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Abstract: The Meteo-France seasonal forecasting system 7 provides a 7-month forecast range with
25 ensembles. The seasonal precipitation re-forecast (from May to November 1993–2015) was evalu-
ated by the Brier score in terms of accuracy and reliability based on tercile probabilities. Multiple
analyses were performed to assess the robustness of the score. These results show that the spatial
distribution of the Brier score depends significantly on tercile thresholds, reference data, sampling
methods, and ensemble types. Large probabilistic errors over the dry regions on land and the Nino
regions in the Pacific can be reduced by adjusting the tercile thresholds. The forecast errors were
identified when they were insensitive to different analysis methods. All the analyses detected that the
errors increase/decrease with the lead time over the tropical Indian/Pacific Ocean. The intra-seasonal
analysis reveals that some of these errors are inherited from monthly forecasts, which may be related
to large-scale, short-term variability modes. A new confidence interval calculation was formulated
for the “uncertain” case in the reference data. The confidence interval at a 95% level for the mean
Brier score over the entire tropical region was quantified. The best estimations are ~6% the mean
Brier score for both the above and below-normal terciles.

Keywords: seasonal forecast; probabilistic evaluation; ensemble forecast; precipitation; Brier score;
tercile probability; probabilistic errors

1. Introduction

The seasonal precipitation forecast has important values for social and economic
development and activities. For instance, low precipitation during the growing season
and heavy precipitation during the harvest season have the potential to damage crops.
Therefore, the quality of the forecast, in particular about excessive rainfall or drought, is
crucial to sectors such as agriculture and insurance [1–4].

The seasonal forecast is now regularly produced by major operational forecast centers
around the world. These forecast systems are generally based on dynamical ensemble
predictions (e.g., https://climate.copernicus.eu/seasonal-forecasts, accessed on 30 May
2022. The prediction utilizes a set of initial conditions and/or numerical models to compute
a set of deterministic forecasts. Each of the ensemble members represents a possible
outcome in the future. The dynamical ensembles, combined with observations and a
statistical model, form a typical probabilistic forecast. However, because of biases in
the initial conditions and in the dynamical prediction models, the real-time seasonal
forecasts need to be complemented by ensemble hindcasts to take into account the model
uncertainties [5,6]. In this regard, a set of long term hindcasts are necessary, and its quality
is critical to the estimation of the model uncertainties.

The deterministic scores, such as bias, correlation, and root mean squared error,
provide information only about the accuracy of forecasted precipitation intensity, but not the
probability, which can be described as a binary event with a probability of 1 (precipitation)
or 0 (no precipitation). For an ensemble forecast system, probabilistic properties, such
as accuracy, skill, and reliability, are essential, especially at different intensity levels, e.g.,

Meteorology 2022, 1, 231–253. https://doi.org/10.3390/meteorology1030016 https://www.mdpi.com/journal/meteorology

https://doi.org/10.3390/meteorology1030016
https://doi.org/10.3390/meteorology1030016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/meteorology
https://www.mdpi.com
https://climate.copernicus.eu/seasonal-forecasts
https://doi.org/10.3390/meteorology1030016
https://www.mdpi.com/journal/meteorology
https://www.mdpi.com/article/10.3390/meteorology1030016?type=check_update&version=2


Meteorology 2022, 1 232

heavy precipitation or low precipitation. The Brier score (BS) [7,8] is commonly used to
measure accuracy of probabilistic forecasts by the mean squared errors of probabilities from
the forecast. It can be decomposed to reliability, resolution, and uncertainty [9]. Kharin
and Zwiers [10] use the BS to assess the accuracy of the probability forecasts issued by the
Canadian Centre for Climate Modelling and Analysis (CCCma). They found that forecast
probabilities estimated by the statistical model using the parametric Gaussian distribution
estimator have smaller mean square errors than the nonparametric counting estimator on
seasonal timescales. The Brier skill score (BSS) indicates the degree of improvement of BS
relative to the BS of a climatological forecast. The BSS can be improved by adjusting the
mean and standard deviation with two scaling factors to match the observed distribution
when the Gaussian estimator is used [10]. Tippett et al. [11] attempted to improve the
forecast of seasonal precipitation over land based on ensemble simulation of the general
circulation model ECHAM4.5 [12] at the International Research Institute for Climate and
Society (IRI). They made comparisons of the nonparametric counting estimator with two
parametric estimators for tercile probabilities, but the comparison were assessed by the
ranked probability skill score (RPSS), or the multicategory BSS, which is the weighted
average of squared error skill scores across categories [13]. They found that the that the
RPSS varies with the probability estimators too. The tercile category probability of these
estimators is a function of the ensemble size, mean, and variance. However, the RPSS
possesses a special property for reliable forecasts: it is only associated with the squared
correlation between forecast probabilities and occurrences, and it is insensitive to the
number of categories [14]. Becker and Van Den Dool [15] examine the performance of the
global seasonal probabilistic forecast based on the North American multi-model ensemble
forecasting system. Their study suggests that model diversity is a more important source
for the improvement of the evaluation score than the ensemble size.

A reliability diagram is one of the tools used to assess the reliability of a seasonal fore-
cast [16]. It is a graph of the observed frequency of an event against the forecast probability.
More reliable forecasts can be achieved through setting the category thresholds, which are
determined by fitting the transformed Gaussian distribution/estimator of the forecasted
precipitation anomalies to count for the biases in the ensemble mean and variance [15]. Its
shortcoming lies in the graph interpretation, which relies on visualization only [17].

The ranked probability score (RPS) is the sum of several BSs evaluated at several
probability thresholds [18]. Compared to RPS, the continuous ranked probability score
(CRPS) can be seen as an RPS with an infinite number of classes, each of zero width or as
the integral of the Brier score over all possible threshold values [18]. The score calculation
is not based on any specific intervals. The continuous ranked probability skill score
(CRPSS) [19] is suitable for probabilistic evaluation and comparisons of different versions
of the forecast systems. The comparison of the 5th generation of the operational European
Centre for Medium Weather Forecast (ECMWF) seasonal forecast systems (SEAS5) to the
4th version is made using CRPSS [20]. The SEAS5 is a state-of-the-art, coupled atmospheric,
ocean, sea ice, and wave modeling system. Compared to version 4, SEAS5 is improved
through a substantial upgrading of atmosphere and ocean models at higher resolutions,
and an addition of the new prognostic sea-ice model [20]. Other improvements include
a large ensemble forecast with 51 members, advanced initialization techniques, and bias
corrections. The system is verified and calibrated by comparing a set of seasonal hindcasts
to the observed historical record. The improvement of SEAS5 in the seasonal precipitation
forecast over the tropical Pacific, in particular for JJA, is identified by the CRPSS.

