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Abstract: The upper ocean provides a source of thermal energy for tropical cyclone development and
maintenance through a series of complex interactions. In this work, we develop a seventeen-year
dataset of upper ocean thermal field metrics for use in tropical cyclone studies and development
of tropical cyclone intensity prediction models. These metrics include the surface temperature, two
different measures of vertically integrated heat content, and four different measures of vertically
averaged temperature. Some metrics have been used to study upper-ocean energy response to
tropical cyclone passage, while others have been employed to improve operational tropical cyclone
intensity prediction models. The vertically integrated ocean heat content has been used to improve
tropical cyclone intensity forecasts at U.S. tropical cyclone forecast centers and is an integral part
of several operational intensity forecast models. A static 2005–2021 dataset that includes all twelve
metrics described within is available on the Naval Research Laboratory web server, and a subset
of six metrics have been produced in real-time at Fleet Numerical Meteorology and Oceanography
Center and provided to the public via the GODAE server since 2021.
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1. Introduction

The ocean and the atmosphere form a complex coupled system in which heat is stored,
transported and exchanged. The effect of the ocean as a source of thermal energy for the
overlying atmosphere can be considerable, leading to effects such as sea breezes, tropical
cyclone (TC) formation and intensification, and larger-scale effects such as El Niño/La Niña
Southern Oscillation (ENSO), which causes thermal variations in the upper eastern Pacific
Ocean that can lead to shifts in weather patterns over large spatial scales. Quantifying
the heat content of the upper ocean is important in determining such air/sea interaction.
The upper ocean is typically characterized by a layer that is largely homogeneous in
temperature, salinity and density. This mixed layer is the source for heat and moisture
fluxes to the atmosphere above, and so variations in ocean mixed layer parameters can
greatly affect the overlying atmosphere. Therefore, it is no surprise that these variations
in the ocean mixed layer parameters are important to atmospheric prediction and climate
models. Extensive comparisons of mixed layer definitions have been completed using
density profiles in studies such as [1].

The question that remains is how to define representative metrics to describe ther-
mal properties of the mixed layer appropriate for tropical cyclone intensity analysis and
forecasting. In this work, we present several ways to define the ocean mixed layer and
several ways to quantify the thermal properties in that layer. The metrics employed here
were suggested by [2]. We derive these metrics for a 17-year (2005–2021) time period over a
65N–65S band around the globe using ocean analysis fields.
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In Section 2, we describe the data used for deriving the metrics. In Section 3, we define
the metrics and present examples of the resulting two-dimensional fields. In Section 4, we
summarize the results and discuss some potential applications for the new dataset.

2. Materials and Methods

Global ocean analyses are produced using the Navy Coupled Ocean Data Assimilation
(NCODA) system run, upgraded, and maintained at the U.S. Navy Fleet Numerical Meteo-
rology and Oceanography Center in Monterey, CA, U.S. and Stennis Space Center, MS, U.S.
as an operational algorithm. The NCODA analyses have been produced since June 2005
to the present time. From 2005 to 2013 NCODA used a Multi-Variate Optimal Interpola-
tion (MVOI) scheme [3]. Since 2014 NCODA has used a multivariate three-dimensional
variational (3DVAR) method [4]. In analysis-only mode NCODA uses the prior ocean
analysis as a first guess. By avoiding use of a numerical model first-guess, NCODA anal-
yses are independent of ocean model and atmospheric model forcing errors, especially
those associated with the physical parameterization of mixing. However, the quality of the
analysis can be affected by lack and latency of observations. As such, NCODA maintains
an analysis variable that estimates the age of the observations on the grid. In the case of
grid locations that have not been influenced by observations for more than 30 days, profiles
from the monthly Navy Generalized Digital Environmental Model ocean climatology are
introduced into the analysis as synthetic observations. The purpose here is to ensure that
the analysis-only system maintains a seasonal cycle.

