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Abstract: Since the first climate models in the 1970s, algorithms and computer speeds have increased
by a factor of ≈1017 allowing the simulation of more and more processes at finer and finer resolu-
tions. Yet, the spread of the members of the multi-model ensemble (MME) of the Climate Model
Intercomparison Project (CMIP) used in last year’s 6th IPCC Assessment Report was larger than
ever: model uncertainty, in the sense of MME uncertainty, has increased. Even if the holy grail is
still kilometric scale models, bigger may not be better. Why model structures that live for ≈15 min
only to average them over factors of several hundred thousand in order to produce decadal climate
projections? In this commentary, I argue that alongside the development of “seamless” (unique)
weather-climate models that chase ever smaller—and mostly irrelevant—details, the community
should seriously invest in the development of stochastic macroweather models. Such models exploit
the statistical laws that are obeyed at scales longer than the lifetimes of planetary scale structures,
beyond the deterministic prediction limit (≈10 days). I argue that the conventional General Circula-
tion Models and these new macroweather models are complementary in the same way that statistical
mechanics and continuum mechanics are equally valid with the method of choice determined by the
application. Candidates for stochastic macroweather models are now emerging, those based on the
Fractional Energy Balance Equation (FEBE) are particularly promising. The FEBE is an update and
generalization of the classical Budyko–Sellers energy balance models, it respects the symmetries of
scaling and energy conservation and it already allows for both state-of-the-art monthly and seasonal,
interannual temperature forecasts and multidecadal projections. I demonstrate this with 21st century
FEBE climate projections for global mean temperatures. Overall, the projections agree with the
CMIP5 and CMIP6 multi-model ensembles and the FEBE parametric uncertainty is about half of
the MME structural uncertainty. Without the FEBE, uncertainties are so large that climate policies
(mitigation) are largely decoupled from climate consequences (warming) allowing policy makers
too much “wiggle room”. The lower FEBE uncertainties will help overcome the current “uncertainty
crisis”. Both model types are complementary, a fact demonstrated by showing that CMIP global mean
temperatures can be accurately projected using such stochastic macroweather models (validating both
approaches). Unsurprisingly, they can therefore be combined to produce an optimum hybrid model
in which the two model types are used as copredictors: when combined, the various uncertainties are
reduced even further.
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1. Introduction
1.1. A Bold Vision

How will climate forecasts and projections be made in the year 2030? A consensual
answer emerged in 2008 in a declaration issued from the World Modelling Summit for
Climate Prediction. It stated that “adapting to climate change while pursuing sustainable
development will require accurate and reliable predictions of changes in regional weather
systems, especially extremes” [1]. More recently and with added urgency, the Royal Soci-
ety’s Climate Change briefing [2] re-iterated many of the Summit’s conclusions, including
the need for better climate models: “In the few critical years to 2030, climate models will
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provide essential information for both mitigating and adapting to climate change” (see also
ref. [3]).

Better models—and quickly—fine. However, how can we move forward with climate
projections and—even if less urgently—how can we improve long-range (monthly, seasonal,
interannual) forecasts that have many of the same issues? The Summit’s consensus answer
was bold and confident: better global models must be much bigger and should use a unique
weather-climate model to “seamlessly” move from weather to climate scales. Building such
a mega-model would require a “world climate research facility for climate prediction that
will enable the national centers to accelerate progress in improving operational climate
prediction at all time scales, especially at decadal to multidecadal lead times”. Thirteen
years later, the Royal Society Briefing repeated these conclusions reiterating the required
resolution: “The facility could be a single physical entity, akin to CERN, or a tightly
networked constellation of national/international exascale facilities. The overarching goal
would be to deliver kilometer scale global climate predictions and services”.

However, what is the scientific rationale for making seamless models and making them
ever bigger? The benefits of finer spatial resolutions apparently seemed so obvious that the
Summit made little effort at justification beyond claiming that “kilometer-scale modeling
of the global climate system . . . is crucial to more reliable prediction of the change of
convective precipitation, especially in the tropics”. Yet, kilometric scale structures typically
live for 15 min!

A kilometric scale, seamless model, might for example forecast snow in Quebec on
13 December 2098, or temperatures 2C above average in Paris on 14 July 2099. Everyone
understands that these forecasts are so far beyond the deterministic predictability limits
that they have no deterministic skill per se, that this future weather and kindred “details”
are irrelevant. In multidecadal climate projections they simply contribute to high frequency
stochastic “internal variability”. With respect to the much weaker low frequency responses
to anthropogenic forcing—especially the wetness and warmness of decadal averages—they
are distracting noises. For estimating the climate state, they must be averaged out.

In order to most succinctly and clearly make my point, in this commentary I deliber-
ately focus on the problem of projecting the mean climate state. Since general circulation
models (GCMs) are grounded in weather scales, they can also be used to project the statis-
tics of extreme weather-scale events such as daily extreme temperatures or precipitation.
Of course, accurate projections of mean climate states are needed before one can accurately
project anything about extremes—this seems obvious, if only because the extremes cor-
respond to moments of a higher order than the mean (first) and it is unlikely that biases
are confined to first order moments. Indeed, the critical high order (extreme) moments in
numerical weather prediction models and in GCM projections are now routinely obtained
by empirical (re) “scaling” parameters based on the mean. A far-reaching implication is
that projecting the mean along with a few empirical model parameters is sufficient, to
project the statistics of extremes. See Appendix A (the discussion following mention of the
Fischer–Tippett theorem). In my opinion, the most promising such theory is multifractal
extreme-value theory. So, surprising though it may seem, “details that are irrelevant to
projecting the mean are also irrelevant to projecting the statistics of extremes”.

Therefore, in either case—whether for mean or extreme statistics—almost all of the
intensive supercomputer computations chase details that are irrelevant. One can only
presume that the real justification for their calculation is that no one has found a better
way. If another type of model—for example a pure stochastic model—was developed that
dealt only with the relevant parameters and that could determine the statistics directly—
then it might be possible to replace the supercomputers with laptops. Better yet, the
different model types could be used together as copredictors in a unified “hybrid model”
described later. Notice that although weather forecasts are treated as deterministic and
climate forecasts as qualitatively different—stochastic—the argument for using a unique,
seamless weather-climate models is merely one of numerical convenience. It dismisses
without discussion a potentially golden opportunity to develop new (stochastic) model
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types. These can be based on the theories mentioned in Appendix A and on the qualitative
transition from weather to what I call macroweather. Macroweather is the scaling regime
starting at time scales beyond the lifetime of planetary weather structures (closely equal
to the deterministic predictability limit) of around 10 days out to longer scales where the
change in the mean climate state is larger than the amplitude of the internal variability
(currently this is around a decade or so).

1.2. A Disappointing Decade

The Summit closely followed the 2007 Intergovernmental Panel on Climate Change
(IPCC) 4th Assessment Report (AR4). Informed by the models in the Climate Model Inter-
comparison Project 4 (CMIP4), the AR4 had finally narrowed the historic—and very wide—
range of temperature increases expected to follow a doubling of CO2 (the “equilibrium
climate sensitivity”, ECS). The now famous ECS range—1.5 to 4.5 C/CO2 doubling—was
first established in 1979 in a US National Academy of Sciences (NAS) report [4]. This very
wide range was re-iterated in the succeeding reports (AR1, 1990; AR2, 1995; AR3, 2001). The
AR4′s narrowing to 2–4.5 C/CO2 doubling was thus historic. Optimistically, the Summit
prognosticated that computer systems “at least a thousand times more powerful than the
currently available computers . . . will permit scientists to strive toward kilometer-scale
modeling of the global climate system”.

Unfortunately, this optimism was badly tarnished by subsequent developments. In-
stead, the last decade has raised troubling indications that the current computationally
intensive approach is reaching diminishing returns. Alarmingly, model projection un-
certainties have grown rather than diminish. Uncertainties remain so large that climate
policies (mitigation) are effectively decoupled from their consequences (future mean tem-
peratures), thus allowing decision makers far too much “wiggle room”. In the context of the
hopeful 2015 Paris agreements, this uncertainty already led to warnings of an impending
“uncertainty crisis” [5,6], that now seems to have fully erupted.

When I refer to uncertainties in the Global Circulation Models (GCMs), I am speaking
of uncertainty in the sense of a spread between models. Recall that today, there are
dozens of different climate models produced all over the world. To use the models for
projecting future climate states, the IPCC uses the outputs of different CMIP models with
each model considered to be a different realization (member) of a “multi-model ensemble”
(MME). The MME median is then used as the most likely future state and the spread of the
MME determines the 90% confidence limits. Although CMIP models are all based on the
same laws of physics, the slightly different ways that these are physically approximated
(parametrized) and numerically implemented, cause them to project a wide range of
outcomes. This spread of an MME is the measure of the uncertainty under consideration
and it is conventional to quantify this by the 90% confidence bounds meaning that 90% of
the members of the MME lie within the stated bounds. For clarity, I will henceforth call it
an “MME uncertainty”.

This MME uncertainty must be distinguished from variability within each model that
is the consequence of high frequency weather scale processes. Due to sensitive dependence
on initial conditions (deterministic chaos), small changes in the latter leads to different
weather patterns, i.e., to a different realization (pattern) of this “internal variability”. From
the point of view of weather forecasting, i.e., at short weather time scales—this variability
is indeed a forecast uncertainty (see the discussion of reliability, the figures in Section 3.2.2
and also Appendix A), but at macroweather and climate scales, it is a random internal
variability that must be averaged out by ensemble averaging—i.e., by averaging over
different realizations of the internal variability obtained from model integrations starting
with slightly different initial conditions. In principle, the ensemble is composed of an
infinite number of realizations, each differing only in their weather details. However, in
order to economize computer time, climate projections typically use only a small number
of ensemble members. In order to eliminate the effects of internal variability as much as
possible, averaging over realizations is combined with temporal averaging, for example by
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using 10 year running averages. An advantage of stochastic models such as the Fractional
Energy Balance Equation (FEBE), to be described below, is that they can directly yield the
true (infinite) ensemble average and—if needed—random realizations (see Section 3.2, the
discussion its figures and Appendix A).

Each individual general circulation model or GCM (i.e., each member of the MME)
therefore has its own internal variability that represents its responses to internal forcings.
This internal variability is a property of each GCM and it is also an objective property of the
atmosphere: if the model is realistic, it will have the same statistics as the true atmospheric
internal variability (for forecasting, this is the problem of model “reliability”, Section 3.2,
Appendix A). In contrast, the MME uncertainty is essentially a subjective limitation of
current models, it arises because of the qualitatively and quantitatively different model
assumptions and numerical schemes, approximations. This MME variability represents
neither the variability of the climate system nor the variability of its components, it is a
disagreement in the models after the internal variability has been averaged out (or nearly
so), it rather expresses our imperfect ability to model the system. This structural uncertainty
is different from the uncertainty discussed later in the context of the Fractional Energy
Balance Equation: “FEBE uncertainty”. The latter is essentially due to uncertain estimates
of model parameters, it is “parametric uncertainty”.

In both the Summit paper and the Royal Society Briefing it is argued that there should
be a single “world climate research facility”. However, if such a facility had a unique model,
the MME would collapse to a single member so that the MME uncertainty would vanish:
such a model would therefore have to be highly realistic. This is recognized by proponents
such as ref. [3] who accept a plurality of models arguing instead for a global facility with “
fewer simulators, perhaps one per continent, [to] avoid duplication and concentrate a large
number of individually poorly resourced efforts, yet maintain a competitive environment
to encourage scientific innovation”.

A key parameter characterizing the model responses to anthropogenic forcing is the
equilibrium climate sensitivity (ECS). At the moment, ECS estimates are based on expert
judgements that incorporate all available knowledge, the MME being just one of many
inputs. An important modelling goal is to achieve reliable MMEs with sufficiently small
uncertainties so that they may be used directly. The hope is to fully replace subjective expert
prognoses in much the same way that skilled weather forecasters have been marginalized
by numerical weather prediction models.