The most distinctive feature of SEAS5 is the high El Niňo and the Southern Oscillation
(ENSO) forecast skill. ENSO is the most important source of seasonal predictability [21].
It is a combined ocean–atmosphere mode of interannual climate variability, manifesting
mostly by sea surface temperature (SST). Palmer [22] showed that the residence time in
the regimes of the Lorenz attractor [23] can change in a predictable way by including a
forcing in the Lorenz equations. This means that the response of the climate system is
predictable when there exists an external forcing. As the forcing from the ocean changes
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slowly, the predictability of the forecast system resides partly in the oceans [24]. The impact
of ENSO on seasonal precipitation is through direct effects or remote teleconnections from
SST anomalies [25,26]. The forecast qualities are, thus, strongly related to forecast errors in
the large-scale modes driving seasonal and interannual climate internal variabilities such
as ENSO [21].

Soil moisture is another important memory component of the climate system, thus, it
is a useful source of predictability for seasonal forecasting [27,28]. The interactions of atmo-
sphere and land surface transform the signal with larger variability and less predictability
in precipitation to a more predictable soil moisture signal [29]. Components contained
in the atmospheric initial conditions are particularly important for shorter intra-seasonal
timescales, but information such as heat fluxes contained in the large-scale atmospheric
circulation has also been shown to be important for processes such as ENSO on the seasonal
time scale [21].

Numerous observational studies have shown that the Madden–Julian Oscillation
(MJO) is the dominant mode on the intra-seasonal timescale. The interannual warming of
the equatorial sea surface (ENSO) in the central and eastern Pacific is commonly due to the
advancement of the western Pacific warm pool associated with the MJO [30]. The MJO is
considered a dominant constituent of stochastic forcing for ENSO. Their interaction through
exchanges of heat, moisture, and momentum regulates intra-seasonal SST variations. The
momentum transfer can drive upper ocean surface currents and, for particularly strong and
long-lived westerly wind events, excite oceanic Kelvin waves. Kelvin waves are sometimes
associated with ENSO initiation [31]. The results from multi-model ensembles indicate
that forecast skill of subseasonal precipitation predictability has a modest but statistically
significant relation with ENSO and MJO [32]. Vigaud et al. [33] found that the subseasonal
forecast skill is related to the parameter fitting of the extended logistic regression model
when it is assessed by RPSS.

As shown by previous studies, probabilistic forecasts can be improved not only by
upgrading the dynamic ensemble model and its simulation method, but also by reducing
uncertainty sources in the statistical model. Large uncertainties arise from, for example, the
choice of probability estimators, the adjustment of their parameters, number of forecast cat-
egories, and sampling methods. They can directly alter the forecasts and evaluation scores.

The Meteo-France seasonal ensemble forecasting system is a state-of-the-art coupled
climate modelling system. It has been in the operational mode since 1990s [6]. The current
system 7 has been extensively evaluated against observations by deterministic scores
(available at http://seasonal.meteo.fr/content/PS-scores-cartes, accessed on 30 May 2022),
but it still needs rigorous probabilistic evaluation. The current study uses the BS for the
evaluation of the accuracy and reliability of precipitation hindcast, especially at low and
high intensity levels for the application of seasonal and monthly precipitation products.
As numerous uncertainties in the statistical model are not fully and explicitly investigated
in the previous research, this study aims to assess the robustness of the BS at the seasonal
time scale. Multiple analyses were carried out to detect and to investigate the forecast
errors as well as to demonstrate the sensitivity of the BS to different analysis methods. The
uncertainty of the BS derived from the analysis was quantified by the confidence interval,
considering not only the classical binary precipitation event, but also the uncertain event.
This article has 4 sections. Section 2 introduces the forecast system, the observation data,
the methods of evaluation in this study. Section 3 describes and compares the results
for seasonal and intra-seasonal analyses. Section 4 summarizes the main findings and
conclusions obtained in this study.

2. Model, Data, and Methods
2.1. Dynamical Seasonal Ensemble Forecast

The Meteo-France seasonal forecasting system 7 (System 7) uses the coupled Na-
tional Centre for Meteorological Research Climate Model version 6 (CNRM-CM6) [34].
It has four component models which are coupled together by the OASIS-MCT (Model

http://seasonal.meteo.fr/content/PS-scores-cartes
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Coupling Toolkit) version 3.0 coupler [35] to dynamically exchange fields between mod-
els. The Atmosphere model is ARPEGE version 6.4 [36], SURFEX version 8.1 including
ISBA land surface model [37] and ISBA-CTRIP river routing model [38,39], ocean model
NEMO version 3.6 [40], sea ice model GELATO version 6 [41]. The system uses stochastic
perturbations in the dynamics [42] and the initial conditions by nudging technique to
generate ensemble members. The observations/references for the nudging are 6 hourly
ERA5 prognostic variables. The systematic biases are partly corrected by computing the
forecast anomalies with respect to the model climatology. The resolution of ARPEGE is 1◦

× 1◦ at the horizontal direction, and 91 levels at the vertical direction. System 7 produces
7-month lead forecast, with 12 months (from January to December) as starting months (0
lead month). The hindcast spans from 1993 to 2016 (24 years) with 25 ensemble members
(24 ensembles with nudging and one control simulations). The initial condition is the
ERA5 reanalysis data archived at ECMWF for atmosphere, and for land surface [43], and
Mercator-Ocean [44] for ocean and sea-ice. The system is operated and managed by the
Environment for Climate Simulation (ECLIS). The precipitation is forecasted every 12 h on
a 1◦ × 1◦ regular grid with the global coverage.

2.2. Observation Data

The Global Precipitation Climatology Project data (GPCP) version 2 [45] contains
monthly mean precipitation rates with 2.5◦ × 2.5◦ resolution from January 1979 to August
2016. It is a merged analysis that incorporates precipitation estimates from low-orbit
satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain
gauge observations. The current existing GPCP data at CNRM is rescaled from 2.5◦ × 2.5◦

to 1◦ × 1◦ resolution, from 1993 to 2016. The GPCP data provides global coverage, and it is
widely applied for climate variability studies and model validation. It was used by other
evaluation metrics for the System 7. To be consistent, monthly mean data of the GPCP
version 2, instead of the more recent versions, was applied for the probabilistic assessment
of the precipitation hindcast. However, the mean precipitation from the GPCP data is likely
under-estimated possibly due to missing light rain over ocean (especially the Southern
Ocean) and orographic precipitation over land, through interpolation of the data to other
coordinates using the conservative remapping method.