NCODA analyses are a result of an observational data fitting approach to the previous
analysis, used here as a persistence forecast. Prior to 2013 NCODA used a 24 h update cycle
(a data time window of ±12 h centered around the analysis time), while since that time
NCODA has used a 12 h update cycle (a data time window of ±6 h). Conventional observa-
tional data for the analyses are obtained from the Global Telecommunications System (GTS,
https://public.wmo.int/en/programmes/global-telecommunication-system, accessed on
22 August 2022), with satellite data obtained directly from the data providers. All data
assimilated are subject to ocean data quality control (QC) procedures [5], and are made
available, with QC outcomes, on the U.S. Global Ocean Data Assimilation Experiment
(GODAE) data server (https://www.usgodae.org, accessed on 22 August 2022). NCODA
assimilates satellite altimeter sea surface height anomaly (SSHA) observations, satellite
and in situ sea surface temperatures (SST), as well as available in situ vertical temperature
and salinity profiles from XBTs, Argo floats, moored buoys, ocean gliders, and ship-board
CTDs. Note that the SSHA data are assimilated along-tracks and are first converted to
temperature and salinity profiles using historical relationships between dynamic height
and temperature at depth. Salinity is then derived from the estimated temperatures using
temperature-salinity correlations that vary with depth, time-of-year, and location [6].

NCODA produces three-dimensional analyses of temperature and salinity, from which
geopotential (dynamic height) and geostrophic velocity are derived. Since April, 2006 the
analysis has been calculated on a 1/6-degree resolution grid with 34 vertical levels using a
stretched vertical grid ranging from 0 m to 5000 m depth. There are 16 levels defined in
the upper 400 m of the water column. Prior to April 2006 the analysis used a 1/4-degree
resolution grid with 32 vertical levels. For this study, we use archived NCODA analyses
from 2005–2021 to generate a suite of two-dimensional fields of the metrics described in the
following section. These derived products span the globe between 65◦ N and 65◦ S and are
produced on a cylindrical grid at 0.25◦ resolution.

3. Results
3.1. Derived Metrics

In this section we present seven approaches to quantifying upper ocean structure and
heat content. Example grids of each metric will be presented. Graphical examples of these
derived products are also produced when applicable. To facilitate comparison, data from
15 September 2010 are used in all examples presented here.

https://public.wmo.int/en/programmes/global-telecommunication-system
https://www.usgodae.org
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3.1.1. Sea Surface Temperature

The simplest metric is the Sea Surface Temperature (SST), the temperature of the top
of the mixed layer. This metric has proven useful in determining conditions favorable for
tropical cyclone (TC) formation and intensification. TC potential intensity is a parameter
determined empirically as a function of SST [7–11]. Many empirical and theoretical models
of potential intensity also have been developed (e.g., [12–15] and other references contained
therein), which further highlight the importance of the ocean as the ultimate TC energy
source. The theoretical models also include the influence of the atmosphere on the potential
intensity, but under most circumstances, the ocean influence is comparable or greater than
that of the atmosphere.

An example SST grid valid on 15 September 2010 is presented in Figure 1. The
tropics and northern hemisphere oceans in mid-September exhibit large areas of warm
SST, with some regions in the western North Atlantic, Pacific and Indian Ocean basins
having temperatures exceeding 26 ◦C. Many northern hemisphere tropical cyclones form
and intensify in these regions.
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3.1.2. Ocean Heat Content Using 26 ◦C Isotherm (OHC26)

A quantification of upper oceanic heat content for TC development was first presented
by [16] as the integrated temperature in excess of 26 ◦C isotherm (the commonly agreed
upon lower limit for TC development) from the depth of the 26 ◦C isotherm (Z26 °C) to the
surface (0), which we will referred to as Oceanic Heat Content (OHC) (Emanuel [14] called
this quantity “hurricane heat potential”. This quantity has also been referred to as “tropical
cyclone heat potential” as in [15]) defined by

OHC(x, y) = ρoCp

∫ 0

−Z26°C

[T(x, y, z)− 26]dz (1)

where ρ0 = 1026 kg m−3 and Cp = 4187 J kg−1 are the mean density and heat capacity
assigned for water, respectively. OHC has been used in a variety of TC research and
operational applications as reviewed in [17].

One disadvantage of this definition of OHC is that the 26 ◦C isotherm outcrops in
cooler ocean water, which leads to areas where OHC is undefined. In the 15 September
2010 example (Figure 2) this outcropping generally occurs in regions where TCs decay, but
equatorward of that often preferred for TC studies and model development. The topology
depicted in Figure 2 shows that in some regions the warm surface conditions extend to
different depths that may not be obvious from considering only the surface data.
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Figure 2. Depth (m) of the 26 ◦C isotherm on 15 September 2010.

To provide a continuous value of OHC over the entire analysis region, we use a slightly
different definition of the heat content of the ocean in those regions where the isotherm
outcropping occurs. We use the same vertical integral as Equation (1), but applied over a
layer defined as the level where the temperature difference from the surface is less than
1.0 ◦C.

