid
solution (Cu0.78Al0.22) and the Cu9Al4 intermetallic phase. Kim et al. [11] investigated the
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properties of composite materials formed from a mixture with a composition of Al-50 vol.%
Cu. The hardness of the composites sintered at a low temperature (380 ◦C) was nearly twice
that calculated using the rule of mixtures for the binary system of metals. An increase in
hardness was due to the formation of thin layers of intermetallics at the interfaces between
Al and Cu particles. Only partial alloying between the metals allowed maintaining the
thermal conductivity of the composite at a high level (200 W m−1 K−1).

In the powder metallurgy processing, metallic scrap (chips) is an alternative raw mate-
rial for the production of alloys [12] and composites [13,14]. The starting powder mixtures
can be prepared by blending or mechanical alloying. The use of the prealloyed powders
enables the formation of sintered alloys with a uniform distribution of the elements. At the
same time, the metallic powders formed by high-energy ball milling [15] possess a defect
structure and are strain-hardened. They may require higher pressures and temperatures to
be sintered than the blended powders, which are softer and easier to deform. It is important
to note that the preparation of powder blends is less energy-consuming than the process of
mechanical alloying.

In the equilibrium state, at room temperature, the Cu-10 wt.% Al composition cor-
responds to the Cu(Al) solid solution [1]. However, if the alloys are obtained via fast or
low-temperature processing, they do not necessarily reach the single-phase state. In the
Cu-10 wt.% Al alloys, strengthening is achieved via solid solution strengthening, grain
boundary strengthening and strengthening due to the presence of hard particles of Cu–Al
intermetallics (if those remain in the microstructure). In these alloys, a high hardness and a
low friction coefficient (equal to 0.3) in a pair with steel can be achieved [6]. In our previous
work, we reported the properties of the Cu-10 wt.% Al bronze produced by sintering
of a mechanically alloyed powder, which consisted of a solid solution as a major phase
and Cu9Al4 as a minor phase [8]. Spark plasma sintering (SPS) [16–18] was selected as a
consolidation method. It allows rapid heating of conductive materials by a pulsed direct
current with a simultaneous application of uniaxial pressure.

The goal of the present work was to compare the properties of the Cu-10 wt.% Al
alloys obtained by sintering of powder blends with those of the alloys sintered from the
prealloyed powder.

2. Materials and Methods

The starting materials for preparing the blends were copper (PMS-1 grade, 99.7%) and
two aluminum (PAD-6 grade, 99.9%, referred to below as “fine”, and PA-4 grade, 98%,
referred to as “coarse”) powders. The blends were prepared by mixing the powders in a
mortar, as the quantities required to prepare the laboratory size specimens are small (~7 g
per sample). The use of low-energy mixing devices is possible if the alloys are prepared on
an industrial scale. The details of the preparation of the mechanically alloyed powder via
high-energy ball milling can be found in ref. [8].

The blends and mechanically alloyed powder were sintered using a SPS Labox 1575 ap-
paratus (SINTER LAND Inc., Nagaoka, Japan). A graphite die with a 20 mm internal
diameter and graphite punches were used. The tooling was made of fine-grained graphite
(Ellor® + 50, Mersen, France). The temperature was measured using a thermocouple in-
serted into a hole in the die wall (for sintering of the blends) and a pyrometer (for sintering
of the mechanically alloyed powder). The sintering conditions of the samples are given
in Table 1 (Results and Discussion section). The sintering temperatures were 480 ◦C for
the blends and 700 ◦C and 800 ◦C for the mechanically alloyed powder. The samples were
held at the maximum temperature for 5 min and 20 min for the blends and for 5 min for
the mechanically alloyed powder. The heating rate was 40 ◦C min−1 and 100 ◦C min−1

during the SPS of the blends and the mechanically alloyed powder, respectively. A uniaxial
pressure of 20 MPa or 40 MPa was applied during the SPS of the blend. The mechanically
alloyed powder was sintered at 40 MPa.
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Table 1. The powder composition, sintering conditions, phase composition, residual porosity, Vickers
hardness and electrical conductivity of Cu-10 wt.% Al alloys obtained by spark plasma sintering of
powder blends and a mechanically alloyed mixture.