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.2 [46] was
also involved in this study. It combines various precipitation sources: satellite data, World
Meteorological Organization Global Telecommunication System rain gauges and reanalysis.
The monthly mean precipitation data is available for the period 1979–2015 and covers the
global at 0.25◦ × 0.25◦ horizontal resolution. The current existing data was aggregated to
1◦ × 1◦ regular grid through conservative remapping.

2.3. Probabilistic Evaluation Method

The Brier Score (BS) is the mean squared differences between pairs of forecast proba-
bilities f and the binary observations x. N is the total forecast number. It measures the total
probability error, considering that the observation is 1 if the event occurs, and 0 if the event
does not occur (dichotomous events).

BS =
1
N

N

∑
i
( fi − xi)

2 (1)

The BS takes values in the range of 0 to 1. Perfect forecasts receive 0 and less accurate
forecasts receive higher scores. Under the condition that x is 0.5 when the observation
data is uncertain, the mean squared differences between the forecast probabilities and
observation at 0.5 is calculated. In the R software package s2dverification [47], the BS is
decomposed to

BS = reliability − resolution + uncertainty
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The reliability measures the degree of correspondence between the forecast probability
and the observed frequency for an event or outcome that is being predicted. It summarizes
the conditional bias of the forecasts for a given event and is equal to the weighted average
of squared differences between the forecast and conditional observed probabilities. If the
reliability is 0, the forecast is perfectly reliable. To observe the frequency distribution,
the forecast probability, from 0 to 1, is divided into 100 bins to compare to the observed
frequency in each of the same bin in this study. The resolution characterizes the amplitude
of the deviations of the conditional probability from the climatological frequency. The
higher this term is the better. The uncertainty measures the inherent uncertainty in the
outcomes of the event. It is the variance of observation’s frequency. For binary events,
it is 0 if an outcome always occurs or never occurs, and it is maximum if the probability
of the event is 0.5. As such the uncertainty characterizes the properties of the observed
system only.

A probabilistic forecast may be characterized by the full probability distribution such
as CRPS or by giving the probabilities of an event falling into classified categories. Tercile
category contains the above-normal (TerA), near-normal (TerN), and below-normal (TerB)
three categories. Each category or tercile takes 33.3% of the total sample number. The
probability based on the tercile category is referred to as the tercile probability. Counting
the number of ensemble member falling into each category divided by the total ensemble
numbers is a simple method of using a forecast ensemble to estimate categorical proba-
bilities. Due to the inhomogeneous of precipitation probability density functions (pdf) at
each grid point on a global scale, some pdf curves are skewed or asymmetric, others may
have several peaks. Therefore, the counting estimator instead of parametric estimator was
applied in this study. The two tercile thresholds were determined by the values at 1/3 and
2/3 of the total number of the climatological samples in an ascending order.

2.4. Experiment Design for Seasonal and Intra-Seasonal Hindcasts

This study evaluated precipitation hindcast, from May to November, with an empha-
sizes on the summer precipitation on a global scale produced by System 7. The data used
is the monthly averaged precipitation. Note that all monthly data were averaged from
ensemble daily data. The daily precipitation data is not involved because it is more suitable
for the subseasonal assessment over small regions [48]. The spatial distribution of the BS
was generated from the probability based on the ensemble hindcast at each grid point
during 1993–2015, with the GPCP as the reference data.

There are two types of ensembles for probability estimations. The single initialization
ensemble has 25 ensemble members initialized from May. Each member is the monthly
mean of the hindcast daily precipitation. The mixed initialization ensemble has seven en-
semble members because of the 7-month seasonal forecast range in each year. Each member
is the monthly 25 ensemble mean, initialized by 12 months, from January to December.

To test the sensitivity of spatial distribution patterns and values of the BS to the basic
elements in the statistical model, multiple analyses were designed with the combinations
of different sample types, sample sizes, the way to determine the tercile thresholds (TTs),
ensemble types, reference data, and number of the data sets. Table 1 summarizes the
features of these six analysis methods. Intra-seasonal analysis is not included in the Table 1,
because it can be viewed as an extension of the seasonal analysis by Method 1. If the
probabilistic errors are insensitive to the analysis methods, it suggests that they are more
related to the forecast system than to the evaluation methods.

The forecast lead time at 0, 1, 2, 3, or 4 months corresponds to the forecast seasons
of MJJ, JJA, JAS, ASO, and SON, and the forecast months of May, June, July, August,
and September, respectively. For the seasonal hindcast, results in MJJ at the lead time at
0 months are excluded. The evaluation period is 23 years (1993–2015) because the 1◦ × 1◦

GPCP observation is available till August 2016.
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Table 1. Summary of the six analysis methods.

Method 1 Method 2, 3, and 4 Method 5 Method 6

Samples
3-months

precipitation
anomalies

3-months mean precipitation
3-months

mean
precipitation

3-months
precipitation

anomalies

Initialization May May May mixed months

Ensemble
Members 25 25 25 7

Reference Data GPCP GPCP GPCP MSWEP GPCP

Sets of Terciles 1 2 1 for Method 4 2 2

Tercile Threshold
for Observation GPCP climatology GPCP climatology

GPCP MSWEP
ensemble

climatology

GPCP
climatology

Tercile
Threshold for

Hindcast
GPCP climatology

ensemble
climatology/mean

climatology for
Method 2/3

GPCP
climatology

for Method 4

ensemble
climatology

ensemble
mean climatology

2.5. Confidence Interval

The uncertainty of the BS derived by different analysis methods was further quantified
by the 95% confidence interval (CI95%), which was estimated by the multiple resampling
approaches and analytical expressions of the method of moments. The multiple resampling
method with a replacement is usually referred to as the bootstrap method [49]. This method
is suitable for a wide range of samples disregarding the underlying distribution type. The
BSs were initially calculated for those resampled 25 ensemble members with the GPCP
as the reference. For 80 bootstrap resamples of the mean difference, the 2nd value and
78th value of the ranked mean differences are the low and upper boundaries of the CI95%,
equivalent to the 2.5 and 97.5 percentile of the resampling distribution.

The bootstrap resampling involves n repeated trials of simple random sampling with a
replacement. This method may not result in samples that are equally informative [50]. The
sample size, following the sequential bootstrap resampling scheme, is kept as a constant,
which is equal to the preassigned value 0.632n [51]. To select the sample,

(m + 1) ≈ n (1 − e−1) + 1 (2)

where m is bootstrap samples, and n is the ensemble members. For the n equal to 25, m is
15.8, so 15 samples are taken each time. The sample size for 15 out of 25 ensemble members
is 375 (15 × 23 years). The advantage of this percentile confidence interval is that due to
the central limit theorem, the distribution from resampling should be close to a normality,
except that the BS is a non-linear function of probabilities. The disadvantage is that its
computation cost is high, because sometimes it is difficult to converge to the forecast mean.