OHC(x, y) = ρoCp

∫ 0

−Zm
[T(x, y, z)− 26]dz

where zm is the depth where the temperature difference from the surface is less than 1 ◦C,
ρ0 = 1026 kg m−3 and Cp = 4187 J kg−1 are the mean density and heat capacity assigned for
water, respectively.

Because the sea water temperatures are less than the 26 ◦C reference temperature in
Equation (1), the heat content has negative values relative to sea water in regions above
that temperature. In very cold water we limit the negative heat values to −240 kJ cm−2 for
display purposes only.

Figure 3 depicts the OHC with negative values for the 15 September 2010 data. Most of
the wintertime southern hemisphere oceans have negative heat content. The western parts
of the North Pacific and North Atlantic have large regions of high OHC26, indicating areas
where the heat content is greater due to both increased SST and deeper 26 ◦C isotherm
levels. There are also significant areas where the OHC26 is between 0 and −100 kJ cm−2,
and these negative values could provide additional and spatially continuous information
to TC model developers.
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3.1.3. Ocean Heat Content Using 20 ◦C Isotherm (OHC20)

Another way to compute OHC is to apply the vertical integral to the 20 ◦C isotherm
(OHC20). This has the effect of deepening the layer over which upper ocean heat is
considered to be available for interaction with the atmosphere. This could provide useful
information in areas where surface stress-induced mixing might apply to deeper levels,
such as under an intense atmospheric storm. The 20 ◦C isotherm is embedded in the
permanent thermocline of the tropical ocean. As such it is less likely to be influenced by
local heating and cooling than integrals computed using the 26 ◦C isotherm. The alternate
definition also expands the area of inclusion before outcropping occurs (compare Figure 4
to Figure 2). As with OHC26, our definition of OHC20 includes negative heat values.
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Figure 5 depicts the same case as in Figure 3 except for OHC20. The high heat content
areas are similar among the two approaches although the extent of positive OHC is larger
in OHC20 than in OHC26 (as expected). A difference plot (OHC20-OHC26) for this specific
case is included in Appendix A.
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3.1.4. Average Temperature to 100 m (T100)

The OHC defined in Sections 3.1.2 and 3.1.3 has several shortcomings, as pointed out
by [2]. As originally defined, it is limited to regions where the reference isotherm does not
outcrop. In shallower waters, the ocean may not be deep enough to include the reference
SST isotherm, causing a potential misrepresentation of the ocean conditions. Finally, OHC
does not address static stability changes with depth in salt-stratified waters.
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Price [2] proposes that a more relevant measure of upper oceanic energy may be
obtained from an average upper ocean temperature as defined by

Td (x, y) =
1
d

∫ 0

−d
T(x, y, z)dz (2)

where the d is the depth of vertical mixing caused by a TC. Price [2] further described two
ways to define the mixing depth d in Equation (2). The first assumes that the typical mixing
depth associated with a mature TC passage is 100 m—a simple yet realistic assumption,
and the second calculates the mixing depth directly from the ocean temperature profile.
T100 is simple to calculate and understand, and provides a continuous measure of upper
ocean heat even in relatively shallow water (e.g., in the shallows of the Gulf of Mexico
where the entire water column is warmer than 26 ◦C).

When applied to our 15 September 2010 case (Figure 6), T100 provides a heat estimate
that is representative of a layer rather than SST (Figure 1).
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3.1.5. Average Temperature to Temperature Difference Mixed Layer Depth (Td_∆T_0.5)

Price’s [2] second suggested method is to determine d in Equation (2) from the ocean
pro-file. The three remaining heat metrics in this study use different approaches to select
the depth d. In the next three sections we select depths d to represent the level to which
atmospheric interaction with the ocean water occurs.

The mixed layer is separated from the thermocline below by the barrier layer leading
to stable stratification. The heat contained in the mixed layer is more available to the
atmosphere than that contained in the stable layer below. Here, we use the approach of [17]
which defined the mixed layer as the depth at which the temperature change (positive or
negative) from the surface temperature is 0.5 ◦C.

For the 15 September 2010 case, the mixed layer depth as defined by [17] is depicted
in Figure 7. This date is at the end of the austral winter when months of cooling due to
decreased solar heating and mixing from wind-driven turbulence have led to much larger
mixed layer depths in the southern hemisphere mid-latitudes. In the northern hemisphere
(boreal summer) there is more stable stratification leading to typical mixed layer depths
that are much shallower than the 100 m chosen by [2].