However, we still need experts. Worse, it seems that we need them more than ever.
Consider for example the AR5 (2013) whose MME 90% confidence interval ECS was
1.9–4.5 C/CO2 doubling. Incorporating evidence from observation-based estimates, the
AR5 experts widened the AR4 range by lowering the cool limit back to the 1979, 1.5 C
value. Nevertheless, there was still a tight alignment between the model and expert
ranges: 1.9–4.5 versus 1.5–4.5, and it was hoped that in the higher resolution CMIP6
models, that model uncertainties would be substantially reduced (see Table 1). In the
event, the 2021 AR6 did make history: its expert opinion range did indeed narrow by a
whopping 50% to 2.5–4 C/CO2 doubling. Yet, for the modelers, this improvement was
bittersweet: the actual CMIP6 MME uncertainty was on the contrary, the widest range ever:
2–5.5 C/CO2 doubling! In the AR6, major issues with observational series were rectified
and an observation-based ECS more in line with paleo evidence was able to more tightly
constrain the ECS (see ref. [7]). In effect, the AR6 experts had drastically discounted the
role of the models by giving more weight than ever to other sources of information. More
discussion of the evolution of ECS estimates may be found in ref. [8].

It is likely that the increase of the MME uncertainty is an unintended consequence of
attempts at model improvement. When newer models take into account more complex
physical processes, there are two distinct consequences. First, for a given model, there
is a larger spread from one realization to another, i.e., to a larger internal variability in
the improved model, for example, there is support for this in terms of cloud feedback
modelling [9].
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However, one must not confuse this chaos induced internal model variability within a
single GCM with the second consequence which is the dispersion of the resulting means
between different GCMs. While the former can (and often is) averaged out by taking
decadal averages—and in addition running enough simulations with slightly varying initial
conditions—there is no way to reduce MME uncertainty without detailed understanding
of why and how each GCM model differs from another, and this is the cause of the MME
uncertainty. One must conclude that as the models evolved from CMIP5 to CMIP6, that each
modelling group made improvements that—on average—drove their models further from
the other models, exacerbating rather than eliminating the MME uncertainty problem (see
for example ref. [8] who concluded that “cloud feedbacks and cloud-aerosol interactions
are the most likely contributors to the high values and increased range of ECS in CMIP6”).
The trouble for MME for projections of global warming is that the key ECS parameter is an
“emergent” model property that cannot be “tuned”. In engineering situations, parameters
analogous to the ECS are estimated empirically and semi-empirical models are used. An
important advantage of the FEBE approach is precisely that it treats the global (and regional)
climate sensitivity as empirical parameters while retaining various dynamical constraints
such as energy conservation and scale symmetries.

The ECS and mean temperatures mentioned above are global values and to maintain
focus I will concentrate on these, but it is worth mentioning that regional projections and
sensitivities are also important and for these, expert opinions are not very useful so that
climate models are virtually indispensable. However, here again, MME regional projections
are a cause for concern. When ref. [10] compared the historical part of the outputs of
32 CMIP5 models with five global temperature data sets from 1880 (at monthly, 2◦ resolu-
tion), they found that the two were frequently in significant disagreement. Specifically, over
this historical period, they found that over 38% of the globe, the observed and modelled
temperature change per CO2 doubling (the Transient Climate Sensitivity, TCS)—disagreed
at the 95% level. In other words, the historical and modelled warming patterns were quite
different from each other. This inability to reproduce the past is discouraging enough, but
more worrying still was the finding that to a high degree of accuracy, under the various
AR5 scenarios, each model’s temperature projections were nearly linear extrapolations of
its past: each model’s future warming pattern was essentially identical to its own (poorly
estimated) past pattern.

1.3. The Problem of the Details

By June 2022, the first exascale computer was tested (see: https://www.newscientist.
com/article/2322512-worlds-first-exascale-supercomputer-frontier-smashes-speed-records/,
accessed on 27 June 2022) with computational speeds of 1.1 exaflops (=1.1 × 1018 flops)
equaling the Summit’s “1000 times faster” vision and it’s promised “quantum leap in the
exploration of the limits in our ability to reliably predict climate”; its speed attaining the
Royal Society’s “exascale”. Looking back further over the four decades since the NAS
report, computer speeds (as measured in FLOPs) have increased by a factor of ≈1011 and
according to ref. [11] algorithmic improvements have led to a further speedup of ≈106, yet
model uncertainties have grown rather than diminish. Clearly, increased computer speed,
finer grids, more detailed structures and more diverse processes, are not panaceas.

Following this disappointing decade, it is hardly surprisingly that disenchantment
with the dominant “bigger is better” mantra has grown with alternatives starting to emerge.
One-extreme-way of handling the uncertainties is simply to drop any attempt at quantifying
them: “Storylines”. Articulated in a paper by 19 authors that included many prominent cli-
mate scientists, we are told that storylines “do not seek to quantify probabilities, but instead
to develop descriptive ‘storylines’, ‘narratives’ or ‘tales’ of plausible future climates” [12].
More precisely, a storyline “is defined as a physically self-consistent unfolding of past
events, or of plausible future events or pathways. No a priori probability of the storyline
is assessed; emphasis is placed instead on understanding the driving factors involved,
and the plausibility of those factors” [12]. In the storyline approach, numerical models

https://www.newscientist.com/article/2322512-worlds-first-exascale-supercomputer-frontier-smashes-speed-records/
https://www.newscientist.com/article/2322512-worlds-first-exascale-supercomputer-frontier-smashes-speed-records/
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are reduced to “tools to support and test theories regarding the interactions of climate
processes, rather than as a source of quantitative climate predictions” [12]. By replacing
objectively quantified probabilities with subjectively evaluated plausibilities, storylines
harken back to the pre-computer era of deterministic, mechanistic fluid dynamics.

At the opposite extreme, approaches are emerging that while maintaining a prob-
abilistic framework, partially (or completely) replace the GCM governing equations by
exploiting “Big Data” and artificial intelligence (AI). For example, the “Climate Modelling
Alliance” (https://clima.caltech.edu/, accessed on 1 April 2022), is a group of 70 scientists
who have banded together specifically “to reduce and quantify uncertainties in climate
predictions”. They aim to “exploit advances in machine learning and data assimilation to
learn from observations and from data generated on demand in targeted high-resolution
simulations, for example, of clouds or ocean turbulence”. Their aim is to continue to chase
the details but by using techniques of Big Data and AI. An even more radical approach is
“Neural Earth System Modelling” (NESYM) [13]. Based on advances in neural networks
and other deep learning techniques it promises to not only “infuse Earth system modelling,
but ultimately to render them obsolete”.

Whether based on qualitative descriptions (“storylines”) or “black boxes” (Big Data,
AI), these alternatives are retreats from quantitative science (for more alternatives, see also
refs. [14,15]). Instead, in this commentary, I argue for an alternative based on fundamental
science, the outlines of which were discussed in a non-specialist book [5]. The basic
argument is straightforward. First, most of the details are irrelevant and should not be
computed in the first place. Second, to accomplish this, models based on the relevant
parameters must not start in the weather but rather in the macroweather regime. Why base
the model in the weather regime and then ignore the qualitative change in the dynamics
that occurs at time scales corresponding to the lifetimes of planetary scale structures
(≈ten days)? This time scale corresponds to the deterministic predictability limits of the
largest structures and therefore marks the transition from deterministic to stochastic model
behaviour. Why not exploit this drastic change to construct a stochastic model directly
in the lower frequency macroweather regime? Rather than being a virtue, the goal of
“seamless” models that start in the weather regime is in fact a handicap.

Unlike AI and Big Data proposals that attempt to parachute their solutions from the
outside, direct macroweather stochastic modelling is solidly anchored in a long atmospheric
science tradition. This includes multidecadal advances in its stochastic branch: advances in
atmospheric turbulence and the revolution in nonlinear processes. Rather than keeping
the irrelevant details but handling them more efficiently or with bigger computers, the
macroweather alternative is a scientific attempt to overcome the basic conceptual weakness
of all the chasing details approaches. It aims to jettison the irrelevant details and build a
stochastic model from the relevant parameters. Although in its infancy, this alternative
now has a compelling candidate: models based on the Fractional Energy Balance Equation
(FEBE), a modern update of the highly successful refs. energy balance models [16,17]. Sim-
plified FEBE based models are already able to produce state-of-the-art long-range (monthly,
seasonal and interannual) mean global and regional (2◦ × 2◦ resolution) temperature fore-
casts [18–20], but also corresponding global and regional multidecadal climate projections
with much lower uncertainties [6,21] (see Section 3.2 below and also the precursor Scaling
Climate Response Function (SCRF) model [22,23]). While the applications to long-range
(macroweather) forecasting are out of our present scope, we review the projection applica-
tions below. In any case, as I show later, stochastic macroweather models are adjuncts to
the conventional models and the two can be profitably combined (Section 3.3).

https://clima.caltech.edu/
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Table 1. A comparison of Equilibrium Climate Sensitivities, s in units of ◦C/CO2 doubling. For
the expert judgements, the range mid-point is given (not median). The FEBE results are from [6]
and the SCRF is the Scaling Climate Response Function that was used in [22,23]. The AR5 and AR6
forcings and scenarios were somewhat different: Representative Carbon Pathways (RCP) and Shared
Socio-economic Pathways (SSP) respectively. For the AR5, AR6, the uncertainties are confidence
intervals, for the FEBE, SCRF, they are credible intervals.

CMIP IPCC Expert Judgement FEBE (Fractional Energy
Balance Equation) SCRF

AR5
(CMIP5 MME)

AR6
(CMIP6 MME) AR5 AR6 AR5

(RCP) AR6 AR5
(RCP)

Median 3.2 3.7 3.0 3.3 2.0 1.8 2.3
90% Uncertainty Intervals [1.9–4.5] [2.0–5.5] [1.5–4.5] [2.5–4] [1.6–2.4] [1.5–2.2] [1.8–3.7]

Range 2.6 3.5 3 1.5 0.8 0.7 1.9

2. (Re)-Uniting Richardson’s Strands
2.1. The Nonlinear Revolution: High Level Versus Low Level Laws and the Importance of
the Details

To understand stochastic macroweather models, it is helpful to recall their provenance.
A fitting starting point is Lewis Fry Richardson’s landmark book “Weather prediction by
numerical process” whose centenary is celebrated this year. In it, Richardson not only wrote
down the modern equations of the atmosphere, but showed how they could be solved
numerically, even including an arduous manually integrated forecast. While Richardson is
rightfully celebrated as the father of numerical weather prediction, his Janus face is often
overlooked. In the same book, he slyly inserted a poem that is recognized as the founding
idea of turbulent cascades, and shortly afterwards [24], he proposed the first turbulence
law: the Richardson 4/3 law of turbulent diffusion, the precursor of the more famous
Kolmogorov law for velocity fluctuations [25]. In the 1960s, precise, turbulent cascade
models were proposed [26–28] they are now understood to be the generic multifractal
process [29–32].

If a system is scaling then some basic property such as various statistical moments
change in a power law way with space and or time scale. For example, in classical (isotrpic)
inertial range turbulence, average absolute velocity differences ∆V across a distance ∆x are
power laws:

〈∆V(∆x)〉 ∝ ∆xH with H = 1/3 (Kolmogorov, “< >“ indicates statistical averaging). Un-
der a usual (isotropic) “zoom/blowup” by factor λ, this implies 〈∆V(λ∆x)〉 = λH〈∆V(∆x)〉
so that the exponent H is “scale invariant”. H is the scaling exponent of the first order
moment, in general, each moment will have a different “scale invariant” exponent (multi-
fractality, “multiscaling”, see Appendix B.1 for more details and Appendix C for the relation
to the governing equations). More generally, in anisotropic (e.g., rotating, stratified sys-
tems), the exponents will be scale invariant only under appropriate anisotropic zooms, i.e.,
zooms combined with rotation and or flattening of structures (see below and Appendix B).
The terms “scaling”, scale symmetry”, “scale invariance” and “scale conservation” are
therefore closely linked. A consequence of the scaling of the second order moment is that
the spectrum is itself scaling, a power law, with the same caveats applying in anisotropic
systems such as in our stratified atmosphere (Appendix B).