An alternative way is to calculate the CI95% for the BS by the analytical approach
proposed by Bradley et al. [52], which is limited to the probability forecast for a dichotomous
event. Let observation x be a Bernoulli variable that equals to 1 if the event occurs and
0 if it does not. Let f be a probability forecast of the occurrence of the event; f is either a
discrete or continuous random variable, and the BS can be expressed as a sample estimator
of the mean squared error (MSE),

M̂SE( f , x) =
1
N

N

∑
i
( fi − xi)

2 (3)
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The expected value of MSE is

E[M̂SE( f , x)] =
1
N

N

∑
i

E[( fi − xi)]
2 (4)

Because x2
i = xi for a Bernoulli random variable, the Equation (4) reduces to

E[M̂SE( f , x)] = µ′(2) f + µx

(
1− 2µ f |x=1

)
(5)

where µ′(2) f is the second-order noncentral moment for the forecast, µ f |x=1 is the first
conditional moment and observation is 1 for the forecast, and µx is the first moment (mean)
of the observation, equivalent to the climatological probability of the event occurrence.

µ̂x =
1
N

N

∑
i

xi (6)

The sample estimator for the m order’s noncentral moment for the forecasts is

µ̂′(m) f =
1
N

N

∑
i

f m
i (7)

The conditional mean, µ f |x=0 , is estimated using subsamples, { f 0
j , k = 1, . . ., N0} when

x is 0, and the conditional mean µ f |x=1 is estimated using subsamples, { f 1
k , k = 1, . . ., N1}

when x is 1, in a similar way as above.
The analytical approaches are derived only for binary events within the distribution-

oriented framework [53], assuming that each forecast–observation pair is independent and
identically distributed. The extended analytical equation for the case when x is uncertain
(0.5) is presented in Appendix A. It can be generalized to non-binary cases in the same
fashion as above.

3. Results and Discussion
3.1. Probabilistic Evaluation of Seasonal Precipitation Hindcast

In seasonal and decadal forecasts, imperfect initial conditions and model physics and
dynamics, as well as long lead time, have large impacts on the long-term mean drift in
the model climate. The seasonal precipitation forecast or hindcast often has an asymptote
drift, which is that the mean forecast bias is of the same sign but smaller than the long-
term bias [54]. By replacing precipitation with precipitation anomaly, it partly corrects the
systematic bias in the mean, for instance, the systematic difference between the climatology
of the model and the observation. It also removes the trends due to aspects such as seasonal
cycle, focusing on variability.

Figure 1 displays the BS spatial distribution patterns from JJA to SON, generated
by Method 1. The feature of this method is that it evaluates the probabilistic accuracy of
the seasonal precipitation variability, as the sample is a precipitation anomaly. Another
important feature of this method is that the hindcast and the reference data share the
observed TTs. To ensure a wide sample range, the climatological samples of 3 months
instead of the 3-month mean were used. For TerB and TerA, the BS ranges generally fell
between 0 and 0.55. The BSs greater than 0.3 (>~0.3), which are visible on the map, are
distributed mostly in the tropical or sub-tropical region, and in the Antarctic. The high BS
value is set to be around or more than 0.45 (>~0.45). The high BSs are found in both terciles,
for TerB in particular, over the extremely dry Sahara Desert in North Africa. This indicates
the probabilistic error is significant for a low precipitation forecast. The BS distribution
pattern shows seasonal features in this region. Large BS (>~0.45) distribution patterns
in TerA and TerB appear in JJA. As the lead time increases, they remain in JAS, and are
reduced in ASO and SON. The high BS in TerB is more persistent than that in TerA. These
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errors may be related to the West Africa monsoon circulation. During the monsoon (June to
September), the south westerly wind is strong, pushing the ITCZ northward. The very dry
and hot Harmattan retreats toward the north.
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Figure 1. The spatial distribution of the Brier score for the seasonal hindcast of precipitation anomalies
based on the terciles determined by the GPCP observation (Method 1). From top, each row represents
the Brier scores for the below, (a,c,e,g), and the above-normal terciles, (b,d,f,h), at lead times of 1, 2, 3,
and 4 months, corresponding to JJA, JAS, ASO, and SON, respectively.

Seasonal features also can be seen in the BS spatial distribution in the Arabian Penin-
sula, which is also a desert region. A high BS in JJA and JAS gradually reduces, and it
reaches the minimum in SON. For TerB, a high BS remains even in SON. This is possibly
related to the subsidence of the Indian summer monsoon flow during June to Septem-
ber [55], which superimposes on the impact of ENSO. In the southwest of the peninsula,
a north–south-oriented mountain range (>1500 m) is bordering the Red Sea. It plays an
important role in uplifting the Indian monsoon flow from the Red Sea [56] to produce heavy
precipitation [57]. The recent study identifies that the large biases exist in daily maximum
and minimum land surface temperatures in North Africa and the Arabian Peninsula [58].
The under-estimation can have a direct impact on latent and sensible heat fluxes and their
feedback from the atmosphere, leading to too-low moisture transport and precipitation
in arid regions. The precipitation rates for these two regions from System 7 indeed have
negative biases (−1 mm/day), especially in JJA and JAS, as shown by the bias chart. A
low anomaly correlation coefficient (ACC) frequently appears in the region where the
BS is located. Charts are available at http://seasonal.meteo.fr/content/PS-scores-cartes
(accessed on 30 May 2022).

Tropical rainforests have a significant impact on precipitation due to high moisture
flux exchange rates between land and atmosphere. Soil moisture is also a slow varying
variable at a seasonal time scale, and acts as a low boundary forcing factor of the model.
A high BS distribution pattern can be observed initially in JJA for both terciles over the
tropical rainforest in the Kongo Basin, but it disappears gradually after summer. The
precipitation is very low there (~100 mm monthly) during the dry season from May to
September, with the lowest precipitation being in July [59]. Similar conditions also can be
found near the southeast of the Amazon rainforest in South America.

The continent of the Antarctic is also extremely dry (it is technically a desert). Almost
all Antarctic precipitation falls as snow. West Antarctica is mostly covered by a massive ice
sheet. The greenhouse-gases-induced global warming causes strong ice loss along the area
50◦ W–90◦ W. This is possibly not totally captured by the hindcast as the BS, especially for
TerA, which starts to increase in ASO in the West Antarctic. The high BS pattern expands
till SON when the warm season starts in the southern hemisphere (SH).