The mean temperature of the mixed layer using a temperature difference of 0.5 ◦C is
depicted in Figure 8. Comparing to T100 (Figure 6) there are larger regions of greater Td_0.5
values over the western North Pacific and Atlantic oceans where surface temperatures are
high, indicating the average is calculated over a shallower layer.
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Figure 8. Layer-weighted mean temperature (◦C) to mixed layer depth defined by ∆T = 0.5 ◦C on
15 September 2010.

3.1.6. Average Temperature to Potential Density Difference Mixed Layer Depth
(Td_ρθ_0.15)

Another approach to defining the mixed layer depth is to use the upper ocean potential
density, the density that a parcel would acquire if brought adiabatically to the surface. For
the mixed layer to be statically stable, potential density increases with depth. We define
the mixed layer depth as the level where potential density increases by 0.15 kg m−3. In the
example Td_ρθ_0.15 topology (Figure 9) and metric field (Figure 10) it can be seen that the
results are similar to those using Td_∆T_0.5 (Figures 7 and 8, respectively).
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Figure 10. Layer-weighted mean temperature (◦C) to mixed layer depth defined by ∆ρθ = 0.15 kgm−3

from surface on 15 September 2010.

3.1.7. Average Temperature to Level of Maximum Stability (Td_MaxE)

In this metric we define the depth of the ocean barrier layer using the ocean stability
(E) and Equation:

E = −1/ρ·(dρ/dz) (3)

where ρ is the density of sea water. Stability is defined such that

E > 0 Stable
E = 0 Neutral Stability
E < 0 Unstable

Thus, we calculate E at each depth of the upper ocean profile and choose the maximum
stability to indicate the barrier depth. As can be seen in Figure 11, over much of the oceans
the depth of maximum stability is relatively shallow and discontinuous. This is likely
not a desired quality for a tropical cyclone related metric. There are some areas of deeper
maximum E, mainly in the North Pacific Ocean tropics, but much of the field is near zero.
The resultant Td_MaxE metric are depicted in Figure 12, and looks much more continuous
despite the maximum E issues.
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Difference plots between the mean temperatures computed for the estimates of mixed
layer depth and T100 are shown in Appendix A. The average temperatures for the layers
computed dynamically are well correlated, but they are all quite different than the mean
temperatures computed through 100 m depth (T100).
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3.2. Tropical Cyclone Applications Using Upper Ocean Thermal Metrics

The importance of the upper ocean as a boundary condition for tropical cyclones is
highlighted in [12–15] leading to theoretical [13,14] and empirical [7–11,15] estimates of
tropical cyclone potential intensity based on the SSTs that exist under the tropical cyclone
eyewall. In a real-time forecasting environment, the SST information available for this
quantity is usually based on observations made prior to the storm’s arrival (i.e., via satellite
based techniques). However, tropical cyclone winds act to mechanically mix the upper
ocean as they arrive on the scene as described in [2], the prior SSTs can be significantly
modified, and this mixing action predominantly results in cooler SST conditions near the
storm’s center. To account for this cooling both empirical and numerical models that make
future intensity forecasts use quantities in the upper ocean to account for the ocean mixing.

The metrics developed in this paper, specifically the OHC26, have been used to account
for the ocean mechanical mixing and the reduction in pre-storm SSTs. When the OHC26 is
large and the mixed layer depth both deep and less stably stratified, mixing results in less
in-storm SST cooling (e.g., [18–21]). Higher values of OHC26 also provide more favorable
conditions for rapid intensification (defined as 95th percentile of intensity changes) when
the rest of the TC environment is also favorable (e.g., [22,23]).

For this reason, statistical-dynamical tropical cyclone intensity models have incor-
porated OHC26 as predictors, which have been shown to improve intensity forecasts.
Examples of uses of OHC26 in operational models include the Statistical Hurricane Predic-
tion Scheme (SHIPS [24]), and the Logistic Growth Equation Model (LGEM [25]). These
models are used in operations at NOAA National Hurricane Center, the Central Pacific Hur-
ricane Center, and U.S. Department of Defense’s Joint Typhoon Warning Center, producing
skillful (vs. climatology + persistence baseline models) intensity forecasts.