Powder Sintering
Conditions

Phase Contents,
wt.%

Residual
Porosity, %

Vickers
Hardness, HV1

Electrical Conductivity,
% IACS *

Blend, coarse
Al powder

480 ◦C, 5 min,
40 MPa

Cu: 83 ± 3
CuAl2: 8 ± 1
Cu9Al4: 4 ± 1

Al: 5 ± 1

2.0 ± 0.3 70 ± 3 56 ± 3

Blend, fine
Al powder

480 ◦C, 5 min,
40 MPa

Cu: 35 ± 1
Cu(Al): 23 ± 1
Cu9Al4: 42 ± 1

1.0 ± 0.3 160 ± 15 16 ± 1

Blend, fine
Al powder

480 ◦C, 5 min,
20 MPa

Cu: 30 ± 1
Cu(Al): 25 ± 1
Cu9Al4: 45 ± 1

2.0 ± 0.3 120 ± 10 15 ± 1

Blend, fine
Al powder

480 ◦C, 20 min,
40 MPa

Cu: 24 ± 1
Cu(Al): 30 ± 1
Cu9Al4: 46 ± 1

1.0 ± 0.3 190 ± 10 10 ± 1

Mechanically
alloyed mixture

700 ◦C, 5 min,
40 MPa Cu(Al): 100 15 280 ± 20 ** 12 ± 1 **

Mechanically
alloyed mixture

800 ◦C, 5 min,
40 MPa Cu(Al): 100 6 280 ± 20 ** 15 ± 1 **

* International Annealed Copper Standard; ** data from ref. [8].

The morphology of the powders and microstructure of the sintered alloys were stud-
ied via scanning electron microscopy and energy-dispersive spectroscopy using a Hitachi
Tabletop TM-1000 microscope (Tokyo, Japan) with an elemental analysis unit (Oxford Instru-
ments, Abingdon, UK). The back-scattered electron imaging mode was used for recording
the images. Point spectra were collected from characteristic areas of the microstructure of
the alloys. The porosity of the alloys sintered from the blends was determined by analyzing
the optical images of the cross-sections of the samples in OLYMPUS Stream Image Analysis
software “Stream Essentials 1.9.1” (Tokyo, Japan). The X-ray diffraction (XRD) patterns
of the powders and sintered alloys were recorded with a D8 ADVANCE diffractometer
(Bruker AXS, Karlsruhe, Germany), using Cu Kα radiation. The quantitative analysis of the
phase composition of the alloys was carried out using TOPAS 4.2 software (Bruker AXS,
Karlsruhe, Germany).

Vickers hardness of the alloys was measured on polished cross-sections using a DuraS-
can 50 hardness tester (EMCO-TEST, Kuchl, Austria) at a load of 1 kg. The direction of
indentation was normal to the pressing direction during SPS. The average value of hard-
ness was determined from 10 measurements. The electrical conductivity of the alloys was
measured using the eddy current method [19] on a custom-made set-up and is reported
relative to the International Annealed Copper Standard (%IACS). An average value of
electrical conductivity was determined from three measurements.

3. Results and Discussion

The morphologies of the elemental Al and Cu powders and the prealloyed Cu–Al
powder are shown in Figure 1. The coarse Al powder consists of particles 10–45 µm in size
(Figure 1a). The fine Al powder consists of particles in the range of 3–10 µm (Figure 1b).
The Al particles are spherical. The average size of the Cu powder is 40 µm (Figure 1c), the
particles possess a dendritic shape. The mechanically alloyed Cu–Al powder has a platelet
shape (Figure 1d).
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Figure 1. Morphology of the starting powders: (a) coarse Al powder, (b) fine Al powder, (c) Cu
powder and (d) mechanically alloyed Cu-10 wt.% Al powder mixture.

The fast sintering of the Cu-10 wt.% Al blends via SPS allows for the achievement of
different alloying levels in the material, depending on the sintering parameters. Before a
Cu(Al) solid solution forms, Al-rich and Cu-rich phases appear. For the SPS processing
of the blends, a temperature of 480 ◦C was selected. The real temperature of the conduc-
tive samples (in the low SPS temperature range) is about 30–40 degrees higher than the
measured temperature [20]. Even when this difference is added, the temperature remains
below the lowest melting point eutectic in the Cu–Al system (548 ◦C) [1].