The tropical Pacific Ocean is the main region with large probabilistic errors due to
its heavy precipitation in summer. Over the Nino 1 (80◦–90◦ W and 0◦–10◦ S) to 3.4 re-
gion (170◦–120◦ W and 5◦ N–5◦ S) in the eastern tropical Pacific Ocean, the potential
predictability for SST forcing is highest where natural variability is comparatively low, and
the atmosphere responds directly to the change in SST [21]. It is true that this region has the

http://seasonal.meteo.fr/content/PS-scores-cartes
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highest ensemble mean ACC for precipitation. Nevertheless, a high BS distribution pattern
along the equator in TerA can be seen in JJA. It gradually extends to the west, and it shifts
further to the Nino 3 (90◦–150◦ W and 5◦ N–5◦S) and 4 regions (150◦–160◦ E and 5◦N–5◦ S)
till SON, as the heavy precipitation center is moving in the same direction. Similar condi-
tions occur for TerB with a lower BS. Marine precipitation depends greatly on SST and the
moisture flux from the ocean. As the coupled system is able to capture the SST variation
quite well, e.g., high ACC (see http://seasonal.meteo.fr/content/PS-scores-cartes, accessed
on 30 May 2022), discrepancies in the precipitation anomalies are possibly also associated
with other tropical atmospheric and oceanic short-term forcing, which propagates eastward
from the Indian Ocean or westward from the Pacific Ocean in summer. In the eastern
Pacific adjacent to the west coast of the US, a high BS distribution pattern in JJA gradually
disappears after JAS.

Some high BSs in TerA and TerB are found to be distributed over the northwest coast
of Australia in JJA. This is a northwest cloud-bands (NWCB) active region. During the dry
season (May to October) in the SH, the heaviest rain often occurs from May to July due to
NWCB [60]. This is a complicated process due to the influences from multiple large-scale
variability modes. High BS distribution patterns in TerA and TerB subsequently emerge
over the adjacent Indian Ocean in JAS during the transition of maximum and minimum
frequencies of NWCB [61], expanding over the Indian Ocean till SON. This seasonal feature
and/or lead time feature is particularly strong over the tropical Indian Ocean. It is worth
noticing that the equatorial Indian Ocean is the origin of the MJO [30]. This suggests that
intra-seasonal precipitation anomalies should be also analyzed.

Figure 2 is the same as Figure 1 but is generated by Method 2. This method uses the
3-month mean precipitation as samples, so the reference data has a smaller sample size.
The most distinct feature of Method 2 is that the hindcast and the GPCP reference data
each defines their own TTs. The hindcast takes advantage of the availability of the large
amount of ensemble climatological samples to define TTs. Usually, it is more likely for a
large number of samples to capture the distribution of a small set of samples. It can be seen
that there is a significant improvement in the BS compared to that in Figure 1. The high
BS distribution patterns over land shown by Figure 1 all disappeared. This indicates that
the hindcast has a very good agreement with the GPCP observation over North Africa, the
Arabian Peninsula, and the West Antarctic, as well as those around the Amazon and Kongo
Basin during all seasons. The evaluation Method 2 demonstrates that System 7 ensemble
hindcast climatology is capable of reproducing the observed precipitation probability
accurately, even under drought conditions.

Compared to Figure 1, high BSs are reduced significantly, but are still visible over
the tropical oceans and oceans in SH, more clearly in TerA than in TerB. They decrease
over the Nino regions and increase over the Indian Ocean with the lead time, exhibiting
seasonal features as well as lead time features. The similar evolution also can be observed
in Figure 1. This is because the climate variability of large-scale modes like ENSO is also
seasonally dependent [21]. A few errors are persistent over the tropical Atlantic during all
seasons, similar to those in Figure 1 Over the tropical western Pacific (north of Australia),
errors in TerA are discerned in JJA and JAS in Figure 2 but not in Figure 1.

There are some contradictions in the distribution patterns between the BS, the bias,
and the ACC over the tropical ocean, where the high BS, ACC, and bias can be seen (http:
//seasonal.meteo.fr/content/PS-scores-cartes, accessed on 30 May 2022). The precipitation
ACC is the highest over the tropical ocean, the Pacific Ocean in particular, but the negative
correlations appear below the high values over the Nino 1 to 3 regions from JJA to SON.
This pattern can be found in the BS distributions generated by Method 2. Indeed, the
lowest BS exists in that region too. However, the negative ACC does not show any moving
features, while the high BS patterns show clear moving features for both terciles. This
is partly because ACC reflects the relevancy between forecast and observed anomalies.
It is calculated by all samples. The BSs for TerA and TerB zoom into the samples with
high or low precipitation rates to measure how well the forecast of precipitation/anomaly

http://seasonal.meteo.fr/content/PS-scores-cartes
http://seasonal.meteo.fr/content/PS-scores-cartes
http://seasonal.meteo.fr/content/PS-scores-cartes
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frequencies is achieved. It is worth pointing out that for the BS in TerN, there are few errors
in the tropical Pacific by Method 2 (not shown). It is obvious that the BS is related to the
bias to some extent. However, the bias in the tropical ocean increases significantly with the
lead time as the season progresses, while the BS does not. The probabilistic errors, along
with the highest ACC in the JJA seasonal precipitation hindcast, are also identified over
the Nino 1 to 2 regions by Johnson et al. [20], with the ECMWF’s SEAS5, using the CRPSS
evaluation score.

Figure 3 is the same as Figure 2 but is created by Method 3. The only difference
between Method 2 and 3 is that the hindcast in Method 3 defines its TTs by the ensemble’s
mean climatological samples. Only the results in JJA are presented in Figure 3. The BS
spatial distribution for TerA is very close to the pattern generated by Method 2, except
the slight differences in North Africa and the Arabian Peninsula. However, the BS spatial
distribution for TerB in Figure 3a is significantly different from that in Figure 2a over the
arid regions. It is similar to the BS distribution pattern for TerB in Figure 1a, but the errors
are larger. Method 3 also estimated some high BSs for TerA and TerB distributed over
tropical oceans, for example, the high BS over the western Pacific adjacent to the northwest
of Australia. Note the sample size for the hindcast is the same for Method 2 and 3, but
Method 2 uses more samples to define the hindcast TTs, while the hindcast and reference
in Method 3 have the same sample number to define the TTs. This implies that the BS is
more sensitive to TTs than to the ensemble size, although a larger ensemble size may also
affect the hindcast TTs.
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Figure 2. The spatial distribution of the Brier score for the seasonal hindcast of a 3-month mean pre-
cipitation, using the hindcast tercile thresholds determined by the ensemble climatology (Method 2).
The reference is the GPCP observations. The Brier scores for the below, (a,c,e,g), and the above-normal
terciles, (b,d,f,h), at 1, 2, 3, and 4 lead months correspond to JJA, JAS, ASO, and SON, respectively.