In cascade processes, the same basic scale invariant mechanism repeats scale after
scale (it’s generator is scale invariant), it respects a scaling symmetry. In addition—and this
is important for the extremes discussed in Appendix A—cascades also generally produce
power law extreme events. This means that the extreme tails of the probability distributions
are also scaling (in probability space, not real space), giving rise to the phenomenon of first
order “multifractal phase transitions” [33] implying the divergence of high order statistical
moments [28].
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By the 1970s, thanks to the explosive growth of computer technology, the numerical
strand of atmospheric science was finally vindicated. Although it posed weather forecasting
as a classical deterministic PDE initial value problem, its strongly nonlinear nature was
challenging to numerically tame. Key advancements were the recognition—and resolution—
of nonlinear computational instabilities of the gridded governing differential equations [34],
the parametrization of cumulus convection [35] and the discovery of nonlinear normal
mode initialization [36]. Following these breakthroughs and thanks to ever more powerful
computers, the model resolutions continued to improve. With the help of mushrooming
quantities of in situ and remote data and advances notably in data assimilation, weather
predictions rapidly improved through the 1990s and 2000s.

In contrast, the stochastic turbulent strand that Richardson had helped inaugurate was
mostly analytical, being initially based on the scaling symmetries of the governing equations
(see Appendix C). Harkening back to Maxwell [37] and Gibbs [38], the turbulence approach
was motivated by classical statistical physics, it was precisely based on the overarching
idea that in systems with huge numbers of degrees of freedom, that most of the details
are irrelevant. For example, rather than using (classical or quantum) particle mechanics
to chase the details by modelling the positions and velocities of all the molecules in a
macroscopic body, one instead attempts to discover higher level laws (statistical mechanics,
continuum mechanics, thermodynamics) governing their collective behaviour.

For macroscopic systems, statistical mechanics is superior to particle dynamics not so
much because it would save computer time, but because it singles out the relevant aspects
of the collective behaviour. From the point of view of modern physics, particle mechanics,
statistical mechanics and then continuum mechanics (with thermodynamics) are simply
three different levels of modelling and understanding (see Figure 1). However, the hierarchy
does not stop there: the turbulent laws that emerge in high Reynolds number flows operate
at a still higher level (turbulence). The laws at different levels are mutually compatible,
so that for a given application, scientists choose the most convenient level. For example,
conventional weather and climate models use continuum and thermodynamics rather than
statistical physics. The fact that these continuum theories do not even acknowledge the
existence of atoms is a strength, not a weakness. Just as the position and velocities of
the constituent particles in continuum mechanics are irrelevant so too are the timing and
location of weather events in climate projections. The status of the GCM and turbulence
based (stochastic) models discussed below is analogous: they may both be valid models,
one chooses one or the other (or may use both together) depending on the problem at hand,
depending on convenience. There is no contradiction between them.

Starting in the mid 1970s and early 1980s, the turbulent approach underwent its
own revolution: nonlinear physics and geophysics especially deterministic chaos [39–41]
and fractals [42,43]. From the point of view of atmospheric dynamics, there were two
key advances. First, the realization that the scaling symmetry, is a powerful simplifying
feature of atmospheric dynamics provided that it is generalized to deal with atmospheric
anisotropies especially (but not only) those arising from gravity (differential stratification),
and the Coriolis force (differential rotation).

The precise formalism for handling such generalized scaling symmetries is Generalized
Scale Invariance [30,44,45], GSI). GSI can be regarded as an appropriate way to transfer into
stratified (and possibly rotating) turbulence the classical turbulence insights and theories
regarding isotropic, unstratified, nonrotating turbulence. See Appendix B for a more
in-depth discussion and Appendix C for the connection with the governing equations.

Richardson’s cascade idea led to the second relevant discovery: that cascades generally
lead to multifractals and to the identification of these multifractal processes as the generic
scaling processes [30,31,46]. Thanks to multifractal cascades, we can now account for the
atmosphere’s enormous intermittency (especially in the weather regime) including the
fact that most of its energy and other fluxes are concentrated in violent, extremely sparse
(fractal) regions (for reviews, see [5,47–51]). Fortunately, in the macroweather regime,
the strong temporal weather regime intermittency is largely averaged out resulting in
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much lower temporal intermittency. As a consequence, as a first approximation the mean
and standard deviation are adequate so that quasi Gaussian modelling may be used [52]
(although more extreme random forcing—internal variability—is possible and are probably
needed to capture the extremes, see Appendix A).
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Figure 1. (Upper left): A particle (molecule) description of a gas at molecular scales (nanometers).
(Upper right): At somewhat larger scales we have tens of thousands of particles, we may start to use
statistical mechanics. (Middle right): At macroscopic scales, perhaps tens of centimeters or larger,
there are so many particles that we can average over the molecular fluctuations and use a continuum
description, here we see a vortex. That assumes that the air is smooth- not granular, i.e., that ignores
its molecular nature. Bottom: Many interacting vortices can still be handled computationally, but
the evolution is complex and becomes difficult to understand in a simple mechanistic manner. Each
vortex is a bit like the molecules in the upper left. (Middle left): Nearing the strong turbulence limit,
relevant in the atmosphere. Although this is still a supercomputer simulation, we can already see the
problem of huge numbers of interacting vortices. Due to the seemingly random collection of long
thin vortices, this turbulent view is sometimes called the “spaghetti” picture. Reproduced from [5].

2.2. The Scaling Revolution
2.2.1. Spatial Scaling Is the Primary Symmetry—Not Isotropy

While Richardson’s numerical strand of atmospheric science was vindicated in the
1970s, surprisingly, his wide range scaling, turbulence (stochastic) strand (including the
Richardson 4/3 law of turbulent diffusion), was only vindicated much later, thanks to the
widespread availability (and subsequent analysis) of global scale data sets both on Earth
(Figure 2) and on our twin, Mars. Analysis after analysis has shown the spatial scaling of
atmospheric fields. Furthermore, important were the findings that the boundary conditions
(including the ocean and topography [53]) are accurately spatially scaling over huge ranges
of scales [31,54–62]. These empirical scaling studies included direct study of turbulent
cascades (in the horizontal [60,63], in the vertical [64], in time, [65], in space-time [66],



Meteorology 2022, 1 423

Figure 2). Using trace moment analysis techniques [31], they not only determined the
hierarchy of (multi) scaling exponents but also directly estimated the outer spatial scales
of the cascade processes finding that these are of the order of planetary scales (typically
5000–15,000 km). A variety of scaling analysis methods including trace moments, spectra,
detrended fluctuation analysis and (generalized) structure functions were applied in situ
measurements, radar reflectivities, visible, thermal IR, passive microwave satellite radi-
ances, temperature, wind, pressure heights, humidity, precipitation, potential temperature,
aerosol backscatter, cloud densities and in reanalyses and outputs of numerical weather
models (see, e.g., Figure 2 and for reviews, refs. [5,50,67]).
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Figure 2. (Upper left): Spectra from over 1000 orbits the Tropical Rainfall Measurement Mission; of
five channels visible through thermal IR wavelengths displaying the very accurate scaling down
to scales of the order of the sensor resolution (≈ 10 km). (Upper right): Spectra from five other
(microwave) channels from the same satellite. The data are at lower resolution and the latter depends
on the wavelength, again the scaling is accurate up to the resolution. (Lower Left): The zonal,
meridional and temporal spectra of 1386 images (~ two months of data, September and October
2007) of radiances fields measured by a thermal infrared channel (10.3–11.3 µm) on the geostationary
satellite MTSAT over south-west Pacific at resolutions 30 km and 1 h over latitudes 40◦ S–30◦ N
and longitudes 80◦ E–200◦ E. With the exception of the (small) diurnal peak (and harmonics), the
rescaled spectra are nearly identical and are also nearly perfectly scaling (normally, a straight line
on a log-log plot shows scaling, but in this case there are spurious effects related to the geometry
of the images with respect to the dominant directions of the structures. The black line shows exact
power law scaling after taking into account these geometric effects. The vertical axis is log10E(k),
i.e., the same as on the lower left plot. The bottom horizontal axis is frequency (applicable to the
time spectrum), whereas the top horizontal axis is in wavenumbers- spatial frequencies—and is
appropriate for the two spatial (EW and NS) spectra. (Lower right): Zonal Spectra of reanalyses from
the European Centre for Medium Range Weather Forecasting (ECMWF), once daily for the year 2008
over the band ±45◦ latitude. Reproduced from [5], these figures are adapted from the review [50].
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The relevant scaling exponents were systematic determined and in several cases,
compared to Mars [68]; our sister planet was to found to have quantitatively very similar
cascades, spectra and exponents. This similitude is not as surprising as it might at first sight
appear: cascades and scaling are fundamental properties of strongly nonlinear turbulent
flows. Although it has taken decades to establish, spatial scaling turns out to be a basic
property of the governing equations (and hence of GCM outputs).

Scaling is a symmetry that statistically relates small and large scales—or in time,
fast and slow processes (Appendix B). Without gravity, isotropic scaling is a fundamen-
tal property of the governing equations (Appendix C) that classically has exploited in
numerous “similarity” laws (e.g., ref. [69] and it is the basis of theories of isotropic turbu-
lence, Appendix B). The trouble is that gravity breaks isotropy so that the atmosphere is
strongly stratified.

Which symmetry is primary: scaling or isotropy? To Richardson—writing before the
development of sophisticated isotropic theories—it seemed obvious that it was scaling and
he argued that it held from thousands of kilometers down to dissipation scales. However,
for complex reasons recounted in Appendix B, following Charney’s theory of geostrophic
turbulence, the idea of isotropy primary has been consecrated in models combining small
scale isotropic turbulence in three dimensions with large scale isotropic (quasi-geostrophic)
turbulence in two dimensions, so that the alternative scaling primary GSI [30,44] alterna-
tive (with fractional vorticity equations replacing quasi-geostrophy [70]) has been widely
ignored. Fortunately, the GCMs inherit the wide range scaling of the governing equations
(Appendix C) so that they can be realistic and the persistence of the outdated 2D/3D
isotropic paradigm has no practical consequences for GCM modelling. However, it has
unfortunately prevented both an understanding and exploitation of the scaling alternatives
(Appendix B).

2.2.2. Scaling in Time: Using Scaling to Define Different Atmospheric Regimes

In physics, symmetries have come to play a fundamental role because the assump-
tion that a symmetry is respected is the simplest one possible and—thanks to Noether’s
theorem [71]—they are generally equivalent to conservation laws. For example, energy con-
servation follows if a system’s Langrangian is invariant to translations in time, and scaling
exponents (and more generally group generators) are invariant (conserved) under changes
in scale (we have mentioned the conserved exponent H for the mean, see Appendix B.1
more information including for higher order moments). The initial assumption is that a
symmetry such as conservation of momentum or energy, is respected unless a specific
symmetry breaking mechanism can be found (e.g., a source or sink of energy). In the case
of the atmosphere, we have just discussed that both the equations, and now massive data
analyses, are horizontally scaling over wide ranges, including the important but nontrivial
wind case [72]. Since energy conservation is associated with a symmetry and the scaling
symmetry is associated with a conversation principle, in the following for brevity, I will
sometimes refer collectively to them simply as “symmetries”.

The spatial scaling of atmospheric statistics leads (especially the key wind field) to the
expectation that scaling operates over potentially wide ranges in time. It is therefore natural
to use temporal scaling to define the various atmospheric dynamical regimes. Although
this idea is hardly new, its application to the atmosphere was obscured by the widespread
but inconsistent use of spectral analysis combined with scalebound theoretical frameworks,
e.g., the 2D/3D paradigm. (More generally, “scalebound”, Mandelbrot [73] refers to the
view that as we zoom into structures that we require a hierarchy of different mechanisms,
processes, to explain them and to model them. It is an a priori rejection of the possibility
of scaling).

It was only recently realized that the (still) iconic atmospheric temperature spectrum
proposed by Mitchell [74] was in error by a quadrillion or so [75]. Writing at the dawn of
the climate and paleo-climate data revolution, Mitchell speculated that from hours to the
age of the planet, that the temperature variability consisted of an uninteresting (mostly)
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white noise “background” interspersed with interesting periodic and quasi-periodic pro-
cesses. Today, in spite of the existence of copious quantities of instrumental and paleodata,
Mitchell’s admittedly “educated guess” spectrum is not only still regularly cited but also
approvingly reproduced with embellishments (e.g., the review [76]). As discussed in ref. [5],
the source of this astronomical error was not with spectral analysis per se but rather with
their non-intuitive dimensional units and with the theoretically convenient scalebound
mind-set that dominated their interpretation.