One of the more challenging tropical cyclone intensity forecasts are those involving
rapid intensification, which typically occurs in most tropical cyclones reaching 50 m s−1

maximum sustained 1 min wind speeds [26]. To address these forecasts several probabilistic
schemes are run in U.S. operational tropical cyclone forecasts. These include the SHIPS
Rapid Intensification Index and Rapid intensification consensus [22], the Rapid Intensifica-
tion Prediction Aid [23,27] and the Forest Rapid Intensification Aid (FRIA [28]). Each of
these models uses OHC26 as a predictor. OHC26 typically affects predictors related to the
potential intensification, short-term intensity trends, and vertical wind shear predictors.
Although these models are constructed differently, OHC increases their reliability and
accuracy (e.g., Pierce and Brier skill scores) in rapid intensity probability prediction.

Diagnostic studies have also been carried out using composite analyses of these
metrics. Specifically, the response of the upper ocean to tropical cyclone passage was
studied in [29]. Findings of that study suggest that upper oceanic energy decreases in these
metrics are shown to persist for at least 30 days—long enough to possibly affect future TCs,
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and indicates that tropical cyclone kinetic energy (KE) should be considered when assessing
TC impacts on the upper ocean. In addition, SST changes are best related to the KE and
the latitude whereas the upper ocean energy changes are a function of KE, initial upper
ocean energy conditions, and translation speed. Finally, the “typical” tropical cyclones at
30◦ latitude 10-day lagged SST cooling is approximately 0.78 ◦C whereas the same storm
results in 10-day and 30-day lagged decreases in OHC26 by about 12 and 7 kJ cm−2 and a
0.58 ◦C and 0.38 ◦C cooling in T100 metrics, respectively.

Thermal parameters seen in Figures Figures 1–5 and 7 are generated in real-time
operations at the U.S. Navy Fleet Numerical Meteorology and Oceanography Center
and are available from the GODAE server (https://usgodae.org/index.html, accessed on
22 August 2022), web pages (e.g., https://rammb-slider.cira.colostate.edu/, accessed on
22 August 2022) and forecasts systems (see Figure 13).
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Figure 13. NCODA OHC26 (kJ cm−2) real-time product on 15 April 2022 at 12:00 UTC displayed via
the Automated Tropical Cyclone Forecast System. Typhoon Malakas (the second tropical cyclone
of the 2022 western North Pacific season) is overlain as it decays over cooler water with negative
OHC26 values off the coast of Japan.

4. Discussion

The metrics defined in the previous section have been derived using NCODA analy-
ses produced by the Fleet Numerical Meteorology and Oceanography Center (FNMOC).
NCODA is run twice daily (00 and 12 UTC) in operations, and fields are then posted for
public use on the GODAE server (https://usgodae.org/index.html, accessed on 22 August
2022). The GODAE server only retains a subset of the parameters described in this work.
At the time of this report, six of the variables discussed here are available in near real-time
at ftp://www.usgodae.org/ftp/outgoing/fnmoc/models/glb_ocn/grib/ (accessed on 22
August 2022), and an example of a run is shown in Figure 14. The GODAE GRIdded Binary
or General Regularly distributed Information in Binary form (GRIB) format repository of
all six metrics extends from 2020 through the writing of this manuscript while three of the
metrics (SST, OHC26 and Depth of 26 ◦C Isotherm) extend back through 2014.

https://usgodae.org/index.html
https://rammb-slider.cira.colostate.edu/
https://usgodae.org/index.html
www.usgodae.org/ftp/outgoing/fnmoc/models/glb_ocn/grib/
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include from top to bottom: Ice Coverage (not discussed), OHC26, Sea Surface Height Correction
(not discussed), SST, Depth of the 20 ◦C Isotherm, OHC20, Depth of the 26 ◦C Isotherm, OHC26 (a
second copy), and Mixed Layer Depth (5 ◦C).

A complete set of the metrics defined in Section 3 has been produced for research.
These fields can be downloaded from the Naval Research Laboratory Marine Meteorology
Division: http://www.nrlmry.navy.mil/atcf_web/nopp_ohc/ (accessed on 22 August
2022). An example of a FORTRAN reader for the data is also provided, as well as graphical
images of parameters for approximately 10 of the years.

As discussed the horizontal and vertical grid configuration for this dataset has changed
since NCODA was first implemented. These grid changes are not expected to have modified
any of the results or conclusions presented in this paper.