Figure 4 is the same as Figure 2 but is generated by Method 4. The only difference
between Method 4 and 2 is that the hindcast and the reference data in Method 4 share the
TTs defined by the GPCP observations, like Method 1. Only the results in JJA are presented
in Figure 4. Compared to Figure 2, the most noticeable difference is the high BS for TerB
over North Africa and the Arabian Peninsula. The BS spatial distribution pattern for TerA
is similar to that in Figure 2b, except for over North Africa and the Arabian Peninsula, and
the slightly higher BS (~0.3) distribution pattern can be discerned. It means that the BS in
TerB is more sensitive to the TTs. Compared to Figure 1, the probabilistic errors in Figure 4
grow quickly with the seasons/lead time using Method 4 (not shown), although the BS for
TerA is closer or even better than that in Figure 1b in JJA.

Figure 5 is the same as Figure 2 but is generated by Method 5, in which two observation
data sets were used. Only the results in JJA and SON are presented. The ensemble of
the GPCP and the MSWEP observation data increases the observed climatological sample
size and slightly the observed sample range, which may result in changes of the observed
TTs. It is more important that one more outcome, “uncertain”, was added to the observed
binary events. The BS calculation still follows its definition. The resulted BS distribution
patterns for TerA and TerB are very similar. Compared to Method 2, the BS shows an overall
improvement in all seasons, ranging between 0 and 0.44. The most noticeable change is that
the high BS for TerA and TerB are eliminated over the Nino region in the tropical Pacific.
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A little high BS (>~0.36) was still visible in the tropical western Pacific adjacent to the
northeast of Australia in JJA and JAS. This is possibly due to the sampling method for the
hindcast in Method 2, 3, and 4. The high BS (>~0.36) distribution patterns over the Indian
Ocean for TerA and TerB in JJA gradually become larger in summer, reaching the maximum
till SON. This is similar to those shown by Figure 1g,h and Figure 2g,h, indicating the high
BS over the Indian Ocean is insensitive to different analysis methods. This is also true for
small errors over the tropical Atlantic, shown by very slight BS distributions in that region,
as in Figures 1 and 2. The implication of this analysis is that the ensemble hindcast may
generate tercile probabilities closer to 0.5 than to 0 or 1, such as over the tropical Pacific.
However, the BS spatial distributions are similar when either the GPCP or MSWEP is used
as the reference (not show). Note that Method 5 may have a disadvantage to the grid which
has a probability closer to 0 or 1.
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month correspond to JJA.
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Figure 5. The spatial distribution of the Brier score for the seasonal hindcast of precipitation using
the GPCP and the MSWEP ensemble observation as the reference data (Method 5). The Brier scores
for the below, (a,c), and the above-normal terciles, (b,d), at lead times of 1 and 4 months correspond
to JJA and SON, respectively.

Figure 6 presents the BS spatial distribution in JJA generated by Method 6. Method 6
uses 3-month precipitation anomalies as samples like Method 1, but the hindcast defines
its TTs by the ensemble mean climatological samples, like Method 3. The most special
feature of this method is the ensemble construction. Each ensemble member starts from a
different month, rather than a fixed month May, so that more ensemble data were involved.
Generally, the BS in TerB is significantly higher than that generated by other methods.
Although the BS spatial distribution for TerA is similar to that in Figures 3b and 4b, it is
significantly higher than that in Figure 5b. This analysis demonstrates the importance of
the ensemble type in the statistical model for the evaluation.

The above analyses show that the errors over the tropical land in the BS maps for TerB,
and for TerA as well, were detected by Method 1, 3, 4, and 6, not by Method 2 and 5 due to
the TTs effects. Errors over the tropical Pacific were detected by Method 1, 2, 3, 4, 5, and 6,
as Method 5 can correct those over the Nino regions with an additional probability of 0.5
in the reference data, but not over the western Pacific (north of Australia). Those over the
Indian Ocean were derived from all methods, supported by the large negative precipitation
bias of System 7.
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Figure 6. The spatial distribution of the Brier scores for the 3-month precipitation anomalies in JJA,
using the tercile thresholds for the hindcast derived from ensemble mean climatological samples,
with a mixed month initialization ensemble (Method 6). The Brier scores for the below (a) and the
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3.2. Reliability

Figure 7 is the reliability decomposed from the BS for JJA using ensemble observations
(Method 5) shown by Figure 5. The overall reliability, ranging from 0 to 0.33, is more
satisfactory than the corresponding BS. Locations with a high BS due to large probabilistic
errors are mostly caused by low reliabilities over the tropical western Pacific and the Indian
Ocean. The strong correlations between reliability and the BS are also found in the analyses
using other methods (not shown). Consequently, their spatial distribution patterns are
similar, such as in Figure 5a,b and Figure 7a,b. Generally, high reliability leads to a good
BS, but resolution may also affect the BS. Reliability is important to an ensemble prediction
system as it is crucial to an accurate forecast, as well as the predictability of the system [14].
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3.3. Probabilistic Evaluation of the Intra-Seasonal Precipitation Hindcast

The analyses of the seasonal precipitation hindcast detected probabilistic errors mostly
over the tropical region, in particular, over the Indian Ocean and the Pacific Ocean. Pre-
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cipitation forecast in the tropical region depends significantly on ENSO at seasonal to
interannual time scales. By far, ENSO is the most successfully predicted large-scale mode
and a known source of predictability. This leads to the intra-seasonal probabilistic evalua-
tion in order to improve our understanding about intra-seasonal to seasonal precipitation
variations, which are dominated by large-scale nature variability modes and their interac-
tions, such as MJO and ENSO. As shown by several recent studies, it is evident that ENSO
also has influences on the subseasonal precipitation forecast [62,63].