Clarification of the “big picture” atmospheric variability was facilitated thanks to
“fluctuation analysis” [77] based on Haar wavelets [78], Figure 3. Over a time interval
∆t, the Haar fluctuation in the temperature ∆T(∆t) is simply the difference between the
average over the first and second halves of the interval. In Figure 3, we show the root mean
square Haar fluctuation using instrumental and paleo-data. The figure clearly shows the
existence of four or possibly five dynamical regimes spanning the range from milliseconds
to hundreds of millions of years. One notices in particular the alternation of regimes with
growing, “wandering” type fluctuations (positive logarithmic slopes, ∆T(∆t) ∝ ∆tH , H > 0)
and those with “cancelling” apparently converging negative slopes (H < 0).
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square root of the average of the squares of the fluctuations). From left to right, the curves are from
thermistors at 0.017 s resolution, from (daily and annually detrended) hourly temperatures (second
from the left, from a station in Lander Wyoming), reanalysis temperatures (thick, middle, at 75◦ N)
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the two far right curves are from benthic paleotemperatures. The different dynamical regimes are
indicated by dashed lines, roughly separating regions with linear scale dependencies. The slopes are
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Of particular importance is the transition at around ten days that corresponds to the
typical lifetime of planetary scale structures. This drastic transition in the statistical proper-
ties can be calculated from first principles by assuming that the atmosphere is effectively a
heat engine that converts incident solar energy into mechanical (wind) energy. It’s efficiency
is ≈ 4%, implying an average power per mass ε ≈ 10−3 W/kg; the same theory explains
the analogous fundamental transition on Mars at ≈2 sols with ε ≈ 40 × 10−3 W/kg [79].
Based on these analyses, it was argued that on the Earth—at least up to Milankovic scales
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(≈105 years)—that there are three fundamental regimes—not two—and that the interme-
diate regime should be termed “macroweather” with the term “climate” reserved for the
long-time positive slope (H > 0) regime in Figure 3 with fluctuations increasing with time
scale (see ref. [80]).

On theoretical and empirical grounds, the lifetime of planetary scale structures is
itself (nearly) equal to the deterministic predictability limit of these largest structures with
smaller structures having shorter lifetimes and limits. Even if we start with a deterministic
weather scale model, due to this sensitive dependence on initial conditions (the “butterfly
effect”), beyond ten days or so, the model will be effectively stochastic. A complication is
that the ocean is also a turbulent system but with ε ≈ 10−8 W/kg (about 10−5 times smaller
than the atmosphere), and hence with transition time ∝ ε−1/3 about 40 times longer so that
the corresponding “ocean weather” to “ocean macroweather” transition is ≈1 year [50].
This somewhat longer transition scale turns out to be quite variable from place to place
ranging from a month or so to a year over the El Nino region [20]. It implies that there is still
some deterministic prediction skill for ocean systems (e.g., gyres) beyond the atmospheric
transition scale; for monthly resolution macroweather forecasts, this turns out to be a
manageable complication [20].

3. The Fractional Energy Balance Equation (FEBE): A First Generation Macroweather,
Climate Model
3.1. FEBE’s Physical Basis

The weather—macroweather regime is defined by the lifetime of planetary scale
structures which turns out to be essentially equal to their deterministic predictability limit.
At macroweather scales, weather scale dynamics based on classical fluid dynamics therefore
effectively becomes stochastic with statistics determined by the collective behaviour of
huge numbers of short lifetime, small scale “details” [40]. Constructing a model directly at
biweekly or monthly scale macroweather scales thus naturally retains relevant parameters
while jettisoning many irrelevant details.

From the modelling point of view, the augmentation of the model’s integration time
step from subhourly to monthly is already hugely advantageous, but since time and
space are linked, computational savings do not stop there. In the weather regime, the
lifetimes of structures (τ) increases with their size (l) as τ ≈ ε−1/3l2/3; this leads to the
rule of thumb that every halving in spatial resolution requires at least a ten-fold increase
in computations [2]. In macroweather models, not only is the space-time relationship
quite different, but most importantly, only statistical relationships are relevant. If the
goal is to accurately account for as many details as possible, then unsatisfactory subgrid
parametrizations are needed (Appendix A). In contrast, in stochastic macroweather models,
the aim is instead to understand/model/capture the statistical scaling laws. A climate
projection at a given spatial scale, can be made without modelling the finer scales since
their collective statistical effects are already included in the model’s stochastic scaling laws.
Below, we present climate projections performed on laptops, not supercomputers.

However, what physical principles should macroweather models embody? Above, I
argued that they should respect the scaling symmetry, and indeed scaling climate models
have been proposed for some time [23,81–83]. However, on its own, the scaling symmetry
is a rather loose constraint, and without care it can lead to the “runaway Green’s function
effect” [23,84]. It is therefore advantageous to combine it with other symmetries, the
obvious one being energy conservation (i.e., time-origin invariance). Indeed, starting with
refs. [16,17], in the form of energy balance models (EBMs) energy conservation has a proven
track record (see the recent extensive review [85], and update [86]).

It turns out that the symmetries of scaling and energy conservation come together
quite naturally. To illustrate this, for simplicity consider the EBM for the globally averaged
temperature (the “zero dimensional” special case of regional EBM models):
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τ
dT(t)

dt + T(t) = sF(t) (1)

F(t) = Fint(t) + Fext(t) (2)

where T(t) is the temperature anomaly, τ is the relaxation time, s the Equilibrium Climate
Sensitivity (ECS) and F(t) the forcing that includes both external (deterministic Fext) and
internal (Fint, e.g., white noise) contributions. Note in the above equations all the quan-
tities refer to global scale so that for example, in Equation (1), T(t) is the global mean
macroweather temperature anomaly, traditionally taken at one month resolution with
respect to one month averages over a 30 year reference period (the “baseline”). However,
the linearity of the energy balance equations means that there is much flexibility in the
definition (for example they can be defined with or without seasonality, seasonal or annual
anomalies, etc. Interestingly ref. [87] has applied the anomaly idea so as to derive an
anomaly model from the governing equations.

However, the classical Budyko–Sellers derivation of the EBE was for the distribution
of temperature on the Earth’s surface (not just the global average), this was averaged so
as to obtain a 1-D latitudinally varying model. To understand this, we now discuss a
full regional model with regionally varying anomalies and parameters. Their derivation
involved the approximation that any imbalance between the incoming short wave and
outgoing long wave radiative fluxes is directed horizontally towards the poles. However,
in reality, some of the imbalance increases the local (regional) temperature leading to
increased outgoing long wave radiation, and some of it is converted into sensible heat
that is conducted into the subsurface and stored (coming out possibly much later). To
take this radiative-conductive boundary condition into account, we must introduce the
third (vertical) spatial dimension (with coordinate denoted by z). At the surface (z = 0), the
sensible heat equals K ∂T

∂z

∣∣∣
z=0

(K is the is the thermal conductivity) whereas the radiative
flux is T/s where s is the local climate sensitivity. Overall, the precise radiative-conductive
boundary condition is:

(
T
s + K ∂T

∂z

)∣∣∣
z=0

= F [88,89].
Using the conductive-radiative boundary condition we can now consider the full

space-time classical heat equation (Fourier’s and Fick’s laws), so that we obtain the regional
Half-order Energy Balance Equation (HEBE):(

τ(µ,φ) ∂
∂t + ζ(µ,φ)

)χ
T(µ,φ, t) + T(µ,φ, t) = s(µ,φ)F(µ,φ, t)

χ = 1/2; ζ = −∇ · s(µ,φ)D(µ,φ)∇
(3)

where ζ is the horizontal divergence operator, ∇, ∇· are the two dimensional (surface)
gradient and divergence operators, nondimensionalized by the Earth radius, (i.e., the
spherical angular parts of the operators), µ is the cosine of the co-latitude, φ is the longitude,
and D is a heat diffusion coefficient. As indicated, the parameters τ, s, D are functions
of latitude and longitude; T, F are also functions of time. For a different application of
half-order operators in soil heating see ref. [90].

The longitudinally averaged case considered by Budyko and Sellers has only latitu-
dinal dependence, ζ = −s∂/∂µD(µ)

(
1− µ2)∂/∂µ, their model is then the special case of

Equation (3) with χ = 1 instead of χ = 1
2 (assuming s is constant). Interestingly, the Frac-

tional Energy Balance Equation (FEBE) that uses the radiative-conductive surface boundary
condition but with the fractional heat equation (instead of the classical heat equation), is
actually: (

τ(µ,φ)2h ∂2h

∂t2h + ζ(µ,φ)

)1/2

T(µ,φ, t) + T(µ,φ, t) = s(µ,φ)F(µ,φ, t) (4)

We see that the HEBE (Equation (4) with χ = 1/2), is the special case of the FEBE with
h = 1/2 (compare Equation (4) with h = 1/2, with Equation (3) with χ = 1/2), however,
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the Budyko–Sellers model is not a special case of the FEBE (Equation (3) with χ = 1).
This is a consequence of the fact that the Budyko–Sellers model involves an important
approximation and does not satisfy the radiative-conductive boundary conditions. In
both Equations (3) and (4), the term in parentheses is a fractional space-time operator
that needs to be carefully interpreted [88,89]. Just as fractional derivatives in time imply
long range (power-law) temporal dependencies, divergences in horizontal heat fluxes (ζ)
analogously imply long range spatial dependencies. The full (regional) FEBE (Equation (4))
is a space-time model of the Earth’s temperature that accounts for both stochastic internal
variability as well as the deterministic response to external forcings.

Finally, the globally averaged (zero-dimensional) FEBE is obtained from Equation (4)
with ζ = 0:

τh dhT(t)
dth + T(t) = sF(t) (5)

The classical heat equation yields the HEBE with h = 1
2 not the “box” model or “zero-

dimensional” version of the Budyko–Sellers model that has h = 1. Alternatively, Equation (5)
with h 6= 1

2 may be derived directly on phenomenological grounds [91]. The physically
relevant range is probably 0 < h≤ 1 since over the range 1 < h≤ 2, there are oscillations that
are probably not realistic. Technically, the h-order derivative is a Weyl derivative, in the

frequency domain it is a power law filter: dh/dth F.T.→ (iωτ)h where F.T. indicates Fourier
Transform. In real space, fractional derivatives are power law convolutions so that the
half-order derivative is an expression of the slow (power law) transfer of heat into and out
of the earth’s subsurface (land or ocean). Mathematically, it is an expression of the Mori-
Zwanzig or empirical model reduction formalisms that are usually assumed to involve
integer ordered derivatives (e.g., ref. [76]). These classical derivatives are exceptional in that
they have exponential rather than power law Green’s functions. The HEBE is apparently
the first power law instance in the literature.

The globally averaged EBE, HEBE and FEBE (Equation (5) with h = 1, h = 1
2 , 0 < h < 1

respectively) are relaxation equations. When forced with deterministic (e.g., anthropogenic)
and no random forcing (i.e., in Equation (2), Fint = 0), they govern the return of the temper-
ature to its equilibrium value following a perturbation. For example, if F(t) represents an
instantaneous doubling of CO2 (step function)—then with fractional h, the approach of the
temperature to its new equilibrium is ∝ (t/τ)−h.

Since the Fourier Transform of the half order derivative in Equation (5) is (iωτ)h, if τ, s
are independent of time, then we may easily solve the above: T̃(ω) = sF̃(ω)/

(
(iωτ)h + 1

)
where the tilde indicates Fourier transform. This is particularly convenient if we wish to
understand the behaviour of the system when forcing by random internal variability. For
example, if F is a white noise forcing of amplitude σ, then the spectrum is:

ET(ω) =
〈

T̃(ω)T̃∗(ω)
〉
=

s2σ2(
1 + (−iωτ)h

)(
1 + (iωτ)h

) (6)

For the HEBE (h = 1/2 in Equation (6)), we obtain: ET(ω) = s2σ2/
(

1 +
√

2ωτ + ωτ
)

;
Figures 4 and 5 show that at times longer than the typical weather-macroweather transition
scale (about ten days for the globally averaged temperature, there are regional variations)
that the HEBE is indeed well respected. Although the figures show that the HEBE is already
an excellent approximation h may not be exactly equal to 1/2 and it can be empirically esti-
mated in several ways. For example, using the response to (stochastic) internal variability,
ref. [18] found h = 0.42 ± 0.05, and using the response to (deterministic) forcing, ref. [6]
found h = 0.38 ± 0.03 (see below).
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Figure 4. The spectrum of the globally averaged temperature at 6 h resolution from NCEP reanalysis
(1948–2019), the spectrum was averaged over 10 bins per order of magnitude in frequency). The
fitted curve transitions smoothly from a power law (weather, turbulence) spectrum at scales shorter
than ≈ 10 days (to the right of the dashed line, exponent β = 1.8) and the (macroweather only)
HEBE spectrum (Equation (6)) with relaxation time τ = 70 years, s is the climate swensitivity, σ is
the amplitude of the Gaussian white internal forcing. The points with black circles at time scales of
1 year, 6 months, 24 h, 12 h (left to right) were not used in the regression. The point at the extreme
left (corresponding to (72 years)−1), is a bit high due to anthropogenic warming superposed on the
internal variability.