Figure 2 shows the XRD patterns of the alloys obtained from the powder blends. The
calculated phase contents in the alloys are presented in Table 1. In the alloy produced using
the coarse Al powder, the Al particles are not fully consumed, as indicated by reflections
of metallic aluminum (Figure 2a). The CuAl2 and Cu9Al4 intermetallics are present in
the alloy at low concentrations, as their reflections are weak. In the microstructure of this
alloy (Figure 3a,b), particles with a core-shell structure are observed. The shells of the
particles demonstrate a layered structure. The inclusions in the core interior are believed to
be particles of CuAl2 formed via grain boundary diffusion of copper into aluminum and
precipitation of the phase from the Al(Cu) solid solution upon cooling. In the alloys formed
from the fine Al particles, aluminum fully reacted with copper to form the Cu9Al4 phase
and Cu(Al) solid solutions (Figure 2b–d). As aluminum dissolves in copper, the lattice
parameter of the latter increases [8], and its XRD peaks shift to lower angles. The presence
of asymmetrical lines in the XRD patterns of the alloy (Figure 2b–d) is due to the presence
of reflections from Cu(Al) solid solutions.

Several zones of the microstructure of the Cu-10 wt.% Al alloy obtained from the
powder blend using the fine Al powder (5 min, 40 MPa) are shown in Figure 4a,c,e. The
spectra taken from the points marked in the images are presented in Figure 4b,d,f. It is seen
that, as one moves from dark-gray to gray, and then further to light-gray regions, the Al
signals become weaker, and its concentration decreases. The brighter areas are richer in
copper. In the alloys shown in Figure 3d,f, the dark islands appear to be CuAl2, which is



Powders 2023, 2 519

present at a low concentration. Increasing the holding time of the sample at the sintering
temperature to 20 min leads to further alloying between the metals, the dark-gray areas
disappearing from the microstructure of the alloy (Figure 3h).
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Figure 2. X-ray diffraction (XRD) patterns of the sintered alloys obtained from the Cu-10 wt.% Al
powder blends by SPS at 480 ◦C: (a) coarse Al powder, 5 min, 40 MPa; (b) fine Al powder, 5 min,
20 MPa; (c) fine Al powder, 5 min, 40 MPa; (d) fine Al powder, 20 min, 40 MPa. The lines of pure
copper (according to PDF card #00-04-0836) are plotted as a reference.
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Figure 3. Microstructure of the Cu-10 wt.% Al alloy obtained from the powder blend: (a,b) coarse
Al powder, 5 min, 40 MPa; (c,d) fine Al powder, 5 min, 20 MPa; (e,f) fine Al powder, 5 min, 40 MPa;
(g,h) fine Al powder, 20 min, 40 MPa. The phases are marked in (b,d,f,h).

The microstructural features of the alloys allow us to discuss the possible diffusion
events in the system upon heating and soaking at 480 ◦C. In the Cu–Al system, a reaction
of self-propagating high-temperature synthesis is possible upon heating (when the inter-
metallic phases are synthesized) [21]. This means that an additional temperature rise can
occur locally in the reaction mixture. Therefore, during SPS at a measured temperature of
480 ◦C, the formation of transient melt (appearing and rapidly reacting with the residual
solid copper) cannot be completely ruled out. As the sample is heated to 480 ◦C, copper
diffuses into the aluminum particles. Evidence of this was obtained on the sample prepared
using the coarse Al powder. In the volume of Al particles, bright inclusions are visible,
distributed along the grain boundaries, as mentioned above (Figure 4b). As reported by
Joseph et al. [22], in the composite formed by SPS of a mixture of Al and an Al–Cu–Fe
alloy (the maximum temperature of the process was 550 ◦C), copper contained in the alloy
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diffused into the aluminum matrix, which led to the formation of CuAl2 precipitates in the
sintered alloy.
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Figure 4. Characteristic zones of the microstructure of the Cu-10 wt.% Al alloy obtained from the
powder blend (fine Al powder, 480 ◦C, 5 min, 40 MPa) (a,c,e) and corresponding point spectra taken
in locations marked with a red “+” sign (b,d,f). In the spectra, horizontal axis—energy, keV; vertical
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The mechanically alloyed powder was mainly a Cu(Al) solid solution, with Cu9Al4 as
the minor phase (Figure 5a). The alloys sintered from this powder at 700 ◦C and 800 ◦C are
solid solutions (Figure 5b,c). As the powder had a platelet shape (Figure 1d), the particles
formed stacks upon pressing during SPS, such that the sintered alloy had a layered structure
(Figure 6a,b). The mechanically alloyed powder could not be sintered at temperatures
below 700 ◦C into robust compacts using a holding time of 5 min.
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Figure 5. XRD patterns of the mechanically alloyed Cu-10 wt.% Al powder (a) and alloys obtained
from the mechanically alloyed powder by SPS (at 700 ◦C (b) and 800 ◦C (c)). The lines of pure copper
(according to PDF card #00-04-0836) are plotted as a reference.
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Figure 6. Microstructure of Cu-10 wt.% Al alloys obtained by SPS of the mechanically alloyed mixture:
(a) 700 ◦C and (b) 800 ◦C.