Figure 8 is the BS spatial distribution for TerA in June, July, and August. The 23-year
monthly precipitation anomalies were assessed for these three months using Method 1
as an extension of the seasonal analysis of JJA. The sample size was decreased from the
3-month data in Method 1 to the monthly data. The BS has a general increase, as it is
sensitive to the sample size. In addition, this is because the intra-seasonal precipitation
is more affected by short-term and random forcings, which may be difficult to capture
by the dynamic model. It can be also attributed to the reduced observed climatological
sample range, which determines TTs. Generally, large BSs distribute at the same locations
as those in the BS maps in JJA, displayed in Figure 1a,b. They remain or diverge in the
tropical region and in the subtropical eastern Pacific. Compared to the BS for the seasonal
precipitation anomalies (Figure 1), a significant increase of the BS for TerA occurs over
the eastern equatorial Pacific Nino 1 to 3 regions in June (Figure 8a). It gradually shifts
westward to the Nino 3 to 4 regions till September. This feature manifests in the seasonal
BS maps shown by Figure 1, as the heavy precipitation center displaces westward. The
seasonal precipitation variability in the tropical Pacific is closely associated with ENSO
activity through SST [64], while MJO is more responsible for the subseasonal precipitation
variability [65]. Unlike the stationary ENSO, MJO has a slow eastward-moving character,
affecting the convective processes and precipitation in the tropical Pacific. Vigaud et al. [32]
found that the intra-seasonal probabilistic forecast of precipitation, assessed by RPSS, is
related to La Nina and El Nino, and is significantly correlated with MJO during Asian and
West Africa monsoons. Over the northwest coast of Australia and the nearby equatorial
Indian Ocean, the error of the monthly hindcast for TerA persists and is stronger than that
in the JJA map. It suggests that the probabilistic error in this region is possibly more related
to intra-seasonal short-term forcing. Figure 9 shows the pattern of the high BS emerging
over the Indian Ocean for TerB in September. This is consistent with the seasonal analysis.
Note that over the tropical Indian and Pacific Ocean monsoon areas in July and August,
the maximum SST zone is away from Equator. Thus, the strong SST gradients initiate
the convection and cross equatorial low-level jet streams, which grow through a positive
feedback process [66]. In a more recently study, tropical shallow convection is identified as
one of the main sources of biases in the tropical precipitation [67].

The intra-seasonal analysis reveals that the probabilistic errors in the JJA seasonal
forecast are the manifestation of the deficiency mostly in the intra-seasonal forecast for
June, July, and August, such as over the equatorial oceans. The decrease of forecast sample
size may also have an impact on the BS.
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3.4. Quantification of Uncertainties by Confidence Intervals

The uncertainty of the averaged BS over the entire tropical region (30◦ S–30◦ N and
0◦–360◦) was quantified by the CI95%, as more errors indicated by higher BSs were detected
there. The CI95%s was initially estimated by the resampling approach for the relative
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comparisons of the different methods. Although the averaged BS estimated by Method
5 is the best, mostly due to the ensemble of the two observation data sets, it has a larger
CI95% than that for the BSs by other methods, such as Method 2. The results for the
averaged BSs in JJA are displayed in Table 2 under “the bootstrap resampling approach”.
The analytical approach with a non-central moment estimator [13] was then applied to
the accurate estimations of the CI95% for the BSs by Method 1, 2, and 3. Table 2 also lists
the CI95%s for the averaged BSs over the entire tropical region in JJA, estimated by the
method of moments. Using the extended analytical approach (see Equations (A5)–(A8))
for Method 5 with the observation x being uncertain, the CI95% for the BS is smaller than
that estimated by the bootstrap approach (~25%). Since Method 4 uses observed TTs and
precipitation as samples, it is similar but less favored than Method 1. While Method 6
produces the highest BS for TerB, it has less possibilities to be applied for the evaluation.

Table 2. The CI95%, lower (LB) and upper (UB) bounds, and the percentage of the mean, calculated
using the bootstrap resampling approach, are displayed for the relative comparison of Method 2 and
5. The analytical approach was applied for the Brier scores by Method 1, 2, and 3, averaged over the
tropical region (30◦ S–30◦ N) in JJA. TerB and TerA represents the below- and above-normal terciles.

resampling

TerB forecast mean bootstrap CI95% LB CI95% UB CI95% %
Method 2 0.2122 0.2242 0.1808 0.2656 0.0848 39.96%
Method 5 0.1398 0.1517 0.1174 0.185 0.0676 48.35%

TerA
Method 2 0.2356 0.248 0.2021 0.2915 0.0894 37.95%
Method 5 0.1521 0.1644 0.1283 0.1992 0.0709 46.61%

method of moments

TerB forecast mean CI95% LB CI95% UB CI95% %
Method 1 0.25 0.2423 0.2578 0.0155 6.20%
Method 2 0.2122 0.1914 0.233 0.0416 19.60%
Method 3 0.2523 0.2339 0.2708 0.0369 14.63%

TerA
Method 1 0.2451 0.2377 0.2526 0.0149 6.08%
Method 2 0.2356 0.2146 0.2566 0.042 17.83%
Method 3 0.2374 0.2168 0.258 0.0412 17.35%

The CI95% for the BS in JJA, estimated by Method 1, is the highest at about 6% of the
forecast mean. This is partly because the precipitation anomalies were bias-corrected to
minimize the difference between the hindcast and the observation, so that the spread of
its BS is narrower. It may be also because the confidence interval is disproportional to the
sample size. The number of the samples used in Method 1 are three times more than those
applied in Method 2 and 3. The BS estimated by Method 3 has a better CI95% than the one
for the BS by Method 2 for both TerA (14.6% vs. 19.6%) and TerB (17.4% vs. 17.8%). Since
the sample size of the ensemble hindcast is the same for Method 2 and 3, the difference is
caused by TTs only.

With 80 drawings, the resampling approach generated bootstrap mean BS is too higher
than the forecast mean BS. Experiments were performed to test the effects of different
sample sizes and the total numbers of resampling. The CI95% changes very little when
the bootstrap resampling increased more than 80 times. The CI95% can be calculated with
much simplicity by the analytical approach with a moment estimator [13]. The samples of
the BS are assumed to be normally distributed according to the central limit theorem, with
the critical value of the t distribution at a significance level of 0.05 because of the unknown
true standard deviation.

Table 3 lists the CI95%s for the averaged BS estimated by Method 2 over the tropical
region. The CI95%s for all seasons were calculated by the analytical approach. The averaged
values of the CI95% in TerB and TerA are very close to each other, about 0.04. Converting
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the absolute value to the percentage of the mean BS, TerA has better CI95%s (16–18%) than
TerB does (18–19%) for all seasons. It is interesting to see that the CI95% decreases with the
lead time, while the hindcast mean BS increases with the lead time till ASO, then it drops
slightly down in SON. For TerA and TerB, the mean BS in SON achieves the best CI95%s:
0.0392 or 16.4% and 0.0387 or 18.15%, respectively. The evolution of the mean BS shows
that the probabilistic errors are affected by strong seasonal features of large-scale modes
like ENSO, which is strong from November to January. This is consistent with previous
analysis for the BS spatial distribution. The changes in the mean BS and its CI95% with the
lead time are different. There is no simple and direct relationship between the mean BS
and CI95% over the tropical region.

Table 3. The averaged CI95%s, lower (LB) and upper (UB) bounds, and percentage of the mean,
estimated by the analytical approach for the seasonal evaluation of the Brier score (Method 2), over the
entire tropical region (30◦ S–30◦ N). TerB and TerA represents the below- and above-normal terciles.