If the internal forcing Fint is a Gaussian white noise (see, e.g., ref. [52]), then the FEBE re-
sponse is a “fractional Relaxation noise” [92] (fRn) that at high frequencies (∆t� τ) is nearly
a (more familiar) fractional Gaussian noise [93] (fGn) that has fluctuations ∆T(∆t) ∝ ∆tH

with scaling exponent (logarithmic slope) H = h − 1
2 < 0. While the white noise internal

variability forcing has typical fluctuations decreasing as ∆Fint(∆t) ∝ ∆t−1/2, the external
anthropogenic forcings ∆Fext instead increases with time scale therefore eventually becom-
ing dominant. (Of course—as mentioned earlier—the weather scale processes responsible
for the internal forcing are ultimately multifractal with strong extremes, Gaussian internal
variability is only the simplest model and in the future this assumption can be relaxed).

At this point we might mention that the scaling symmetry only applies to the fractional
term that represents the imbalance between the incoming short wave radiative flux F and
the outgoing long wave flux T/s. In Equations (1) and (5) (the global averaged model)
or in the regional model (Equation (4)), neglecting the horizontal divergence term ζ, it
corresponds physically to energy storage processes that are therefore scaling. From the
spectrum (Equation (6)) we can see that the overall behaviour of the temperature statistics
has both a power law approach to equilibrium (the low ω limit) as well as a power law
highω limit).
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Figure 5. Similar to Figure 4 but for a collection of paleotemperatures from the PAGES 2K data base.
The figure was adapted from [94], in particular, the thick red curve (added) shows the macroweather
(HEBE), weather (power law) regression with relaxation time scale τ = 70 years and with weather-
macroweather transtion at 10 days with β = 3. We can see that the macroweather part (at the left,
10 days and longer) is nearly identical to the globally averaged temperature spectrum (Figure 4). The
dashed reference lines indicate power laws with β = 1, 2 (bottom and top respectively).

3.2. Using the FEBE to Project Temperatures to 2100
3.2.1. FEBE Parameters

Figure 3 helps us to understand how the FEBE can be used for projecting the tempera-
tures at multi-decadal time scales through to the year 2100. First, recall that the shortest time
scale that the FEBE may hope to model is in the macroweather regime (with ∆t >≈ 10 days)
where fluctuations from the internal variability decrease as time scales increase. However,
the external anthropogenic forcings ∆Fext instead increases with time scale therefore even-
tually becoming dominant. In Figure 3, the bold curve showing the minimum is from data
at 75◦ N, at 2◦ × 2◦ spatial resolution and is from data taken over the last 140 years. The
minimum occurs at ∆t ≈ 50 years where the root mean square fluctuation of the 50 year
temperature anomaly is ≈ 0.7C (i.e., ±0.35 C). This is roughly equal to the average anthro-
pogenic change in temperature at this latitude averaged over the (nearly) three 50 year
intervals since 1880. Note that the earliest interval had a smaller change than the recent
one and the curve shows the average over the three intervals. If we consider instead the
globally averaged temperature (not shown), and consider the most recent decades (with
fastest warming), the cross-over from internally to externally dominated forcing occurs
at ∆t ≈ 10–15 years at 0.1 C. This means that while the typical decadal warming is about
0.1 C, the amplitude the typical decadally averaged internal variability is ≈±0.05 C.

This cross-over from an H < 0 to H > 0 regime defines the macroweather—climate
transition (in our current epoch). It shows that for climate projections until 2100, the FEBE
can be forced using the anthropogenic forcings. In the pre-industrial period, there is still
debate as to the length of macroweather—climate transition scale. It is certainly much
longer—possibly multi-millenial—and is still not well understood [94–96]. However—if
only due to the existence of ice ages representing changes of several degrees at ≈105 year
time scales—there is no question that fluctuations must reverse their decline with scale—
and start to increase, as shown by the EPICA ice core in Figure 3.
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The basic FEBE (Equation (6)) is a linear equation so that the deterministic responses
to anthropogenic forcings can be considered independently of the (superposed) stochastic
responses to internal forcing. From the globally averaged Equation (6), we see that the
relaxation time τ can be used to nondimensionalize time (i.e., t→ t/τ): τ determines the
(slow, power law) time scale of the relaxation to equilibrium. As usual, the qualitative
behaviour of the differential equation is determined by its highest order derivative h, here
it determines the stochastic and deterministic response exponents. Finally, the ECS s,
quantifies the sensitivity of the temperature to a given power per area of forcing.

In order to exploit the FEBE for projections, Bayesian inference was used based on
historical records of past global temperatures. Reconstructed forcings at monthly resolution
is convenient, here I used those from the CMIP5 and CMIP6 simulations. The Bayesian
methodology was first developed in ref. [23] for the somewhat different Scaling Climate
Response Function (SCRF) model, and then applied to the FEBE in refs. [6] (see also ref. [21]
that also has regional FEBE projections). Bayesian inference transforms available initial
knowledge into prior probability distributions. These are then confronted with data to
produce a posteriori probabilities using Bayes theorem. The last step requires a hypothesis
about the a posteriori likelihoods. Whereas traditionally these are not well known—and
are thus usually ad hoc—an elegant feature of the FEBE is that they are given by the model
itself. This is because the FEBE determines both the deterministic and stochastic responses,
and the latter (the response to the internal variability white noise forcing) determines
the likelihoods.

Before presenting parameter estimates and projections [6], a word about the historical
forcings is needed. The main issue is the role of aerosols that are particularly uncertain so
that are not so well reconstructed. This problem was dealt with by introducing a linear
parameter α that determined the overall aerosol strength by renormalizing the (somewhat
different) AR5 and AR6 aerosol reconstructions (the two gave quite similar results, only
the former is shown below). A final forcing issue is the intermittency or “spikiness” of
the volcanic forcing. In order to fit volcanic forcing into the linear response framework, a
nonlinear transformation is needed, determined by an empirical exponent ν. The global
temperature response data are also somewhat uncertain. As a consequence, five different
monthly resolution data sets since 1880 were used with each given an equal a priori
probability [6].

With this data, the median FEBE parameters were estimated as h = 0.38, [0.33–0.44],
τ = 4.7, [2.4–7.0] years, s = 2.0, [1.6–2.4] C/CO2 doubling with the square brackets indicating
the 90% “credible intervals”. (In Bayesian statistics, the credible interval is the interval
within which an unobserved parameter value falls with a particular probability. It is the
Bayesian analogue of a “confidence interval”). These FEBE parameters may be compared
with the classical EBE value h = 1 (integer order theory from Equation (2)), τ = 4, [2–6] years
(from General Circulation Models, GCMs [97]; unpublished analyses using the HEBE show
that there is a wide range of regional relaxation times varying from less than a month (many
land areas) up to millenia for some tropical ocean areas).

For the important equilibrium climate sensitivity, s, see Table 1. In the table, we
have included the parameters of the SCRF model that was the pre-cursor of the FEBE. In
the table we see that the 90% FEBE confidence interval lies completely within the AR5
expert range and largely overlaps the AR6 MME range. Note that strictly speaking, MME
uncertainties are classical “confidence intervals” whereas the Bayesian uncertainties are
“credible intervals” (CI). In the former case, they arise because of “structural uncertainty”,
i.e., the differences in how the various members of the MME were constructed. In the latter
case, they are parametric uncertainties (uncertainties in the model parameters) largely due
to uncertainties in the past forcing reconstructions and historical temperature series.

For the aerosol normalization factor α, the estimate α = 0.6, [0.2, 1] confirmed and
quantified the finding of numerous authors that the reconstructed aerosols AR5 were thus
about 40% too strong (too much cooling [98–100]).
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3.2.2. FEBE Hindprojections

Projections throughout the 21st century can now be made using the model, the es-
timated parameters, the historical forcing and the (prescribed) future forcing scenarios.
Before showing the future projections, it is worth verifying the model by comparing the
model hindprojections with the historical temperature data. This can be done in two ways.
First, one can test the FEBE “reliability” (Figure 6). The reliability is a technical term that
quantifies the difference between the forecast and actual probability distributions. For
example, consider a set of long range weather predictions derived from ensemble forecasts.
In some realizations, it is predicted that the chance of above average seasonal-mean tem-
perature for the coming season is 60%. If the probabilistic forecast system is reliable, then
one can expect that in 60% of these predictions, the actual seasonal-mean temperature will
be above average [101,102]. Figure 6, verifies that the reliability of the FEBE is as expected:
it shows that the temperature observations fall closely within the 90% credible interval
(CI) of the FEBE historical reconstruction (i.e., the ensemble average of the response with
both internal and external forcing). More precisely, at Figure 6′s monthly resolution, the
historical mean temperature (red) is within the 90% CI of the FEBE-forced response 89.9%
of the months using the RCP scenario with internal variability added. The accuracy of this
uncertainty verifies both the underlying model and Bayesian parameter estimation method.
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Figure 6. The historical reconstruction (forced temperature response and internal variability) of the
FEBE, with parameters calibrated using the AR5 RCP forcing (blue); 90% CIs (due to parametric
uncertainty and internal variability) are indicated (shaded). The red is the mean of five observational
temperature series at monthly resolution. Reproduced from [6].

The reliability validation in Figure 6 included the internal variability; in Figure 7 we
show an estimate of the ensemble averaged hindprojections, i.e., with the internal variability
completely averaged out. This is not a reliability check, so we do not expect the ensemble
averaged FEBE to be in the data range 90% of the time. Rather, the percentage of the time
that the ensemble averaged FEBE is in the data range is a measure of hindprojection—
data agreement about the deterministic forced response part. It is therefore appropriate
to compare this with the MME. In Figure 7, we compare the 90% CI of the historical
temperature observations with the median forced response of both the FEBE using the
CMIP 5 Representative Carbon Pathway 4.5, the number “4.5” refers to the increased
scenario forcing in the year 2100 in W/m2 (see ref. [6] for comparison with CMIP6 models
and further discussion).
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Figure 7. The median historical forced component of the FEBE (blue), and the median of the
CMIP5 MME (black) alongside mean of five observational temperature series (red) with their 90% CI
indicated (shaded). The inset (left) shows the period 1998-2016 where the MME median (black) was
mostly above the data (red) yet the FEBE (blue) was fairly close. Reproduced from [6]. The baseline
was 1880–1910.

In the inset of Figure 7, we show the “slowdown” (“hiatus”) period (1998–2014).
Throughout the historical period, the hindprojection of the FEBE and the median of the
CMIP5 MME are close (see ref. [6] very similar CMIP6 graphs). Between 1915–1960, the
CMIP5 MME is consistently warmer than the FEBE hindprojection and warmer than histor-
ical temperature records between 1910 and 1935, although generally by less than 0.05 C.
The slowdown in global warming during the first decade of the 21st century [103,104], is
tracked closely by the FEBE hindprojection, while the CMIP5 MME median overshoots
(by 0.1 to 0.2 C)—a well-studied divergence between GCMs and observations—is shown
in Figure 7 (insets). This supports ref. [105], who found that the slowdown could be well
predicted by a stochastic fGn model (comparable with the present hindprojection).