The derived thermal metrics described here have already been used in a study of the
ocean response to TC passage [30]. The results showed that passage of an average-sized,
hurricane-strength TC results in typical SST cooling on the order of 0.6 ◦C which persists
for about 30 days. The OHC26 is decreased by about 12 kJ cm−2 and the T100 is cooled by
about 0.5 ◦C. These upper-ocean energy decreases were shown to persist for up to 60 days.
There are ongoing annual efforts to update operational TC models such as the SHIPS [24]
and LGEM [25] use these metrics as inputs to improve estimates of potential intensity
and/or potential intensification.

NCODA continues to evolve and improve as well. New ocean data sources continue
to be added to the mix of observations used in the assimilation, including satellite derived
sea surface salinity and ocean gliders that are often deployed as targeted observing systems
in hurricane reconnaissance missions. It is now an important component of the U.S.
Navy’s operational global ocean forecast system (GOFS) that uses the Hybrid Ocean
Circulation Model (HYCOM) as the forward model [30]. Finally, NCODA has recently been
ported to the NOAA Environmental Model Center (EMC) as the ocean data assimilation
component part of the Real-Time Ocean Forecast System (RTOFS, see polar.ncep.noaa.gov
for more information, accessed on 22 August 2022). RTOFS currently uses HYCOM but
will eventually use the Modular Ocean Model (MOM).

5. Conclusions

The thermal structure of the upper ocean affects how and how much energy the ocean
fluxes to tropical cyclone, which affects the tropical cyclones’ future development and
maintenance through a series of complex interactions. In this work, we have described
the development a seventeen-year dataset of upper ocean thermal field metrics for use
in tropical cyclone and other studies. The metrics include the surface temperature, two
different measures of vertically integrated heat content, and four different measures of
vertically averaged temperature. These metrics have been used to study upper ocean
energy response to tropical cyclone passage while others have been employed to improve
tropical cyclone intensity prediction models. The vertically integrated ocean heat content

http://www.nrlmry.navy.mil/atcf_web/nopp_ohc/
polar.ncep.noaa.gov
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in particular has been used to improve tropical cyclone intensity forecasts at U.S. tropical
cyclone forecast centers.

Future work will concentrate on the creation of some additional upper ocean metrics,
specifically metrics that use salinity and the Brunt–Väisälä frequency, and improving the
use of other measures of ocean heat content, specifically T100 and Temperature to Level of
Maximum Stability (Td_MaxE). Recently, it has become apparent that knowledge of the
salinity structure of the upper ocean, and static stability variations strongly influence the
SST seen by the hurricane eyewall and the fluxes of energy into the tropical cyclone [17,20].
T100 was highlighted in [2] and earlier works by the same author as an alternative to OHC26,
which may better anticipate SST changes in intense tropical cyclones that typically mix the
upper 100 m of the ocean. T100 may be particularly helpful in shallow water conditions and
in waters colder than 26 ◦C—noting that the formulation for OHC26 described here allows
for negative values in such conditions. Similarly, the more dynamic average Td_MaxE
may prove useful guidance for anticipating evolution of SSTs under TC eyewalls, and
could also be used as an alternative to a 100 m mixing depth used in T100. Finally, work
will continue to develop improved techniques/algorithms to anticipate tropical cyclone
intensity changes for operational forecasters, and ones that make better use of the discussed
upper ocean metrics, salinity and the Brunt–Väisälä frequency.
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Appendix A

This appendix is dedicated to diagnosis of difference fields for both integrated tem-
peratures and the two measures of ocean heat content (OHC26 and OHC20). A com-
plete set of difference graphics for 2010 is included on the data repository website (http:
//www.nrlmry.navy.mil/atcf_web/nopp_ohc/, accessed on 22 August 2022), while a
single case (15 September 2010) is shown in this appendix.

Differences for integrated temperatures fields based on the three different measures of
mixed layer depth and a constant 100 m depth are shown in Figure A1. The gradients in
differences tend to be small for the temperature averages calculated from three methods to
measure mixed layer depth, but large differences exist between these mixed layer depths
and the traditional in-TC measure of the 100- m depth (T100).

http://www.nrlmry.navy.mil/atcf_web/nopp_ohc/
https://www.usgodae.org
http://www.nrlmry.navy.mil/atcf_web/nopp_ohc/
http://www.nrlmry.navy.mil/atcf_web/nopp_ohc/
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Differences for the two measures of ocean heat content are shown in Figure A2.
The OHC20 is always greater than or equal to OHC26 because of how they are defined.
Differences tend to be largest in the tropics, especially in the Southwest Pacific. Differences
in the Northern Hemisphere are largest off the East Coast of North America and in the
deep tropics.
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