TerB Forecast Mean CI95% LB CI95% UB CI95% %

MJJ 0.2018 0.1811 0.2224 0.0413 20.46%
JJA 0.2122 0.1914 0.233 0.0416 19.60%
JAS 0.216 0.1953 0.2366 0.0413 19.12%
ASO 0.2168 0.1967 0.2369 0.0402 18.54%
SON 0.2132 0.1939 0.2326 0.0387 18.15%

TerA

MJJ 0.225 0.2033 0.2468 0.0435 19.33%
JJA 0.2356 0.2146 0.2566 0.042 17.83%
JAS 0.2399 0.219 0.2609 0.0419 17.47%
ASO 0.2415 0.2211 0.2619 0.0408 16.89%
SON 0.239 0.2194 0.2586 0.0392 16.40%

4. Conclusions

The probabilistic evaluation in terms of accuracy and reliability was performed for
23 year (1993–2015) seasonal precipitation re-forecast, from May to November, using the
BS and its decomposition. The re-forecast was produced by the Meteo-France operational
seasonal forecasting system 7, with 25 ensemble members, perturbed model dynamics and
initial conditions. This is a new evaluation score, in addition to the existing deterministic
metrics for the seasonal and intra-seasonal forecast products.

The BS was estimated based on tercile probabilities using the non-parametric counting
estimator, with the GPCP observation data as the reference. Six analyses for the seasonal
hindcast were carried out to assess the robustness of the evaluation score. It is found that
BS spatial distributions change significantly with sampling methods, TTs, reference data,
and ensemble types. The 3-month mean precipitation and 3-month precipitation anomalies
were used as samples. TTs were determined for the hindcast by (1) observed climatological
samples, (2) hindcast ensemble climatological samples, (3) and hindcast mean ensemble
climatological samples, for the reference by (1) the GPCB climatological samples (2), the
ensemble of GPCP, and MSWEP ensemble climatological samples. The ensembles were
formed by both single- and multiple-month initializations. The analysis results show that
the significant probabilistic errors indicated by high BSs in TerB, and some in TerA over
the dry regions, such as North Africa, the Arabian Peninsula, the Antarctic, Kongo Basin,
South America, and Australia, can be corrected by taking hindcast ensemble climatological
samples. Large errors, especially for TerA over the tropical ocean, were detected by all
analyses. Those over the Nino region in the Pacific Ocean can be reduced in the same
way. The errors over the tropical Pacific Ocean/Indian Ocean generally decrease/increase
with lead time, respectively, showing seasonal and/or lead time features. The ensemble
of observation data can significantly reduce the overall BS, in particular, over the tropical
ocean, except over the western Pacific. This analysis method creates a new outcome,
“uncertain”, for the precipitation events so that the BS is reduced. It implies that the tercile
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probability from the ensemble hindcast is often closer to 0.5 than either 0 or 1. Under such
a condition, the increase of ensemble size is not very effective. However, the increase of BS
to the maximum in SON over the tropical Indian Ocean can be seen even with different
analysis methods. A few small errors persist over the Atlantic Ocean.

The intra-seasonal analysis reveals that the BS spatial distribution patterns in the intra-
seasonal precipitation hindcast are similar to those in the seasonal hindcast, but the BSs are
higher partly due to reduced sample size. This is also possibly related to MJO and tropical
shallow convection, which can be improved by the implementation of a more sophisticated
physics algorithm and the improved ensemble initial conditions for the ocean, as well as
the high-resolution model configuration. The high BS patterns are mostly manifested in the
JJA seasonal hindcast, except those over northwest Australia, which can be eliminated in
the seasonal analysis when the sample size was increased and TTs were changed.

Since there are more probabilistic errors in the tropical region, and they change sig-
nificantly with the analysis methods, the CI95% was used to quantify the uncertainty for
the averaged BS over the entire tropical region. The CI95% was initially estimated by the
bootstrap resampling approach for relative comparisons. Note that it is not an accuracy
estimation. The CI95% was further estimated by the analytical approach of the moment
estimator, which was extended to cases of non-binary outcomes and non-Bernoulli random
variables. The BS calculated by Method 1 is generally the highest, but the CI95% is about
6–7% of the mean BS. The BS calculated by Method 2 was improved, but the CI95% is about
17–19% of the mean. The BS calculated by Method 3 has a relatively higher BS compared
to that calculated by Method 2, but the CI95% is better, about 14–17% of the mean BS. For
Method 5, the CI95%s for the averaged BS is not comparable to that calculated by Method 1,
though the estimated BS is the lowest.

The averaged BS and its CI95% are not linearly correlated. The CI95% was subse-
quently estimated using an analytical approach for the averaged BS by Method 2 in MJJ,
JJA, JAS, ASO, and SON. The CI95% is around 0.03–0.04, about 16–19% of the forecast
mean, which decreases with the lead time. However, the averaged BS does not change
linearly with the lead time. Generally, the BS varies with different analysis methods, and
CI95% changes accordingly. However, the impact of the sample and sample size on the
confidence interval should not be neglected. The increase of forecast ensemble members
will certainly affect the confidence level.

To enhance the reliability of the forecast products, to provide more objective evalua-
tions, and to detect the forecast system deficiencies, it is necessary to reduce the uncertain-
ties in the evaluation method. As the uncertainty in the statistic model is quite large, in the
future, this kind of assessment should also be applied to other evaluation scores, including
the forecast skill score and the relative operative characteristic (ROC).
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Appendix A

For the dichotomous case when x is 0 or 1,
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For the case with an additional event, x = 0.5, the conditional mean of µ f |x=0.5 is
estimated using subsamples, { f 2

l , k = 1, . . ., N2} when x is 0.5. E
[
x2

i
]

and E
[

f 2
i
]

are calculated
based on the definitions,

E[x] = µx (A2)

and
E[ f m] = µ′(m) f (A3)
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The analytical expression of the BS is

E[M̂SE( f , x)] = µ′(2) f− 2(
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N
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For the variance of the BS,
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V[( f − x)2] = E[( f − x)4]−E[( f − x)2]
2
= E[( f − x)4]−MSE( f , x)2 (A7)

The second term at the right-hand side of Equation (A6) is the square of the BS; the
first term can be expanded as

E[( f − x)4] = E
[

f 4]− 4E
[

f 3x
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[
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[
x3 f
]
+ E

[
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For the case of an additional outcome, x = 0.5,

E[ f mxn] =
N1

N
µ′(m) f |x=1 + 0.5n N2

N
µ′(m) f |x=0.5 (A9)

To generalize Equation (A8) when there are more outcomes, 0, 1, A, B, . . . , in a large
collection of samples, and sufficient samples for each outcome,

E[ f mxn] =
N1

N
µ′(m) f |x=1 + An N2

N
µ′(m) f |x=A + Bn N3

N
µ′(m) f |x=B + . . . (A10)
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