3.2.3. FEBE Projections

From Figures 6 and 7, we see that the FEBE is reliable (Figure 6) and well reproduces
the globally averaged past temperatures (Figure 7). In fact, the Bayesian approach allows us
to determine the entire (joint) multi-parameter probability distribution in the 5 dimensional
(h, τ, s, α, ν) parameter space. This implicitly includes the correlation information between
the parameters (i.e., the fact that estimates of certain parameters—for example h, τ are
correlated). Combining this joint parameter probability distribution with the past forcing
data and future forcing scenarios, we can make future projections. The simplest way
is to use a numerical Monte Carlo method that draws parameters at random from the
5 dimensional (h, τ, s, α, ν) space and then for each set, to use the FEBE to integrate forward
to the year 2100.

The result—for the moderate mitigation scenario RCP4.5 is shown in Figure 8 (for
other AR5, AR6 scenarios, see [6]). The most important point is the near complete overlap
of the 90% confidence limits for the two different models that implies that they are in
complete agreement: the FEBE thus validates the MME and the MME validates the FEBE.
This is significant since their uncertainties have quite different origins (i.e., parametric
versus structural). We also note that due to the smaller s, that the uncertainty spread is
about half that of the MME and that the median FEBE projection is a little lower than
the MME.
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Figure 8. The deterministic forced temperature response projected using the FEBE (blue), using the
RCP4.5 warming scenario, the grey curves are the corresponding CMIP5 MME. The central lines are
medians and all spreads are 90% confidence intervals. We see that the FEBE gives a slightly smaller
median warming but a much smaller range of outcomes in 2100. Adapted from [6].

3.3. Using Macroweather Models to Project CMIP: Model Verification and Hybrids with GCMs

We mentioned that ref. [10] found that in the various AR5 RCP scenarios, that the
CMIP5 models (nearly) linearly projected their past (from hindprojection) warming patterns
into the future. This linearity suggests that linear stochastic FEBE type macroweather
models could be used to project each of the CMIP5 MME members individually. Figure 9
(top curves) shows the result when this is done on each of 32 CMIP5 members [106]. The
black curve in the figure is the CMIP5 MME median for the RCP4.5 scenario. Superposed
(orange) is the projection of the same CMIP5 models with the same forcings but using the
SCRF macroweather model (the close precursor of the FEBE, it has the same parameter set
as the FEBE although they have slightly different meanings and values, see Table 1).
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Figure 9. A comparisons of the CMIP5 MME mean (black), with the mean SCRF projection of each
CMIP5 member. The figure shows results for the RCP4.5 scenario so the black MME median curve is
the same as that in Figure 6. For each member, the optimum SCRF parameters are estimated from
the member’s historical hindprojection, and then projected into the future using the SCRF (orange).
Furthermore, shown is the SCRF projected using the historical temperature data for parameter
estimation (red). Finally, the SCRF and CMIP5 MME members can be used as copredictors in a hybrid
scheme (purple), see ref. [106].
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For each CMIP5 MME member, the optimum SCRF parameters are estimated from
the historical part of the member’s CMIP5 run (its hindprojection), effectively replacing
the actual historical temperature data by the model’s reconstruction. Having estimated
the SCRF parameters, the SCRF is then used to project the member’s future using the
same scenario forcings. The close agreement between the CMIP5 MME median (Figure 9,
black, the same as the MME median curve in Figure 8) and the SCRF equivalent (Figure 9,
orange) is a validation—at least for globally averaged temperatures—of the stochastic
macroweather SCRF. If the SCRF can accurately project the CMIP5 MME using the CMIP5
hindprojection temperature series as inputs (orange), then presumably its projections using
real historical data (Figure 9, red) are equally trustworthy.

The successful SCRF projection of the CMIP5 MME raises the possibility of combining
the CMIP5 models with the SCRF to make an even more accurate “hybrid” projection
(Figure 9, purple). The hybrid projection is the result of taking the SCRF historical data
projection with individual CMIP5 outputs as linear co-predictors, weighting the two so as
to maximize the standard mean skill score (equivalent to minimizing the error variance)
over the historical part of the series (the discrepancy in response with CMIP5 is almost
certainly largely due to problems in the observational datasets of that time, notably the
lack of accounting for coverage bias, see ch. 3 of the AR6). Whereas the CMIP5 models
correct the SCRF biases, the SCRF model corrects the CMIP5 biases. Although suppressed
for clarity in Figure 9, the uncertainties of the CMIP5 models are indicated in Figure 8, and
the SCRF uncertainties are comparable to the FEBE uncertainties in Figure 8. The hybrid
projection has lower uncertainty than either the MME or the SCRF, in future, the method
could be applied to the FEBE and to regional projections.

4. Conclusions

There is wide agreement that improvements in multidecadal climate projections are
urgently needed to help guide Greenhouse gas mitigation policies and the measures
humanity must take in order to adapt to a warming planet. Shortly after the first [107]
climate model, the NAS concluded that a doubling of CO2 would lead to 1.5–4.5 C of
global warming. Since then, computer power and algorithmic efficiencies have improved
by ≈1011, ≈106 respectively. Model resolution has become greater and greater and more
and more processes have been included, yet the MME uncertainty has not narrowed. On
the contrary, following a disappointing decade, the CMIP6 models in the IPCC’s latest
AR6 report in 2021 had an even larger 90% confidence spread: 2–5.5 C/CO2 doubling.
As a consequence, the AR6 had to rely more than ever on observation-based constraints
and expert judgment to bring the range down to the much narrower range 2.5–4 C/CO2
doubling. In addition, for regional projections, there are serious reasons to doubt the
accuracy of the warming patterns [10]. The “uncertainty crisis” is no longer “looming” [5],
it is now fully upon us.

The still dominant view—reiterated in a Royal Society briefing [2]—is that “bigger is
better” with the overriding goal remaining to produce kilometric scale climate models by
the year 2030. However, kilometric structures live typically for 15 min and such models
would effectively make centennial scale weather forecasts whose details are known in
advance to be wrong. The model outputs would be averaged over a factor of time scales
approaching a million, confirming that almost all the expensive details are irrelevant. As
shown in Appendix A, even if the goal is to quantify extreme weather-scale events such
as extreme daily maximum temperatures, getting a reliable estimate of the mean future
climate state is still necessary (it may also be sufficient, see Appendix A).

Indeed, beyond the deterministic predictability limit of about ten days (the atmo-
sphere), the models become stochastic, so that atmospheric scientists should avail them-
selves of the progress realized in the stochastic strand of atmospheric science to directly
build stochastic macroweather models. These include not only the one point statistics that
describe the means and extremes, but also the (two point) space-time correlation functions
as well as the general (multi-point) joint probabilities, etc. Just as continuum mechanics and
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thermodynamics jettison the irrelevant molecular scale details, retaining only the relevant
macroscopic ones, so too can macroweather models be based on the relevant stochastic
laws that account for the collective behaviour of huge numbers of interacting atmospheric
structures and processes.

Of course the difficulty is to figure out what is relevant and what is not. Although in this
commentary, I do not purport to give any definitive answer, I nevertheless argue that such a
model should have the following characteristics: it should be (a) stochastic, (b) grounded in
the macroweather regime, (c) use the principle of energy conservation, (d) the principle of
scale invariance (scaling, see Appendices B and C for detailed discussions).

In order to make this plausible we recalled some of the relevant theoretical and
empirical developments since the 1970s nonlinear revolution. We argued that an early
candidate macroweather model (at least for the surface temperature) is provided by an
update of classical Budyko–Sellers type energy balance models. By using the correct
radiative conductive boundary conditions, it turns out that these classical equations for heat
transport yield half-order fractional derivative equations for the surface temperatures [88],
that can easily be generalized to the Fractional order Energy Balance Equation (FEBE, [91]).
Since the fractional derivative term corresponds to a power law convolution, the FEBE
combines scaling symmetry and energy conservation, and can therefore be tentatively
proposed as a suitable candidate model.

With the help of Bayesian inference, the FEBE was recently used to estimate the model
parameters (including the Equilibrium Climate Sensitivity) and also to make projections
through to the year 2100 (Figure 8). The most important conclusions were that the FEBE and
the CMIP model MME were in near complete agreement, yet the FEBE uncertainties were
about half those of the MME. When compared to the historical past (since 1880), the FEBE
was more reliable (Figure 6) and also in closer agreement with the global mean temperature
(Figure 7). Although we mostly discussed the simpler globally averaged model for the
temperatures (although see Equation (4)), regional FEBE models have been made (ref. [21])
and in the future, numerous improvements and generalizations are possible. Finally, using
the SCRF model (the FEBE precursor stochastic macroweather model), we further showed
(Figure 9) that the skill of such stochastic macroweather models can be validated by using
it to project the individual CMIP models. If the SCRF or FEBE can accurately project each
CMIP5 member using the member’s own past projection, then surely its projections based
on real temperature data are equally trustworthy? The success of stochastic macroweather
models to project each MME member justifies combining the two in a hybrid scheme
that maximizes the overall hindprojection skill. Recent improvements in observational
temperature datasets will only enhance the utility of FEBE and other stochastic models that
can take full advantage of these advances.

This exemplifies in a practical way the main argument of this commentary: that
atmospheric processes can be modelled at different levels reflecting high and low level
laws that can be mutually compatible.

We could also mention that the same FEBE model applied to monthly, seasonal and
Interannual forecasting produces [18–20] state-of-the-art long range forecasts whose skill
is provided by their long memories; mathematically rather than being classical initial
value problems they are past value problems. In future, various nonlinear extensions—
for example for past climate temperature-albedo feedbacks—could allow the model to
be applied to past climate modelling including glacial- interglacial transitions. Future
developments on such “seamless” stochastic macroweather models could potentially span
both macroweather and climate regimes from a month to ice age scales.
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Appendix A. The Details and Weather Scale Extremes

The notion that many of the details of a system with huge numbers of degrees of
freedom may be irrelevant is the basic idea of statistical mechanics. A familiar example is
the central limit theorem that is regularly used to justify the Gaussian distribution of errors.
If one takes the sum of a large number of identically distributed independent random
variables, then—as long as their variance is finite—the appropriately rescaled sum tends to
a Gaussian distribution, irrespective of the original probability distribution (that might for
example have been uniform). The only relevant aspect of a huge collection of such sums of
random numbers is their mean and their variance.

Although the determination of the future mean climate state is still the most important
goal, GCM projections are massive model realizations that can be used to estimate statistics
other than the mean. This notably includes the standard deviation—needed to get the
correct amplitude of the internal variability—as well as the parameters of the Generalized
Extreme Value (GEV) distributions that are often used to quantify the extremes. Yet, in both
cases, the basic conclusion about the higher order statistics is the same as for the (first order)
mean: there are systematic biases and these can be best dealt with by post—processing
with a linear transformation (this transformation is called “scaling” but is different from
the statistical scaling discussed here and central to this commentary, which involves spatial
and/or temporal scale changes. To avoid confusion, this second kind of scaling will here
be called “rescaling”).

To illustrate this, recall that monthly and seasonal GCM forecasts are always expressed
in terms of anomalies with respect to the specific model “climate” (usually a 30 year
average). For each model, this is equivalent to a model-dependent additive adjustment of
the absolute temperatures. For monthly and seasonal forecasts, this is not a big problem
since over these short forecast horizons, the climate is essentially constant so that averages
of recent past data can be used. However, in order to estimate forecast uncertainty (the
“reliability” discussed above, see Figure 6), the model standard deviations quantifying the
amplitude of the internal variability are also needed and these are typically too low, and
sophisticated post-processing is routinely performed. For example, ref. [108] recommended
a linear anomaly postprocessing transformation to both remove bias in the mean and to
yield realistic internal variability amplitudes.

The GCMs used in multidecadal climate projections have the same basic problem as
those used for monthly and seasonal forecasts, so that they are always made with respect
to the model’s “baseline” (e.g., the model mean between 1850 and 1900). Since the whole
point is to quantify the change in the climate, the historical past cannot be directly used to
correct biases in the future mean (note however that the “hybrid” GCM—stochastic model
proposed in Section 3 attempts to achieve such corrections with the help of the FEBE).

However, the basic idea of using past data and the mean, i.e., the first order moment
to correct the higher order moments (including extremes) is apparently still valid. This
was demonstrated by ref. [109], (see also the AR6, ch. 11) who applied an analogous
rescaling of the extremes on the CMIP6 models. For each MME member, the projection
to the year 2100 was started a century or more in the past, this historic part was then

https://psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis/surface_gauss/catalog.html
https://psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis/surface_gauss/catalog.html
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systematically compared with reanalyses. This permitted the establishment of linear
rescaling relations between the model temperature increases and increases in the extreme
GCM daily temperature maxima (in this case, those with 50 year return periods, “the 50 year
return TXx”; temperature minima and precipitation extremes were also considered).