The residual porosity, Vickers hardness and electrical conductivity of Cu-10 wt.% Al
alloys obtained by SPS of the powder blends and mechanically alloyed mixture are summa-
rized in Table 1. The alloys obtained from the powder blends showed low porosities (1–2%).
Even after SPS at 700 ◦C, the porosity of the alloy sintered from the prealloyed powder
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was still high (15%). After SPS at 800 ◦C, the porosity of the alloy was lower, amounting
to 6%. The alloy, in which the aluminum phase was largely preserved, demonstrated the
lowest hardness and the highest electrical conductivity in the studied series. The interaction
between the metals led to a decrease in the electrical conductivity of the alloys and an
increase in their hardness. The alloys, in which aluminum was nearly fully consumed in
the formation of the intermetallic phases or solid solutions, demonstrated close values
of electrical conductivity. The alloy sintered from the prealloyed powder demonstrated
a hardness of 280 HV1, while the alloy sintered from the powder blend for 20 min had a
hardness of 190 HV1, which is lower but still comparable to that of the former. The lower
hardness of the alloy produced from the blend is due to the presence of the unalloyed
copper. A further increase in the sintering time can be instrumental for the homogenization
of the alloy composition.

The microstructure and property data reported above indicate that, if ball-milling
devices are unavailable in a technological line, SPS of the blends can still produce materials
with an acceptable level of properties. As the particle size of the starting powder, the
temperature and the sintering time are key parameters determining the phase composition
of the alloys formed from the powder blends, a variety of alloys can be obtained by changing
these parameters.

In future research, it would be interesting to determine the tribological properties
of these alloys depending on the alloying level achieved during sintering. Furthermore,
the peculiarities of diffusion between copper and aluminum during SPS, if any, should be
elucidated by comparing the reaction product growth processes in samples heated in a
conventional furnace with those heated by pulsed electric current.

4. Summary

Cu-10 wt.% Al materials with different alloying degrees were obtained by SPS of
powder blends and a mechanically alloyed mixture. During SPS of the blends, the alloying
degree depended on the size of the starting Al particles and the sintering time. The
blends demonstrated higher sinterability than the powder obtained by mechanical alloying,
requiring lower temperatures for densification. Nearly fully dense alloys were produced
from the blends via SPS at 480 ◦C (holding time 5–20 min). It was shown that, from the
powder blends, it is possible to form alloys with hardness and electrical conductivity
comparable to those of alloys obtained from the mechanically alloyed mixture. The alloy
sintered from the powder blend for 20 min was composed of Cu, Cu(Al) and Cu9Al4, and
had a hardness of 190 HV1 and an electrical conductivity of 10% IACS. If a higher hardness
is necessary, one can resort to mechanical alloying at the powder preparation stage. In
summary, this study has demonstrated the competitiveness of the powder blend reaction
mixture approach with the approach based on mechanical alloying, provided a fine Al
powder is used for composing the blends. Cu-10 wt.% Al alloys with a high hardness and
an appreciable electrical conductivity have been obtained from powder blends formed
using a fine Al powder.
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