Ironically, ref. [109], recognizes the irrelevance of the details in their extreme estimates.
Rather than using the extreme simulation outputs to directly build histograms of extreme
values, they instead appeal to the Fischer–Tippett theorem (analogous to the central limit
theorem but for extreme values) and instead estimate the three parameters of the General-
ized Extreme Value distribution (GEV). I could note in passing that the assumptions needed
for the GEV to be applicable (in particular the assumption of the asymptotic statistical
independence of “block maxima”) are not generally satisfied by statistical scaling processes
(due to the long range (i.e., large) correlations associated with scaling). It may be that
multifractal extreme value theory may be more appropriate and this leads to power law
probability tails (the problem of divergence of moments or equivalently “multifractal phase
transitions”, see ch. 5 of ref. [50] for theory as well as a review of several dozen refer-
ences claiming power law extreme probabilities in various atmospheric fields including
temperature and precipitation).

Model-specific proportionality factors between the increase in the model’s mean
temperature and the increase in its extremes, were thus determined from past data [109].
In all cases, the higher order moments were found to be proportional to the lower (first
order) moments (the increase in the mean). The bottom line is that uncertainty in the model
means translates to uncertainty in the model extremes. To reliably project the extremes, we
need to reliably project the mean.

Even though the extremes are linked to the mean and the mean may not require high
spatial resolution, it is still argued in the climate community that high spatial resolution
models are especially necessary for the extremes since small scale instabilitites are responsi-
ble for many of the extreme events. For example, the AR6, Ch. 11 states “higher horizontal
model resolution improves the spatial representation of some extreme events (e.g., heavy
precipitation events)”.

Let us examine this more closely in the case of the TXx 50 year return extremes
mentioned above. Daily extremes require the modelling of structures with lifetimes of
24 h. Just as the typical lifetime (τ) of kilometric structures is ≈15 min, the typical size
(l) of those that live for 24 h is ≈1000 km (the theoretical scaling relation is τ ≈ ε−1/3l2/3

with ε ≈ 1 mW/kg, [32,67]). What is required is a model that has realistic temperature
statistics for 1000 km size structures (including their extreme statistics), but in view of the
abovementioned theories, especially multifractal extreme-value theory, nothing requires us
to produce realistic higher resolution realizations of the process in order to achieve this.
Presumably, there are a huge number of millimetric (dissipation scale) processes, flows
that when averaged over 1000 km have identical statistics; most details of the flows are
irrelevant to their statistics (including to their extreme statistics).

To get the statistics right what is needed is to insert random numbers at the finest
model resolutions of the sub-1000 km-grid processes. Such “stochastic parametrizations”
are hardly new—(see, e.g., ref. [110,111])—but they have been applied at model grid scales
of tens of kilometers with the quite different objective of making different GCM realizations
more dispersive so as to be able to better quantify the uncertainties in weather forecasts.
What I am suggesting here is instead to make a stochastic parametrization on a 1000 km grid
with a different aim. Rather attempting to produce realistic 10 km scale details—hoping
that this will lead to realistic large scale statistics—we should instead attempt to directly
mimick the 1000 km statistics. Using our knowledge of scaling cascade processes, it is in
principle possible (much of the theory is available) to work out the statistics of the small
scales conditioned on the large scales. Such a model would only need low spatial resolution
and then could use scaling (cascade) theory including multifractal extreme-value theory to
determine the conditional subgrid statistics. A key theoretical element would be the use of
coupled cascade processes, a subject still in its infancy (see however ref. [112,113]).
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Appendix B. Wide Range Anisotropic Scaling: From Quasi-Geostrophy to Fractional
Vorticity Equations

Appendix B.1. Scaling

Scaling is a symmetry that relates large and small scale fluctuation statistics in the
kind of way illustrated by the following simple example. Consider a stationary random
variable V(x), where x is space or time. Stationarity means that the fluctuation statistics
are translationally invariant; they are independent of the choice of origin of x. V(x) is
said to be scaling, or to respect a scaling symmetry, if its random fluctuations behave
in the following way whenever x (and by implication any increment ∆x in x) is scaled
up or down by an arbitrary ‘zoom factor’ λ. V(x) is scaling if, the qth moment of the
fluctuation statistics (the statistical average of the qth power), for instance when fluctuations
are defined as ∆V = V(x + ∆x) − V(x), decreases or increases by a factor λξ(q) when we
zoom in or out by the factor λ, i.e., when ∆x is replaced by λ times ∆x. (The moments
depend on ∆x only, and not on x, due to stationarity, in this example. Mathematically,〈

∆V(λ∆x)q〉 = λξ(q)〈∆V(∆x)q〉 where the “< >” symbols indicate statistical averaging).
The concave function ξ(q)—the power to which λ is raised—is the “structure function

exponent”, it is the scaling exponent of the qth moment of the fluctuations. When ∆V is
a Gaussian random variable (as for Brownian motion and its fractional generalizations),
then ξ(q) = qH where H (=ξ(1)) is the exponent of the mean absolute fluctuation. This is
called “simple scaling”, “linear scaling” or “monofractal” scaling (so-called because the
set of points exceeding a fixed velocity threshold is a fractal set with a fractal dimension
that is independent of the threshold: it has a unique value). More generally—and this is
necessary to account for turbulent intermittency—ξ(q) = qH − K(q) where K(q) is convex
(i.e., K”(q) < 0). The function K(q) satisfies K(1) = 0 so that the scaling exponent of the
mean is still ξ(1) = H. In simple scaling, K(q) = 0 for all q so that H is enough to specify
all the statistics, but otherwise the other exponents require the full K(q) function. In the
general case of nonlinear ξ(q), the different moments with their different exponents are
said to exhibit ‘multi-scaling’ associated with multifractal fields with K(q) determining the
infinite hierarchy of fractal dimensions of the field V(x) (i.e., the set of points exceeding
different velocity thresholds decreases as the threshold is increased it no longer has a unique
value). Whereas as V(x) is “scaling” (varying in a power law way with scale), the exponent
functions ξ(q), K(q) are called ‘scale-invariant’, to emphasize that they are conserved (are
constant) as we zoom in or out by varying λ.

Fluctuations can be defined in more than one way. In the examples above, ∆V(∆x)
was defined as a difference. This is fine as long as the exponent H is in the range 0 < H < 1.
However, our work has shown that a better, more versatile way is to use Haar fluctuations
(based on Haar wavelets). Over the interval ∆x, Haar fluctuations are simply the difference
between the averages over the first and second halves of the interval, they are useful for
the wider range: −1 < H < 1. Alternatively, one may analyze scaling processes by their
spectra (E(ω),ω is a frequency) which are power laws E(ω) ≈ ω−β with β = 1 + ξ(2). In
the example of simple scaling, the spectral exponent is given by: β = 1 + 2H, so that the
classical Kolmogorov law has β = 5/3 and the more realistic intermittent (multiscaling)
case has an “intermittency correction”.

Of course in practice, the scaling symmetry cannot hold for an infinite range of λ
values. There will always be some finite, though possibly large, range of λ values for
which it holds, marking what will be called the inner and outer scales of the symmetry.
In the atmosphere direct determination of the outer scale typically gives values in the
range of 5000–20,000 km, see [60,63–66,68] or. ch 4 of ref. [50] for a review. (I could also
add that even pure (mathematical) multifractals always have a finite “outer”, (i.e., largest
scale), their range is semi-infinite). Finally, the above considerations are valid for processes
in 1-D space or—when the process is isotropic—transects may be taken in any direction.
However, due to gravity, geophysical fields are typically highly stratified and display other
strong anisotropies (notably differential rotation), this is discussed in the remainder of this
appendix, reviewed in ch. 6 of ref. [50] for a succinct summary of scaling, see ref. [114].
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Appendix B.2. Which Symmetry Is Fundamental: Isotropy or Scaling?

In Section 2, we briefly reviewed some of the evidence and arguments for the hypothe-
sis that the scaling is over wide ranges but is anisotropic with different scaling exponents in
the horizontal and vertical directions and that these different exponents lead to increasingly
(and realistically) stratified structures at larger and larger scales. Although this issue has
been extensively reviewed in the monograph [50] (especially ch. 2), it warrants a more de-
tailed discussion especially in light of the persistence of the alternative bi-scaling (isotropic
2D/isotropic 3D) paradigm (e.g., quasi-geostrophic turbulence).

In the absence of gravity (or other strong source of anisotropy), the basic isotropic
scaling property of the fluid equations has been known for a long time [115] (notably the
Karmen–Howarth equations [116], see Appendix C, and ch. 2 of ref. [50]). The scaling
symmetry justifies the numerous classical fluid dynamics similarity laws (e.g., ref. [69]) and
it underpins models of statistically isotropic turbulence, notably the classical turbulence
laws of Kolmogorov [25], Bolgiano-Obukov [117,118] and Corrsin-Obukov [119,120].

The question is whether or not isotropic laws are relevant in the atmosphere which
is strongly stratified with a scale height of ≈ 10km. Beyond this scale height, three di-
mensional isotropic turbulence would quickly extend into outer space; one is therefore
forced to choose which of the fundamental symmetries is primary: isotropy or scaling?
(Note that this is statistical isotropy so that for example, individual clouds could still be
highly anisotropic. Finally, even “average” clouds that are strongly anisotropic at a given
scale could still be a consequence of fundamentally isotropic dynamics if their anisotropies
were “trivial”. For example, if at each scale average clouds were ellipsoids but with their
elliptical aspect ratios the same at all scales, then the dynamics would still be isotropic. The
key point is that the operation required to go from one scale to another would be a usual
“zoom” and the generator of the scale changing group would be the identity operator that
generates isotropic scale changes rather than a more general anisotropic generator).

Following refs. [121,122], Charney consecrated the choice of isotropy by extending
Kraichnan’s 2-D isotropic turbulence to geostrophic turbulence [123]. Kraichnan’s pure 2D
turbulence (with effectively a single flat layer) unrealistically required the total absence of
vortex stretching and leads to enstrophy cascades with their signature k−3 spectra (k is a
wavenumber). Charney’s extension only allows for limited vortex stretching with smooth
(nonturbulent) vertical structures, sometimes called “layerwise 2D isotropic turbulence”,
yet his quasi-geostrophic enstrophy cascades still lead to k−3 spectra. Charney proposed
geostrophic turbulence theory for the large scales leaving it to others to figure out how
to make a full model that included the smaller scales that were known (since the 1950s)
to have k−5/3 spectra classically associated with 3D isotropic turbulence. However, at the
time this did not seem very challenging: mesoscale data were poor and it was still believed
that there was a wide “meso-scale gap” [124] (in the spectrum) separating the small and
large scales. The 2D/3D paradigm naturally identified the large synoptic “weather” scales
as 2D turbulence separated by the gap at around 10km—from the (much) smaller scale
3D turbulence.

Charney’s theory was therefore welcomed as explaining what was then believed to be
an important—and in the words of its originator—“convenient” gap (Van der Hoven [124]).
Had the meso-scale gap really existed, it would be much easier to imagine the co-existence
of separate isotropic 2D and 3D regimes. It was a decade later when radar, satellite and
aircraft mesoscale data eliminated the gap that the enormity of the problem gradually
became clear (discussed below and reviewed in ch. 2 of ref. [50]). How to marry large scale
k−3 quasi geostrophic enstrophy cascades with small scale k−5/3 energy cascades? As of
yet, no satisfactory theoretical or even numerical solution has been proposed.
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By the time the alternative (wide range) anisotropic scaling paradigm was proposed
a decade later [30,44,125], Charney’s beautiful theory along with its implied 2D/3D scale
break had already been widely accepted, and even today it is still taught.

Anisotropic scaling not only came later, but it involved new and unfamiliar mathemat-
ics (Generalized Scale Invariance, GSI). In anisotropic scaling systems, the usual Euclidian
distance is no longer appropriate for defining scale, the notion instead requires a (mathe-
matical) group of scale changing operators (with their generator) as well as a definition of
the unit vectors. Additionally, this anisotropic alternative was proposed in the emerging
nonlinear branch of atmospheric science that had already begun to evolve separately from
the numerical modelling branch. Starting in the 1930s, the classical turbulence theorists
had thoroughly internalized the elegant simplifications associated with isotropy. For them,
Charney’s theory must have seemed so beautiful that it had to be true. No matter what the
explanation, the choice of isotropy was certainly not made on grounds of physical realism.

Clarification ultimately took several decades; let us first discuss the evidence. The
first attempt to explicitly test the 2D/3D theory was the ill-starred EOLE balloon exper-
iment [126] whose problematic interpretation ultimately took decades (ref. [127], and
appendix 6A of ref. [50]). Since the EOLE results were not clear—and in any case they
did not directly measure the spectrum—over the decades, the main evidence came from
aircraft wind data. The most famous (and still regularly cited) spectra were those from
the GASP experiment [128,129] later followed by similar campaigns including notably
MOZAIC [130], (see ch. 2 of ref. [50] for an extensive discussion and critical review.

The aircraft spectra regularly displayed scale breaks that were generally interpreted
in support of the 2D/3D model—i.e., of a model with isotropic 2D (flat) turbulence at
large scales and isotropic 3D (voluminous) turbulence at small scales. The main difficulty
was the inexplicably large size of the scale break separating the two scaling regimes. The
break was typically closer to 1000 km than to 10 km: if the 2D/3D model was correct
then the turbulence would extend into outer space! There followed various ad hoc “fixes”,
for example ref. [131] proposed that the large scales were dominated by “escaped” 3D
energy and ref. [132] colourfully suggested that it was “squeezed 3D isotropic turbulence”.
Alternatively, efforts were made to numerically justify the 2D/3D model, but these were
either unconvincing or were failures (see, e.g., ref. [133], and the review in ch. 2 of ref. [50]
and references therein). Indeed—fortunately for their realism—the outputs of weather
models [134] show excellent horizontal scaling to scales much larger than the 10km scale
height. This is prima facea evidence that the overall scaling is anisotropic, ultimately a
consequence of the scaling of the governing equations (Appendix C).

The focus on fixes and numerical models distracted attention from closer analysis of
the empirical spectra themselves. It was not noticed until later [72] that the purportedly
2D low wavenumber regime did not in fact have the theoretical k−3 2D spectrum after all;
instead the low wavenumber spectrum was much closer to k−2.4. For lack of an alternative
theoretical explanation, this rather different scaling had been conveniently shoe-horned
into a 2D k−3 regime.

More importantly, the apparent 2D/3D transition scale itself was found to be no
more than a spurious consequence of the aircraft following isobars (rather than isoheights)
in an anisotropic turbulent atmosphere. Had the atmosphere really respected isotropic
turbulence, at each scale there would be a unique spectral exponent and the interpretation
of the spectra would indeed be straightforward. However, even down to scales as small as
5 m (dropsondes [135]), the vertical spectra are close to k−2.4—i.e., quite different than the
horizontal spectra that follow ≈k−5/3. On the one hand, this difference in scaling implies
that the atmosphere becomes increasingly stratified at larger and larger scales, on the other
hand, it implies that the interpretation of the aircraft measurements requires a proper
anisotropic turbulence theory (developed in ref. [72]).
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It turned out that at scales of hundreds of kilometers, the vertical displacement of the
aircraft was typically large enough that vertical fluctuations in the horizontal wind domi-
nated over the horizontal fluctuations [72]. The consequence was that at low wavenumbers,
the quite different (k−2.4) spectrum of the horizontal wind in the vertical direction dom-
inated that of the spectrum of the horizontal wind in the horizontal direction (k−5/3)
yielding the spurious transition from k−2.4 to k−5/3, itself mistaken as evidence of a 2D to
3D transition.

Since the various atmospheric fields are strongly nonlinearly coupled, a break in one
is expected to be observed in them all. Yet, numerous analyses of atmospheric fields other
than the wind field (several of which are shown in Figure 2) also directly support wide
range horizontal scaling (i.e., through the critical meso-scale), see the extensive review [50]).
The generic scaling process is a cascade and direct evidence has amassed that atmospheric
cascades start near planetary scales (notably ref. [63], reviewed in ch. 4 of ref. [50]).
Cascades are strongly intermittent, generally yielding probability distributions with power
law extremes (i.e., not Generalized Extreme Value distributions), close to observations (for
a review, see ref. [50] ch. 5), as discussed in appendix A, these extremes are increasingly
pertinent in the context of climate change.

Direct evidence for scaling in the vertical direction (whose exponents are different from
the horizontal ones) comes notably from Jimspheres [136], radiosondes [30,137], radar [138],
lidar [59], dropsondes [135], satellite radar [72].

The empirical situation was not finally settled until after 2010 when wind data from
aircraft with highly accurate vertical altimetry became available (the TAMDAR system).
Using 14500 such aircraft trajectories, ref. [139] was able to distinguish isoheights and
isobars and make the first determination of the joint wind structure function in vertical
sections finding that the “elliptical” dimension D = 2.56 ± 0.02—far from the classical
values D = 2 (flat) or D = 3 (voluminous) and very close to the anisotropic scaling 23/9D
model (i.e., 2.555 . . . D, see below).

At first, the anisotropic scaling alternative was theoretically based on GSI, and essen-
tially dimensional analysis that lead to the 23/9D model [30]. In the 23/9D model, the
horizontal wind statistics are scaling if the horizontal is blown up by a factor λ, and the
vertical is blown up by λHz where Hz is exponent of the vertical to horizontal aspect ratio.
In this case, the volumes of structures are blown up by factors of λλλHz = λD. In the 23/9D
model, Hz = 5/9 so that the elliptical dimension D = 1 + 1 + 5/9 = 23/9 = 2.555. The rational
ratio 5/9 follows from dimensional analysis: it is the ratio of the Kologorov 1/3 value in
the horizontal to the 3/5 Bolgiano–Obukhov value in the vertical (5/9 = (1/3)/(3/5)). Later,
a more direct relationship between the 23/9D model and the governing equations—that
replaces the quasi-geostrophic approximation—was established by ref. [70]. Starting with
the vorticity equation, fractional vorticity equations were derived which—unlike the quasi-
geostrophic approximation—allow for unrestricted vortex stretching and for anisotropic
scaling, both of which are needed for realism.

Today meteorology and climatology are almost completely based on GCMs. For-
tunately, the GCMs inherit the scaling of the equations so that they are all scaling and
hence—with only a few exceptions—may be quite realistic. This includes the values of
the spectral exponents as well as the hierarchy of multifractal intermittency exponents.
Although the 2D/3D theoretical framework may still be taught in universities, it has no
practical consequences, its lack of contact with the real world is unimportant. Today, the
real damage of this isotropy-first paradigm is unseen. By imposing powerful blinkers, it
blinds us to alternatives, including the stochastic macroweather models advocated here.
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Appendix C. The Origin of Scaling in Fluid Turbulence

In this appendix, we consider the isotropic scaling of the gravity and Coriolis force
free equations of incompressible (and constant density) hydrodynamic turbulence. For the
more realistic anisotropic case, see ref. [70] or the summary in Section 2.3 of ref. [50].

In this standard picture, there is energy injection at large scales (the forcing), and
dissipation due to viscosity ν at small scales. In between there is a scaling (“inertial”) range.
Strictly speaking, the inertial range is a scale range with no sources nor sinks of energy flux
(the name follows since it is dominated by the nonlinear, “inertial” terms). However, in the
atmosphere, the absence of sources and sinks is unrealistic and in any case, as long as the
latter are scaling, the assumption is unnecessary.

To see the origin of scaling, let us first consider the equations of incompressible (and
dry) hydrodynamics, the Navier–Stokes equations; these can be considered to be the basic
equations of the atmosphere and oceans, they are:

∂v
∂t

+ (v · ∇)v = −∇p
ρa

+ ν∇2v + f (A1)

∇ · v = 0 (A2)

where v is the velocity, t is the time, p is the pressure, ρa is the (fluid) air density, ν is the
kinematic viscosity, and f represents the body forces (per unit volume) due to stirring,
gravity. Equation (A1) expresses conservation of momentum, whereas Equation (A2)
expresses, conservation of mass in an incompressible fluid: mathematically it can be
considered simply as a constraint used to eliminate p.

These equations are known to be formally invariant under isotropic “zooms” x → λx
(x is a coordinate), as long as one rescales the other variables as:

v = λγv v′

t = λ−γv+1t′

ν = λγv+1ν′

f = λ2γv−1 f ′
(A3)

γv is an arbitrary scaling exponent (singularity; hence the possibility of “multiscaling”,
multifractality where it is a random value). We do not consider the pressure since as noted,
it is easy to eliminate with Equation (A2). The rescaling of the viscosity may be understood
as a rescaling of the eddy-viscosity or renormalized viscosity; similar remarks can be made
for the forcing [140]. The rescaling of these equations, although seemingly straightforward,
may have various meanings, ranging from deterministic to statistical. Note that as far as
the scaling constraint is concerned, γv can be fairly arbitrary. However, if we impose a
condition such as the conservation of the energy flux (not the energy) the constraint will be
enough to determine its value. Indeed, consider the energy flux ε = −∂v2/∂t we find:

x = λ1x′

ε = λ−1+3γv ε′
(A4)

If it is scale invariant, we obtain γv = 1/3, hence for fluctuations in the velocity ∆v
over distances (lags) ∆x, we obtain for the mean shear:

∆x = λ1∆x′

∆v = λ1/3∆v′
(A5)

If we eliminate λ this is perhaps more familiar:

∆v =

(
∆x
∆x′

)1/3
∆v′ (A6)



Meteorology 2022, 1 444

or in dimensional form:

∆v ≈ ε1/3∆xHv ; Hv = γv = 1/3 (A7)

first derived by [25].
Before continuing, we could note that if we zoom into a real fluid, the viscosity is not

rescaled. This means that the viscous dissipation scale will break the scaling so that at best,
the scaling may hold over a finite range (in the atmosphere this is at submillimetric scales).
However, the scaling range increases with the Reynolds number so that the hypothesis that
in the high Reynold’s number limit, the solutions of the equations of motion are multifractal
is plausible even though there is (as of yet) no mathematical proof.

A similar scaling argument in Fourier space yields the famous k−5/3 energy spectrum:

E(k) = ε2/3k−5/3 (A8)

first derived by [141]. Since the two are essentially equivalent, both are sometimes referred
to as the “Kolmogorov-Obukhov law”. Both real and Fourier space results can also be
derived by dimensional analyses on ε (m2/s3) and one can pass from one to the other if
one squares both sides of Equation (A7), takes ensemble averages followed by Fourier
transforms. The Kolmogorov law is the prototype for other emergent turbulent laws
discussed in Appendix B. See ch. 2, 5, 6 of ref. [50] for its limitations and generalizations.

Although the Kolmogorov law in both real space and Fourier space forms are often
presented as though they are almost trivially equivalent, in fact this equivalence is not so
obvious. For example, the Fourier space version (Equation (A8)) is a statement relating
the variability (variance/wavenumber, E(k)) to the scale (1/k), whereas the meaning of the
equality in Equation (A7) is less clear. In accord with the Fourier interpretation, it can be
read as a relation between a “typical” velocity difference ∆v, the scale (“lag” ∆x) over which
the difference is estimated and the “typical” energy flux ε in the corresponding region.
However, the Fourier product in the Obukhov spectral version of the law corresponds to a
real space convolution (and visa versa), this suggests that the product ε1/3∆xHv should be
interpreted instead as a convolution between ε1/3 and a power of ∆x. More precisely—and
this is the basis of the “Fractionally Integrated Flux” model ref. [31] is that ε1/3∆xHv is
interpreted as a fractional integration of the highly variable cascade process ε1/3 of order
1/3 (fractional integration is a convolution with a power law).

Although at small enough scales the scaling breaks down due to viscosity similarly,
at large scales, the forcing term breaks the scaling symmetry. However, since in the
atmosphere the “outer” scale is roughly the size of the planet and the inner “viscous” scale
is typically 0.1–1 mm (although it will vary considerably due to intermittency—see below)
this leaves a potential scaling range of factor 104 km/10−3 m ≈ 1010.
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